• Non ci sono risultati.

In Helianthus × multiflorus il gene CYC2c è espresso ectopicamente in corolle dei fiori del disco modificati in fior

CYC2c di Helianthus decapetalus e Heliantus × multiflorus

3.3 In Helianthus × multiflorus il gene CYC2c è espresso ectopicamente in corolle dei fiori del disco modificati in fior

“ray-like”

Nel girasole, HaCYC2c è espresso in fiori del raggio ma non in fiori del disco (Chapman et al., 2008; Tähtiharju et al., 2012). Al contrario, nelle piante mutanti Chry2, il gene è espresso ectopicamente a causa dell'inserimento di un ET, con formazione di fiori del disco zigomorfi (Chapman et al., 2012; Fambrini et al., 2014a).

È stato analizzato il pattern di espressione dei geni CYC2c mediante real- time RT-PCR (qPCR) in H. annuus, H. decapetalus e H. × multiflorus. È stata verificata una corrispondenza con i risultati riportati precedentemente (Chapman et al., 2008; Tähtiharju et al., 2012). Come previsto, CYC2c è espresso nella corolla di fiori del raggio in H. annuus e H. decapetalus. Mentre nei fiori del disco i livelli di espressione sono estremamente ridotti (Fig. 18). Al contrario, in H. × multiflorus il gene CYC2c ha mostrato un evidente ed alto livello di trascrizione sia in corolle dei fiori del raggio esterni (RFE) che in corolle dei fiori del raggio interni (RFI) (Fig. 18); stessa espressione manifestata dalle inflorescenze dbl e Chry2 (Chapman et al., 2012, Fambrini et al., 2014a). È probabile che la sovraespressione del gene H×mCYC2c abbia determinato il passaggio dei fiori del disco, da attinomorfi a zigomorfi, con la produzione di un’infiorescenza di tipo ligulato, atipica per il genere Helianthus.

Fig. 18: Espressione del gene CYC2c. Livello di trascrizione dell’mRNA del

gene CYC2c in corolle di fiori del raggio (RF) e fiori del disco (DF) di Helianthus annuus (Ha), Helianthus decapetalus (Hd) e Helianthus × multiflorus (H×m). L’mRNA è stato estratto da corolle di RF di Ha (HaRF) e H×m (H×mRFE), e da corolle di DF posizionate nel secondo cerchio dell’infiorescenza di Ha (HaDF), Hd (HdDF) e H×m (H×mRFI). I valori relativi di trascrizione sono stati calcolati mediante qRT-PCR. È stato usato mRNA di radice di Helianthus annuus come campione di riferimento e normalizzato a quelli del gene ribosomale Ha-18S. I dettagli sono forniti in Materiali e Metodi. Il grafico mostra la media (± DS) di tre repliche biologiche (n = 3). Lettere uguali indicano assenza di differenze significative in base al test di Tukey dopo analisi della varianza (ANOVA P ≤ 0,05).

4. Conclusioni

In una conferenza tenuta a Chiswick, in Inghilterra e dedicata alle Asteraceae ed in particolare alle specie perenni di Helianthus spp. DeWar (1891) affermava “It … seemed probable … that Helianthus × multiflorus is a garden hybrid of Helianthus annuus and perhaps Helianthus decapetalus, and that it has been produced several times. Helianthus annuus is the only known sunflower besides Helianthus × multiflorus which assumes double forms (ligulate inflorescence), and its hybrids might inherit this tendency …” È probabile che questa affermazione sia scaturita dall’osservazione del mutante Chry di H. annuus, già conosciuto in Europa da circa 300 anni (Heiser, 1976).

Abbiamo dimostrato che H. × multiflorus varietà “Soleil d’Or” presenta un’infiorescenza ligulata, esteticamente molto attrattiva, originata probabilmente dall’espressione ectopica del gene CYC2c, come conseguenza dell’inserzione di un elemento CACTA difettoso nella regione promotrice al 5'. Non si può, tuttavia, escludere che nella formazione di queste nuove ed insolite infiorescenze di aspetto ligulato possano essere coinvolti anche altri geni CYC.

