Vengono di seguito inseriti i file relativi al sistema di riproduzione del carico aerodinamico descritto nella seconda parte della tesi.
− Bode_HM.m;
− FsuFi_ATF_3ord.m; − Input_DDV.m; − Input_HT_DDV.m;
Bode_HM.m
Clc;close all;clear all
freq=logspace(-2,3,2000);;Input_HT_DDV k1=0;k2=0;k3=0;k4=0;
% Modello con "ritardo di Theodorsen", senza smorzamento aerodinamico e senza massa aggiunta
k1=1;
[A_lin,B_lin,C_lin,D_lin]=linmod('HingeMomentsHT_RigidTail'); [Num_lin,Den_lin]=ss2tf(A_lin,B_lin,C_lin,D_lin);
[Mag1,Ph1]=bode(Num_lin,Den_lin,freq);
% Modello con "ritardo di Theodorsen" e con smorzamento aerodinamico, ma senza massa aggiunta
k2=1;[A_lin,B_lin,C_lin,D_lin]=linmod('HingeMomentsHT_RigidTail'); [Num_lin,Den_lin]=ss2tf(A_lin,B_lin,C_lin,D_lin);
[Mag2,Ph2]=bode(Num_lin,Den_lin,freq);
% Modello completo (con "ritardo di Theodorsen", smorzamento aerodinamico e massa aggiunta)
k3=1;[A_lin,B_lin,C_lin,D_lin]=linmod('HingeMomentsHT_RigidTail'); [Num_lin,Den_lin]=ss2tf(A_lin,B_lin,C_lin,D_lin);
[Mag3,Ph3]=bode(Num_lin,Den_lin,freq);
% Modello completo, tenendo conto della dinamica dell'attuatore di carico
k1=1;k2=1;k3=1;k4=1;[A_lin,B_lin,C_lin,D_lin]=linmod('HingeMomentsHT_RigidTail'); [Num_lin,Den_lin]=ss2tf(A_lin,B_lin,C_lin,D_lin); [Mag4,Ph4]=bode(Num_lin,Den_lin,freq); freq=freq/(2*pi);subplot(211), semilogx(freq,20*log10(Mag1),freq,20*log10(Mag2),freq,20*log10(Mag3),freq,20*log10 (Mag4)),ylabel('[dB]'),legend('K(Th)','K(Th)+C','K(Th)+C+M',...
'K(Th)+C+M+LoadRam','','( HM_H_T/\delta_H_T|_f_=_0=11668 N*m/rad )',2) title('Frequency Response HM_H_T/\delta_H_T')
grid,axis([0.1 100 -10 35]),subplot(212),
semilogx(freq,Ph1,freq,Ph2,freq,Ph3,freq,Ph4),ylabel('[deg]'),xlabel('Frequency [Hz]'),grid,axis([0.1 100 -250 -50])
FsuFi_ATF_3ord.m
Clc;clear all;load rigidezza_attuatore_HT.mat
% nmin=1;
% nmax=length(puls); nmin=5;
nmax=length(puls)-5;
freqi = [puls(nmin:nmax)];
database= [FsuFi_amp(nmin:nmax,1) FsuFi_ph(nmin:nmax,1)]; test_ampl =1;
amp_i =database(:,1:2:2*test_ampl-1); ph_i =database(:,2:2:2*test_ampl); omega_i =2*pi*freqi';
A_31_i =[-omega_i.^3 omega_i]; M_31 =A_31_i'*A_31_i;
A_20_i =[-omega_i.^2 ones(length(freqi),1)]; M_20 =A_20_i'*A_20_i; for k=1:1:test_ampl Real_G_i(:,k) =(10.^(1/20*amp_i(:,k))).*cos(pi/180*ph_i(:,k)); Imag_G_i(:,k) =(10.^(1/20*amp_i(:,k))).*sin(pi/180*ph_i(:,k)); G_1i(:,k) =Real_G_i(:,k)+i*Imag_G_i(:,k); Real_B_i(:,k) =Real_G_i(:,k)./((10.^(1/20*amp_i(:,k))).^2); Imag_B_i(:,k) =-Imag_G_i(:,k)./((10.^(1/20*amp_i(:,k))).^2); x_31_i(:,k) =inv(M_31)*(A_31_i'*Imag_B_i(:,k)); x_20_i(:,k) =inv(M_20)*(A_20_i'*(Real_B_i(:,k)));
x_i(k,:) =[1 x_31_i(1,k) x_20_i(1,k) x_31_i(2,k)]*1/x_20_i(2,k); end disp('Approximated Transfer Function:') disp('G(s) = K / (a3*s^3+a2*s^2+a1*s+1)') M_DDV=x_i; RLAB='@2.5kN'; CLAB='K a3 a2 a1'; printmat(M_DDV,'M_DDV',RLAB,CLAB) for k=1:1:test_ampl disp(strcat('Amplitude [dB]',' (@2.5kN)')); 20*log10(abs(1./(A_20_i*x_20_i(:,k)+i*A_31_i*x_31_i(:,k)))) disp(strcat('Phase [deg]',' (@2.5kN)')); -180/pi*angle(A_20_i*x_20_i(:,k)+i*A_31_i*x_31_i(:,k)) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SOLUTION for rigidezza_attuatore_HT.mat % (nmin=5;nmax=length(puls)-5) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Approximated Transfer Function: % G(s) = K / (a3*s^3+a2*s^2+a1*s+1) % % M_DDV = % K a3 a2 a1 % @2.5kN 0.97340 1.25140e-007 6.29961e-005 0.00983 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Input_DDV.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %
% FILE NAME : Input_DDV.m %
% %
% Last review : 27/02/2003 %
% Author : G. Di Rito %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Temp_cond = 2;% Temperature condition ( 1 = COLD; 2 = NOMINAL; 3 = HOT) [] %%%%%%%%%%%%%
% DDV DATA % %%%%%%%%%%%%%
GI_O=GI(:,Temp_cond); % Gain increment for the Look-Up Table due to the non-linear current % to force relation at the operative temperature []
xv_O =xvalve(:,Temp_cond); % Valve displacements for the Look-Up Table [mm]
activecoils=4; % Active coils [
Appendice B File Matlab®
K_ddv_O = activecoils*K_ddv(Temp_cond);% Coil current to valve displacement gain at the operative temperature
% (steady state) [mm/A]
p_ddv_O = p_ddv(Temp_cond); % Approximation of the low-frequency pole of the DDV dynamics at the operative temperature [rad/sec]
a_ddv_O = a_ddv(Temp_cond); % Third-order dynamics coefficient [(sec/rad)^3] b_ddv_O = b_ddv(Temp_cond); % Third-order dynamics coefficient [(sec/rad)^2] c_ddv_O = c_ddv(Temp_cond);% Third-order dynamics coefficient [sec/rad] Xv_max = 0.8 ; % Maximum port width [mm]
Xs_max = 0.85
Input_HT_DDV.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % FILE NAME : Input_HT_DDV.m % % % % Last review : 21/01/2003 % % Author : G. Di Rito % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Simulation conditions % %%%%%%%%%%%%%%%%%%%%%%%%%
Bool_load = 1;% Boolean variable [1 = Simulation with load,0 = Simulation without load]
Bool_backlash = 1; % Boolean variable [1 = Simulation with backlash, 0 = Simulation without backlash]
Bool_friction = 1; % Boolean variable [1 = Simulation with friction, 0 = Simulation without friction]
Bool_ff = 1; % Boolean variable [1 = Simulation with flow forces, 0 = Simulation without flow florces]
%%%%%%%%%%%%%%%%%%%%%%%%% % Simulation Parameters % %%%%%%%%%%%%%%%%%%%%%%%%%
IS = 1/12000 ; % Integration sample time [sec] T_sim = inf ; % Simulation time [sec]
%%%%%%%%%%%% % DSP DATA % %%%%%%%%%%%%
ST_dsp_fcc = 1/80 ; % Flight Control Computer DSP Sample Rate [s] ST_dsp_act = 1/600 ; % Actuator Control Card DSP Sample Rate [s] ST_dsp_ddv = 1/1200 ; % DDV Control Card DSP Sample Rate [s] N_bit = 12; % DAC bits []
QI = 20/2^N_bit; % Quantization interval [V] %%%%%%%%%%%%%%%%%%%%%%%%%