Potrebbe essere interessante approfondire il ruolo dell’inserzione dell’ET CTEHM1 mediante una analisi approfondita delle varietà di H. × multiflorus che presentano infiorescenze di tipo raggiato (es. “Major” e “Meteor”); come sarebbe necessario indagare sulla regolazione, soprattutto su base epigenetica, di questi elementi trasponibili.

Ciononostante i dati raccolti in H. × multiflorus forniscono un ulteriore conferma sul coinvolgimento degli ET nell’evoluzione dell’architettura delle

infiorescenze; in particolare sullo sviluppo di una infiorescenza atipica nel genere Helianthus in cui l’architettura di base è di tipo raggiato.

5. Bibliografia

Abbate G., Acosta A., Baldan B., Basile A., Caporali E., Casadoro G., Cozzolino S., Felicini G.P., Forni C., Giovi E., Maggi O., Mazzuca S., Navazio L., Pasqua G., Perrone C., Selvi F., Signorini M.A., Spada A., Trainotti L. (2008) Botanica generale e diversità vegetale. Editore Piccin, Padova. Pp.433-434.

Aggarwal P., Gupta M.D., Joseph A.P., Chatterjee N., Srinivasan N., Nath U. (2010) Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22:1174-1189.

Aguilar-Martínez J.A., Poza-Carrión C., Cubas P. (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458-472.

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402. Bartlett M.E., Specht C.D. (2011) Changes in expression pattern of the

TEOSINTE BRANCHED1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. Am. J. Bot. 98:1-17.

Bateman A., Birney E., Cerruti L., Durbin R., Etwiller L., Eddy S.R., Griffiths- Jones S., Howe K.L., Marshall M., Sonnhammer E.L.L. (2002) The Pfam protein families database. Nucleic Acids Res. 30:276-280.

Barker M.S., Kane N.C., Matvienko M., Kozik A., Michelmore R.W., Knapp S.J., Rieseberg L.H. (2008) Multiple paleopolyploidizations during the evolution

of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 25:2445-2455.

Bello M.A., Cubas P., Álvarez I., Sanjuanbenito G., Fuertes-Aguilar J. (2017) Evolution and expression patterns of CYC/TB1 genes in Anacyclus: phylogenetic insights for floral symmetry genes in Asteraceae. Front. Plant Sci. 8:1-12.

Bennetzen J.L. (2000) Transposable element contribution to plant gene and genome evolution. Plant Mol. Biol. 42:251-269.

Berti F., Fambrini M., Turi M., Bertini D., Pugliesi C. (2005) Mutations of corolla symmetry affect carpel and stamen development in Helianthus annuus. Can. J. Bot. 83:1065-1072.

Broholm S.K., Tähtiharju S., Laitinen R.A.E., Albert V.A., Teeri T.H., Elomaa P. (2008) A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc. Natl. Acad. Sci. USA 105:9117-9122.

Bucher E., Reiders J., Mirouze M. (2012) Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr. Opin. Plant Biol. 15:503- 510.

Cavallini A., Natali L., Zuccolo A., Giordani T., Jurman I., Ferrillo V., Vitacolonna N., Sarri V., Cattonaro F., Ceccarelli M., Cionini P.G., Morgante M. (2010) Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Theor. Appl. Genet. 120:491-508.

Chapman M.A., Leebens-Mack J.H., Burke J.H. (2008) Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol. Biol. Evol. 25:1260-1273.

Chapman M.A., Tang S., Draeger D., Nambeesan S., Shaffer H., Barb J.B., Knapp S.J., Burke J.M. (2012) Genetic analysis of floral symmetry in Van Gogh's sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genet. 8:e1002628.

Çetinbas A., Ünal M. (2012) Comparative ontogeny of hermaphrodite and pistillate florets in Helianthus annuus L. (Asteraceae). Not. Sci. Biol. 4:30- 40.

Citerne H.L., Le Guilloux M., Sannier J., Nadot S., Damerval C. (2013) Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in Eudicots. PLoS One 8:e74803.

Chen Z.J., Ni Z. (2006) Mechanism of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28:240-252.