% Slewer Initialization % %%%%%%%%%%%%%%%%%%%%%%%%%
global lastcom lastcom1 lastcom0 delta pred clock lastcom=0;lastcom1=0;lastcom0=i;delta=0;pred=0;clock=0; %%%%%%%%%%%%%%%%%%%%%%%%%
% HYDRAULIC PLANT DATA % %%%%%%%%%%%%%%%%%%%%%%%%%
P0max = 22500; % Maximum operative supply pressure [kPa]
P0min = 16000 % Minimum operative supply pressure [kPa]
Q0max = 45/6*10^5 ;% Maximum flow rate [mm^3/sec] Ps = 100 ;% Return Pressure [kPa]
z_acc = 10; % Zero of accumulator dynamics (Accumulator acts as a lag-lead filter on flow rate requests) [rad/sec]
p_acc = 5; % Pole of accumulator dynamics (Accumulator acts as a lag-lead filter on flow rate requests) [rad/sec]
K_pump = -0.002; % Steady-state flow to pressure gain for the variable displacement pump [kPa/mm^3/sec]
z_pump = 2; % Zero of the variable displacement pump dynamics (Compensated system) [rad/sec]
zita_pump = 0.7; % Damping factor of the variable displacement pump dynamics (Compensated system) []
omega_pump = 20; % Pulsation of the variable displacement pump dynamics (Compensated system) [rad/sec]
%%%%%%%%%%%%%%%%%%%%%%%%% % HYDRAULIC FLUID DATA % %%%%%%%%%%%%%%%%%%%%%%%%%
Beta = 0.948*10^6;% Bulk modulus [kPa]
%%%%%%%%%%%%%%%%% % ACTUATOR DATA % %%%%%%%%%%%%%%%%%
g = 9800 ; % Acceleration of gravity [mm/sec^2] Mcase = 10 ; % Case mass [kg]
Mp = 3 ; % Piston mass [kg]
A_chamb1 = 2132 ; % Higher pushing area [mm^2]
A_chamb2 = 1712 ;% Lower pushing area [mm^2] Xpmid = 64.61 ; % Midstroke [mm]
%%%%%%%%%%%%%%%%%% % KINEMATIC DATA % %%%%%%%%%%%%%%%%%%
HR0 = 167 ; % Horn radius [mm/rad] %%%%%%%%%%%%%
% PIPE DATA % %%%%%%%%%%%%
lo = 150 % Pipe length [mm] ro = 4; % Pipe radius [mm] V0t = pi*ro^2*lo; % Dead volume [mm^3] %%%%%%%%%%%%%%%%%%%%%
% INITIAL CONDITION % %%%%%%%%%%%%%%%%%%%%%
xp_mount= -Xpmid/3; % Piston position with respect to midstroke at null deflection [mm]
d_HT_0 = 0; % Initial deflection [mm]
xp0 = xp_mount-d_HT_0*pi/180*HR0 ; % Initial piston position [mm]
P_xv0 = 0.5*(0.9*P0max+Ps); % Pressure in the chambers with spool in null position [kPa]
% D_P_EQ = P_xv0*(A_chamb1-A_chamb2)/(A_chamb1+3*A_chamb2); % Pressure variation for asymmetrical pushing areas [kPa]
% Initial pressure in the chambers (no load applied) [kPa] % Pa1_EQ = P_xv0-D_P_EQ;
% Pb1_EQ = P_xv0+D_P_EQ; % Pa2_EQ = P_xv0-D_P_EQ; % Pb2_EQ = P_xv0+D_P_EQ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HORIZONTAL TAIL GEOMETRICAL DATA % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
I_HT = 2.5*10^6 ; % Moment of inertia of horizontal tail [kg*mm^2] l_HT = 2430 ; % Horizontal tail mid-span [mm]
cr_HT = 1680 ; % Horizontal tail root chord [mm] rastr_HT = 0.315 ; % Horizontal tail taper ratio []
MAC_HT = 2/3*((1+rastr_HT+rastr_HT^2)/(1+rastr_HT))*cr_HT ; % Horizontal tail Mean Aerodynamic Chord [mm]
S_HT = 2.858*10^6 ; % Horizontal tail gross area [mm^2] AR_HT = l_HT^2/S_HT ; % Horizontal tail Aspect Ratio []
Lambda_HT = atan(0.75*cr_HT*(1-rastr_HT)/l_HT) ; % Horizontal tail sweepback angle [rad]
%%%%%%%%%%%%%%%%%%%% % FLIGHT CONDITION % %%%%%%%%%%%%%%%%%%%%
U0 = 200*1000 ; % Flight velocity [mm/sec] ro_air = 0.01225*10^-7 ; % Air density [kg/mm^3] a0 = 330*1000 ;% Air sound speed [mm/sec] M0 = U0/a0 ;% Mach
q_HT = 0.5*ro_air*U0^2 ;% Dynamic pressure [kPa] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AIRCRAFT DYNAMICS: SHORT PERIOD % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Kw_deltaHT = -40*1000 ; % Gain of transfer function Z-acceleration to HT deflection [mm/sec^2/rad]
Kq_deltaHT = -15 ; % Gain of transfer function pitch angular acceleration to HT deflection [rad/sec^2/rad]
omega_sp = 10 ; % Short-period natural pulsation [rad/sec] zita_sp = 0.5 ; % Short-period damping []
Tw1 = 1/100 ; % -Zero 1/Tw1 [rad/sec]
Tteta1 = 1/4 ; % -Zero 1/Tteta1 [rad/sec] %%%%%%%%%%%%%%%%%%%%%%
% AERODYNAMIC FORCES %
Appendice B File Matlab®
%%%%%%%%%%%%%%%%%%%%%%
b_HT = 0.5*MAC_HT ; % 0.5*Mean Aerodynamic Chord [mm]
a_HT = 0.60*b_HT ; % Distance between hinge line and the mid-point of Mean Aerodynamic Chord [mm]
% The value is to be considered positive if the hinge line is placed forward the % the mid-point of MAC. % This value has been chosen in order to place the hinge line aft the aerodynamic
% center of horizontal tail in subsonic flow (approximately at 1/4 of MAC). Cl_alfa_2D = 2*pi ; % Theoretical aerofoil slope of lift coefficient [] beta_comp = (1-M0^2)^0.5 ; % Prandtl-Glauert coefficient (for compressibility correction) []
Coeff_Cl_alfa_3D =
AR_HT/(2+(4+(1+(tan(Lambda_HT)/beta_comp)^2)*(AR_HT*beta_comp)^2)^0.5) ; [] % Three-dimensional correction factor for finite swept wing in subsonic flow [] Cl_alfa_3D = Cl_alfa_2D*Coeff_Cl_alfa_3D ;
% Slope of lift coefficient for finite swept wing in subsonic flow [] I_HT_MassaAgg =
ro_air*pi*(1/8+(a_HT/b_HT)^2)*(rastr_HT^4+rastr_HT^3+rastr_HT^2+rastr_HT+1)/80*cr_ HT^4*l_HT ;
K_aer_HT =Cl_alfa_3D*(a_HT/MAC_HT-1/4)*q_HT*S_HT*MAC_HT;
deps_over_dalpha = 0.1; % Downwash angle derivative on horizontal tail with respect to aircraft incidence [] (ASSUMED)
alpha_HT_0 = 0; % Initial incidence on horizontal tail [rad] H_HT_0 = 0; % Initial hinge moment on horizontal tail [mN*mm] lfus = 12000 ; % Fuselage length [mm]
lt = 0.5*lfus ; % Distance between wing aerodynamic center and horizontal tail aerodynamic center [mm]
% Theodorsen function definition Gain_Theod = 0.5 ; % []
C1_Num_Theod = 0.589*U0/b_HT ;% [1/sec C0_Num_Theod = 0.0262*(U0/b_HT)^2 ;% [1/sec^2] C1_Den_Theod = 0.361*U0/b_HT ;% [1/sec] C0_Den_Theod = 0.0131*(U0/b_HT)^2 ;% [1/sec^2]
Bool_ua = 1; % Boolean variable [1 = Simulation with unsteady aerodynamics, 0 = Simulation with steady aerodynamics]
%%%%%%%%%%%%%%%%% % STIFFNESS DATA % %%%%%%%%%%%%%%%%%%