Corley S.B., Carpenter R., Copsey L., Coen E. (2005) Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc. Natl. Acad. Sci. USA 102:5068-5073.

Cronk Q., Möller M. (1997) Genetics of floral symmetry revealed. Trends Ecol. Evol. 12:85-86.

Cubas P., Lauter N., Doebley J., Coen E. (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 18:215-222.

Damerval C., Le Guilloux M., Jager M., Charon C. (2007) Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Plant Physiol. 143:759-772.

Després C., Chubak C., Rochon A., Clark R., Bethume T., Desveaux D., Fobert P.R. (2003) The Arabidopsis NPR1 disease resistance protein is a novel

cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181-2191. De Paolo S., Gaudio L., Aceto S. (2015) Analysis of the TCP genes expressed

in the inflorescence of the orchid Orchis italica. Sci. Rep. 5:16265. DeWar D. (1893) Perennial sunflowers. Jour. Roy. Hort. Soc. 15:26-39.

Falquet L., Pagni M., Bucher P., Hulo N., Sigrist C.J., Hofmann K., Bairoch A. (2002) The PROSITE database, its status in 2002. Nucleic Acids Res. 30:235-238.

Fambrini M., Bertini D., Cionini G., Michelotti V., Pugliesi C. (2006) Mutations affecting corolla symmetry in sunflower. Floriculture, Ornamental and Plant Biotechnology Volume 1, Chapter: 7, Editors: Jaime A. Teixeira da Silva, Publisher: Global Science Books, UK. Pp. 61-70.

Fambrini M., Salvini M., Pugliesi C. (2011) A transposon-mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica 139:1521-1529.

Fambrini M., Salvini M., Basile A., Pugliesi C. (2014a) Transposon-dependent induction of Vincent van Gogh’s sunflowers: exceptions revealed. genesis 52:315-327.

Fambrini M., Basile A., Salvini M., Pugliesi C. (2014b) Excisions of a defective transposable CACTA element (Tetu1) generate new alleles of a CYCLOIDEA-like gene of Helianthus annuus. Gene 549:198-207.

Fambrini M., Pugliesi C. (2017a) CYCLOIDEA 2 clade genes: key players in the control of floral symmetry, inflorescence architecture, and reproductive organ development. Plant Mol. Biol. Rep. 35:20-36.

Fambrini M., Pugliesi C. (2017b) Mobilization of the Tetu1 transposable element of Helianthus annuus: evidence for excision in different developmental stages. Biol. Plant. 61:55-63.

Fedoroff N., Schläppi M., Raina R. (1995) Epigenetic regulation of the maize Spm transposon. Bioessays 17:291-297.

Fedoroff N.V. (2012) Transposable elements, epigenetics and genome evolution. Science 338:758-767.

Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

Felsenstein J. (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:164-166.

Feng X., Zhao Z., Tian Z., Xu S., Luo Y., Cai Z., Wang Y., Yang J., Wang Z., Weng L., Chen J., Zheng L., Guo X., Luo J., Sato S., Tabata S., Ma W., Cao X., Hu X., Sun C., Luo D. (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc. Natl. Acad. Sci. USA 103:4970- 4975.

Finlayson S.A. (2007) Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol. 48:667-677.

Frey M., Spring O. (2015) Molecular traits to elucidate the ancestry of Helianthus × multiflorus. Biochem. Syst. Ecol. 58: 51-58.

Funk V.A., Bayer R.J., Keeley S., et al. (12 co-authors). (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biol. Skr. 55:343-374.

Gbadegesin M.A., Beeching J.R. (2010) Enhancer/Suppressor mutator (En/Spm)-like transposable elements of cassava (Manihot esculenta) are transcriptionally inactive. Genet. Mol. Res. 9:639-650.

Gierl A., Saedler H., Peterson P.A. (1989) Maize transposable elements. Annu. Rev. Genet. 23:71-85.