Kback = 2500*10^9 ;% Rotational stiffness of structure between% aircraft attachment and case [kg*mm^2/sec^2/rad]
Bear_Lug_Case_coeff = 0.77; % Stiffness variation due to lug-bearing compliance % at case attachment
Kcase = Bear_Lug_Case_coeff*Kback/HR0^2 ; % Linear stiffness of structure between % aircraft attachment and case (with lug-bearing effects) [kg/sec^2] Ktors_HT = 765*10^9; % Rotational stiffness of structure between Bear_Lug_HT_coeff = 0.91; % Stiffness variation due to bearing compliance % at piston attachment
Ktors_HT = Bear_Lug_HT_coeff*Ktors_HT ;% Rotational stiffness of structure betwee % piston and control surface (with lug-bearing effects) [kg*mm^2/sec^2/rad]
%%%%%%%%%%%%%%%% % DAMPING DATA % %%%%%%%%%%%%%%%%
zita_case = 0.15 ; % Damping factor related to elastic link betweeìn % aircraft attachment and case (with lug-bearing effects) []
Ccase = 2*zita_case*(Kcase*Mcase)^0.5 ;% Damper coefficient related to elastic link between
% aircraft attachment and case [kg/sec] (with lug-bearing effects)
zita_HT = 0.15 % Damping factor related to elastic link between % piston and control surface (with lug-bearing effects
C_HT = 2*zita_HT*(Ktors_HT*I_HT)^0.5 ;% Damper coefficient related to elastic link between % piston and control surface [kg*mm^2/sec/rad] (with lug- bearing effects) %%%%%%%%%%%% % DDV DATA % %%%%%%%%%%%%% load ddv_data.mat Input_DDV;
portwidth=7.7; % Valve port width [mm]
underlap=5.08*10^-3; % Orifice underlap [mm] C_r=3.81*10^-3; % Spool clearance [mm]
% Orifice area calculation: for j=1:1:length(xvalve) if xvalve(j)<=-underlap Area1(j)=portwidth*C_r; Area2(j)=portwidth*(C_r^2+(xvalve(j)-underlap)^2)^0.5; elseif abs(xvalve(j))<underlap Area1(j)=portwidth*(C_r^2+(xvalve(j)+underlap)^2)^0.5; Area2(j)=portwidth*(C_r^2+(xvalve(j)-underlap)^2)^0.5; else Area1(j)=portwidth*(C_r^2+(xvalve(j)+underlap)^2)^0.5; Area2(j)=portwidth*C_r; end end
Cd_or_turb =0.611; % Adimensional leakage coefficient (turbulent flow value, theoretical) []
Re_or_t = 100; % Reynolds number for the transition from laminar to turbulent flow % in the orifice []
% Theoretical value for slit orifice in an infinite plane: Re_tr=15 ; % theoretical value for circular orifice in an infinite plane: Re_tr=9. % The value has been chosen taking into account of:
% 1. Upstream the orifice the flow comes from a pipe, not an infinite plane; % 2. In this case, Xv_max/portwidth = 0.1
%(the orifice has been considered more similar to a slit type) Re_or = [linspace(0,4*Re_or_tr,195)
linspace(5*Re_or_tr,10*Re_or_tr,5)];
Cd_or = Cd_or_turb*tanh((Re_or/Re_or_tr).^0.5); % Jet angle calculation:
JetAngle = pi/180*linspace(4.84,65.83,100); % Jet angle [rad] xv_over_Cr = (1+pi/2*sin(JetAngle)-log(tan(pi/2-
JetAngle/2).*cos(JetAngle)))./(1+pi/2*cos(JetAngle)+log(tan(pi/4-
JetAngle/2).*sin(JetAngle))); % Valve opening (included underlap) over spool clearance []