Gillies A.C.M., Cubas P., Coen E.S., Abbott R.J. (2002) Making rays in the Asteraceae: genetics and evolution of variation for radiate versus discoid flower heads. In: Cronk QCB, Bateman R.M., Hawkins J.A., editors. Developmental Genetics and Plant Evolution., Taylor & Francis, London. Pp. 237-246.

Giordani T., Cavallini A., Natali L. (2014) The repetitive component of the sunflower genome. Curr. Plant Biol. 1:45-54.

Hahn M.W., Wray G.A. (2002) The g-value paradox. Evol. & Devel. 4: 73-74. Heiser C.B. Jr., Smith D.M. (1960) The origin of Helianthus multiflorus. Am. J.

Bot. 47:680-685.

Hileman L.C. (2014a) Bilateral flower symmetry-how, when and why? Curr. Opin. Plant Biol. 17:146-152.

Hileman L.C. (2014b) Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369(1648): 20130348.

Howarth D.G., Donoghue M.J. (2006) Phylogenetic analisys of the ‘‘ECE’’ (CYC/TB1) clade reveals duplications predating the core eudicots. Proc. Natl. Acad. Sci. USA 103:9101-9106.

Jabbour F., Cossard G., Le Guilloux M., Sannir J., Nadot S., Damerval C. (2014) Specific duplication and dorsoventrally asymmetric expression

patterns of Cycloidea-like genes in zygomorphyc of Ranunculaceae. PLoS One 9:e95727.

Jeffrey C. (1977) Corolla forms in Compositae - some evolutionary and taxonomic speculations. In: Heywood V.H., Harborne J.B., Turner B.L., editors. The Biology and Chemistry of the Compositae (vol. 1)., Academic Press, London. Pp. 111-118.

Juntheikki-Palovaara I., Tähtiharjiu L.T., Broholm K., Rijpkena A.S., Ruonala R., Kale L., Albert V.A., Teeri T.H., Elomaa P. (2014) Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). Plant J. 79:783-796.

Kim M., Cui M.L., Cubas P., Gillies A., Lee K., Chapman M.A., Abbott R.J., Coen E. (2008) Regulatory genes control key morphological and ecological trait transferred between species. Science 322:1116-1119. Knowles P.F. (1978) Morphology and anatomy. In: Carter J.F., editor. Sunflower

Science and Technology. Madison, WI: ASA, CSSA, SSSA, Inc. Publishers. Pp. 55-87.

Kosiol C., Goldman N. (2005) Different versions of the Dayhoff rate matrix. Mol. Biol. Evol. 22:193-199.

Kosugi S., Ohashi Y. (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607-1619. Kuang Q., Li L., Peng J., Sun S., Wang X. (2013) Transcriptome analysis of

Gerbera hybrida ray florets: putative genes associated with gibberellin metabolism and signal transduction. PLoS One 8:e57715.

Lewin B. (1997) Transposons. In: Lewin B. (ed) Genes VI. Oxford University Press, New York. Pp. 563-595.

Li S.F., Su T., Cheng G.Q., Wang B.X., Li X., Deng C.L., Gao W.J. (2017) Chromosome evolution in connection with repetitive sequences and epigenetics in plants. Genes 8:290.

Livak K.J., Schmittgen T.D. (2001) Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods 25:402-408.

Luo D., Carpenter R., Vincent C., Copsey L., Coen E. (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794-799.

Luo D., Carpenter R., Copsey L., Vincent C., Clark J., Coen E.S. (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367-376.

Margush T., McMorris F.R. (1981) Consensus n-trees. Bull. Math. Biol. 43:239- 244.

Martìn-Trillo M., Cubas P. (2010) TCP genes: A family snapshot ten years later. Trends Plant Sci. 15:31-39.

Masson P., Rutherford G., Banks J.A., Fedoroff N. (1989) Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58:755-765.

McClintock B. (1984) The significance of responses of the genome to challenge. Science 226:792-801.

Mizzotti C., Fambrini M., Caporali E., Masiero S., Pugliesi C. (2015) A CYCLOIDEA-like gene mutation in sunflower determines an unusual floret type able to produce filled achenes at the periphery of the pseudanthium. Botany 93:171-181.