p_jet = 25; % Pole of the dynamics related to jet angle variation [rad/s] (ASSUMED)
C_c = 0.611; % Area contraction coeffient [] K_ff_c = 2*10^-6; % Flow force to current gain [A/mN] %%%%%%%%%%%%
% BACKLASH % %%%%%%%%%%%%
FPEL = 0.034*pi/180 ; % Free play at end life [rad]
BackLash = FPEL*HR0/4*Bool_backlash ; % Radial backlash on each attachment [mm]
%%%%%%%%%%%%%%%%% % FRICTION DATA % %%%%%%%%%%%%%%%%%
F_s = 1000*10^3; % Static friction force [mN]
F_d = 500*10^3; % Dynamic friction force [mN]
%%%%%%%%%%%%%%%%%%%% % Seal Deformation % %%%%%%%%%%%%%%%%%%%%
v_star = 8 ; % Slipping velocity [mm/s] E_s_max = 0.05; % Maximum seal deformation [mm] K_seal = F_s/E_s_max ; % Seal stiffness [kg/sec^2] C_seal = F_d/v_star ; % Seal damping [kg/sec] %%%%%%%%%%%%%%%%%%%%%%
% CONTROL PARAMETERS % %%%%%%%%%%%%%%%%%%%%%%
Rate_lim= 60; % Rate limit [deg/sec]
p_slewer= 1/0.008; % Pole of the slewer dynamics [1/sec]
K_ctrl_ram= 12.48; % Ram control gain []
z_ctrl_ram= 0.04^-1; % Zero of the lag-lead filter applied for the ram control [1/sec]
p_ctrl_ram= 0.051^-1; % Pole of lag-lead filter applied for the ram control [1/sec]
omega_nf_n= 194.8; % Notch filter pulsation (numerator) applied for the ram control [rad/sec]
zita_nf_n= 0.06; % Notch filter damping factor (numerator) applied for the ram control []
Appendice B File Matlab®
omega_nf_d= 345.6; % Notch filter pulsation (denominator) applied for the ram control [rad/sec]
zita_nf_d= 0.28 ; % Notch filter damping factor (denominator) applied for the ram control []
K_fb_ram= 0.127; % Overall ram feedback gain [V/mm] K_ctrl_ddv= 5.87; % DDV control gain (@ 4 active coils) [] z_ctrl_ddv= 0.0159^-1; % Zero of lag-lead filter applied for the DDV control [1/sec]
p_ctrl_ddv= 0.0318^-1; % Pole of lag-lead filter applied for the DDV control [1/sec]
K_lvdt_ddv= 1.2391; % DDV LVDT gain [Vrms/mm]
K_demod_ddv= 6.295; % Demodulator gain [Vdc/Vrms]
K_fb_ddv= K_lvdt_ddv*K_demod_ddv; % Overall DDV feedback gain [V/mm]
K_lvdt_ram= 0.03527; % Ram LVDT gain [Vrms/mm]
K_demod_ram= 3.6; % Demodulator gain [Vdc/Vrms]
p_fb_ram= 1000 ; % Feedback dynamics [rad/sec]
p_fb_ddv= 2000 ; % Feedback dynamics [rad/sec]
p_demod_ram= 200 ; % Pole of the ram demodulator dynamics [rad/sec] p_demod_ddv= 800 ; % Pole of the DDV demodulator dynamics [rad/sec] %%%%%%%%%%%%%%%%%%%%%%
% SERVOAMPLIFIER DATA % %%%%%%%%%%%%%%%%%%%%%%%
K_s= 0.055; % Servo-amplifier gain [V/V]
R_ = 0.5; % Sense resistance [A/V] p_p= 0.000278^-1; % Pre-Filter pole [rad/sec]
APPENDICE C: Funzioni di trasferimento in ciclo
aperto della dinamica del distributore
In questa appendice vengono tabulati i valori di zeri, poli e guadagni delle funzioni di trasferimento, approssimate in basa frequenza, della dinamica del distributore in ciclo aperto per ogni condizione operativa analizzata, come discusso al capitolo 1.
Condizioni di equilibrio (LINEA 1)
Portata = 2.4 l/min Pressione = 115.5 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-1.32e+001 ± 7.93e+001i 1.64e-001 8.04e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 1.9989e+008 kPa
( )
sG2 LF -7.01e+003 0.4911
( )
sG3 LF -2.58e+001 -0.1866 kPa*sec/mm3 Tabella C.1
Condizioni di equilibrio (LINEA 1)
Portata = 2.4 l/min Pressione = 174.5 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-2.27e+00± 6.85e+001i 3.14e-001 7.22e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 1.1936e+008 kPa
( )
s G2 LF -1.90e+003 2.4999( )
s G3 LF -4.29e+001 -0.1954 kPa*sec/mm3 Tabella C.2 184Appendice C
Condizioni di equilibrio (LINEA 1)
Portata = 2.4 l/min Pressione = 179bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-3.31e+001±7.36e+001i 4.10e-001 8.07e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 7.8825e+007 kPa
( )
sG2 LF -1.78e+003 3.5199
( )
sG3 LF -6.26e+001 -0.1959 kPa*sec/mm3 Tabella C.3
Condizioni di equilibrio (LINEA 1)
Portata = 2.4 l/min Pressione = 188.5bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-3.20e+001±3.70e+001i 6.54e-001 4.89e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 2.3858e+007 kPa
( )
sG2 LF -8.88e+001 26.2342
( )
sG3 LF -3.77e+001 -0.1968 kPa*sec/mm3 Tabella C.4
Condizioni di equilibrio (LINEA 1)
Portata = 4.8 l/min Pressione = 119bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-1.35e+001±7.88e+001i 1.69e-001 7.99e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 1.9858e+008 kPa
( )
s G2 LF -3.33e+003 1.0455( )
s G3 LF -2.60e+001 -0.1873 kPa*sec/mm 3 Tabella C.5 185Condizioni di equilibrio (LINEA 1)
Portata = 4.8 l/min Pressione = 180 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-5.62e+001±8.76e+001i 5.40e-001 1.04e+002
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 6.4582e+007 kPa
( )
sG2 LF -1.37e+003 7.7263
( )
sG3 LF -1.05e+002 -0.1960 kPa*sec/mm3 Tabella C.6
Condizioni di equilibrio (LINEA 1)
Portata = 4.8 l/min Pressione = 183 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-3.45e+001±6.39e+001i 4.75e-001 7.27e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 6.5571e+007 kPa
( )
sG2 LF -4.55e+002 11.1883
( )
sG3 LF -5.78e+001 -0.1963 kPa*sec/mm3
Tabella C.7
Condizioni di equilibrio (LINEA 1)
Portata = 4.8 l/min Pressione = 189 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-5.57e+001±2.14e+001i 9.34e-001 5.97e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 2.0024e+007 kPa
( )
s G2 LF -4.46e+001 78.7338( )
s G3 LF -3.28e+001 -0.1968 kPa*sec/mm3 Tabella C.8 186Appendice C
Condizioni di equilibrio (LINEA 1)
Portata = 7.2 l/min Pressione = 119 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-1.38e+001±7.88e+001i 1.73e-001 8.00e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 1.9865e+008 kPa
( )
s G2 LF -2.23e+003 1.5732( )
s G3 LF -2.61e+001 -0.1873 kPa*sec/mm 3 Tabella C.9Condizioni di equilibrio (LINEA 1)
Portata = 7.2 l/min Pressione = 173 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-2.46e+001±7.03e+001i 3.30e-001 7.44e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 1.2484e+008 kPa
( )
sG2 LF -7.35e+002 6.8704
( )
sG3 LF -4.22e+001 -0.1953 kPa*sec/mm3
Tabella C.10
Condizioni di equilibrio (LINEA 1)
Portata = 7.2 l/min Pressione = 183 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-3.44e+001±6.20e+001i 4.85e-001 7.09e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 6.7851e+007 kPa