Natali L., Cossu R.M., Barghini E., Giordani T., Buti M., Mascagni F., Morgante M., Gill N., Kane N.C., Rieseberg L., Cavallini A. (2013) The repetitive

component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics 14:686. Navaud O., Dabos P., Carnus E., Tremousaygue D., Hervé C. (2007) TCP

Transcription factors predate the emergence of land plants. J. Mol. Evol. 65:23-33.

Neal P.R., Dafni A., Giurfa M. (1998) Floral symmetry and its role in plant- pollinator systems: terminology, distribution, and hypotheses. Annu. Rev. Ecol. Syst. 29:345-373.

Nikkeshi A., Kurimoto D., Ushimaru A. (2015) Low flower-size variation in bilaterally symmetrycal flowers: support for the pollination precision hypothesis. Am. J. Bot. 102:2032-2040.

Offenthal R., Kaiser K. (1999) Some perennial sunflower. The Hardy Plant 21:38-48.

Panero J.L., Freire S.E., Espinar L.A., Crozier B.S., Barboza G.E., Cantero J.J. (2014) Resolution of deep nodes yields an improved backbone phylogeny and a new basal lineage to study early evolution of Asteraceae. Mol. Biol. Evol. 80:43-53.

Preston J.C., Hileman L.C. (2009) Developmental genetics of floral symmetry evolution. Trends Plant Sci. 14:147-154.

Preston J.C., Hileman L.C. (2012) Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 3:6.

Sambrook J., Russell D. (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Sargent R.D. (2004) Floral symmetry affects speciation rates in angiosperms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 271:603-608.

Schiefelbein J.W., Furtek D.B., Dooner H.K., Nelson O.E. Jr. (1988) Two mutations in a maize bronze-1 allele caused by transposable elements of the Ac-Ds family alter the quantity and quality of the gene product. Genetics 120:767-777.

Sonnhammer E.L.L., Durbin R. (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1-GC10.

Spring O., Schilling E.E. (1990) The origin of Helianthus × multiflorus and H. × laetiflorus (Asteraceae). Biochem. Syst. Ecol. 18:19-23.

Staton S.E., Bakken B.H., Blackman B.K., Chapman M.A., Kane N.C., Tang S., Ungerer M.C., Knapp S.J., Rieseberg L.H., Burke J.M. (2012) The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J. 72:142-153.

Stuessy T.F., Spooner D.M., Evans K.A. (1986) Adaptive significance of ray corollas in Helianthus grosseserratus (Compositae). Am. Midl. Naturalist. 115:191-197.

Tähtiharju S., Rijpkema A.S., Vetterli A., Albert V.A., Teeri T.H., Elomaa P. (2012) Evolution and diversification of the CYC/TB1 gene family in Asteraceaea comparative study in gerbera (Mutisieae) and sunflower (Heliantheae). Mol. Biol. Evol. 29:1155-1166.

Thomas C.A. (1971) The genetic organization of chromosomes. Annu. Rev. Genet. 5:237-256.

Thompson J.D., Higgins D.G., Gibson T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.

Trentmann S.M., Saedler H., Gierl A. (1993) The transposable element En/Spm-ecoded TNPA protein contains a DNA-binding and a dimerization domain. Mol. Gen. Genet. 238:201-208.

Uberti Monassero N.G., Viola I.L., Welchen E., Gonzalez D.H. (2013) TCP transcription factors: architectures of plant form. Biomol. Concepts 4:111- 127.

Verhoeven K.J.F., van Dijk P.J., Biere A. (2010) Changes in genomic methylation patterns during the formation of triploid asexual dandelium lineages. Mol. Ecol. 19: 315-324.

Vukich A., Schulman A.H., Giordani T., Natali L., Kalendar R., Cavallini A. (2009) Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor. Appl. Genet. 119:1027-1038.

Wang Z., Luo Y., Li X., Xu S.L., Yang J., Weng L., Sato S., Tabata S., Ambrose M., Rameau C., Feng X.Z., Hu X.H., Luo D. (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc. Natl. Acad. Sci. USA 105:10414-10419.