( )
s G2 LF -2.88e+002 16.8021( )
s G3_LF -5.20e+001 -0.1963 kPa*sec/mm 3 Tabella C.11 187Portata = 7.2 l/min Pressione = 187 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-3.78e+001±4.35e+001i 6.56e-001 5.76e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 3.3850e+007 kPa
( )
s G2 LF -8.22e+001 39.3251( )
s G3 LF -3.63e+001 -0.1967 kPa*sec/mm 3 Tabella C.12Condizioni di equilibrio (LINEA 2)
Portata = 2.4 l/min Pressione = 177 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-2.64e+001±6.99e+001i 3.53e-001 7.47e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 9.1866e+007 kPa
( )
sG2 LF -1.78e+003 2.9825
( )
sG3 LF -4.98e+001 -0.1957 kPa*sec/mm3
Tabella C.13
Condizioni di equilibrio (LINEA 2)
Portata = 2.4 l/min Pressione = 186 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-2.64e+001±6.99e+001i 3.53e-001 7.47e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 9.1866e+007 kPa
( )
s G2 LF -1.78e+003 2.9825( )
s G3 LF -4.98e+001 -0.1957 kPa*sec/mm 3 Tabella C.14 188Appendice C
Condizioni di equilibrio (LINEA 2)
Portata = 4.8 l/min Pressione = 171 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-2.03e+001±6.73e+001i 2.89e-001 7.03e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 1.1712e+008 kPa
( )
s G2 LF -1.12e+003 4.0890( )
s G3 LF -3.65e+001 -0.1951 kPa*sec/mm 3 Tabella C.15Condizioni di equilibrio (LINEA 2)
Portata = 4.8 l/min Pressione = 180 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-5.59e+001±8.74e+001i 5.38e-001 1.04e+002
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 3.8870e+007 kPa
( )
sG2 LF -1.38e+003 7.7264
( )
sG3 LF -1.04e+002 -0.1960 kPa*sec/mm3
Tabella C.16
Condizioni di equilibrio (LINEA 2)
Portata = 7.2 l/min Pressione = 170 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-2.01e+001±6.75e+001i 2.85e-001 7.04e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 1.2357e+008 kPa
( )
s G2 LF -8.23e+002 5.5507( )
s G3 LF -3.46e+001 -0.1949 kPa*sec/mm3 Tabella C.17 189Condizioni di equilibrio (LINEA 2)
Portata = 7.2 l/min Pressione = 177 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
-3.29e+001±7.49e+001i 4.02e-001 8.19e+001
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 6.0869e+007 kPa
( )
sG2 LF -7.26e+002 8.9947
( )
sG3 LF -5.69e+001 -0.1957 kPa*sec/mm3
Tabella C.18
Condizioni di equilibrio (LINEA 2)
Portata = 7.2 l/min Pressione = 122 bar Poli del sistema
Autovalori [rad/sec] Smorzamento ζ Pulsazione ω (rad/sec)
i 74 66 . 0 ± − 0.009 74
Zeri e guadagni delle fdt
Fdt Zeri Guadagno
( )
sG1 LF Nessuno zero 1.1 e+008 kPa
( )
s G2 LF -1410.6 2.0716( )
s G3 LF -1.3543 -0.2349 kPa*sec/mm 3 Tabella C.19 190Appendice D
APPENDICE D: Cataloghi utilizzati
Si riportano di seguito i cataloghi utilizzati nel corso della tesi relativi ai componenti presenti nel banco idraulico:
− Catalogo Denison hydraulics relativo alla servovalvola regolatrice di pressione modello R4R06-595-11P2-B1;
− Catalogo Gefran relativo ai trasduttori di pressione presenti nel distributore modello TKF-N-1-M-5C-H;
− Catalogo Star Hydraulics relativo alla servovalvola flapper-nozzle modello 890-0013 che comanda il martinetto di carico.
− Catalogo Sensotec relativo alla calla di carico modello 41-0571-04 per rilevare i carichi esercitati dal martinetto.
Appendice D
Appendice D