Wang H.Y., Tian Q., Ma Y.Q, Wu Y., Miao G.J., Ma Y., Cao D.H., Wang X.L., Lin C., Pang J., Liu B. (2010) Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs). Hereditas 147:264-277.

Wicker T., Guyot R., Nabila N., Keller B. (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol. 132: 52-63.

Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. (2007) A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8:973-82.

Yang X., Zhao X.G., Li C.Q., Liu J., Qiu Z.J., Dong Y., Wang Y.Z. (2015) Distinct regulatory changes underlying differential expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR gene associated with petal variations in zygomorphic flower of Petrocosmea spp. of the family Gesneriaceae. Plant Physiol. 169:2138- 2151.

Yuan Z., Gao S., Xue D.W., Luo D., Li L.T., Ding S.Y., Yao X., Wilson Z.A., Qian Q., Zhang D.B. (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol. 149:235-244. Zhang L., Li L., Wu J., Peng J., Zhang L., Wang X. (2012) Cell expansion and

microtubule behaviour in ray florets petals of Gerbera hybrida: Responses to light and gibberellin acid. Photochem. Photobiol. Sci. 11:279-288.

Zophonıas O.J., Hubscher U. (1997) Proliferating cell nuclear antigen: more than a clamp for DNA polymerases. Bioessays 19:967-975.

6. Supplementare

Fig. S1: Elenco delle sequenze amminoacidiche dei fattori di trascrizione (FT)

codificate dai geni CYCLOIDEA (CYC) e utilizzati per l'analisi filogenetica. Le abbreviazioni delle specie sono le seguenti: Antirrhinum majus (Am), Gerbera hybrida (Gh), Helianthus annuus (Ha), Helianthus decapetalus (Hd), Helianthus × multiflorus (H×m) e Senecio vulgaris (Sv). I numeri di accesso in GenBank sono inclusi tra parentesi. Le sequenze amminoacidiche dei FT sono state allineate con il metodo ClustalW (Thompson et al., 1994) presso il Centro di Bioinformatica dell'Università di Kyoto (http://www.genome.jp/tools/clustalw/) e sottoposte ad analisi filogenetica. L'analisi filogenetica è stata eseguita utilizzando i programmi PHYLIPs, PHYLogeny Inference Package, versione 3.67 (Felsenstein, 1985). È stato utilizzato il programma Proml che implementa il metodo di massima verosimiglianza per le sequenze degli amminoacidi. È stato scelto il modello di probabilità Dayhoff di cambiamento tra amminoacidi. La sequenza amminoacidica di Oryza sativa PCF1 (OsPCF1) è stata utilizzata come “outgroup”. Come supporto per l'albero, un'analisi di “bootstrap” con 100 repliche, è stata eseguita dal programma Seqboot e un albero di consenso è stato ottenuto dal programma Consense.

>OsPCF1 (XP_015633587) MMASSSDLILYNLVPAQPLNPSAIPNPNPDLSIAAAEPPSSDGATPRRVRPRKSPSSSDRHSKVAGRGRRVRIPAMVA ARVFQLTRELGHRTDGETIEWLLRQAEPSIIAATGTGVTPEEAPPAAVAIGSSSVAAAAAAGGHGGAFVHVPYYTALL MQPPNADEPPMASAASASGTTAADENNN >AmCYC (Y16313.1) MFGKNTYLHLPQVSSSLHSRAATSVVDLNGNEIQLHDMLSGHYLTTANAPVLESTALFNNNNNFNHDVVNGLNRDPSP TFPTKQAVKKDRHSKIYTSQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLDWLLTKSKTAIKELVQSKSTKSNSS SPCDDCEEVVSVDSENVTDHSKGKSLKANNKCKEAMDSHQAAAKESRAKARARARERTKEKMCIKQLNEAIVLRNHQF EVSGTREAFVHPVFGFHQQNYGNASHENWDQSNLSSQSNQLCAILNQHKFIN >AmDICH (Q9SNW8.1) MFNKKRYLQYPQVPPSLNPRASTSVVSLNGNEILLHHHDVISGYYLASNPQNLEPDALFNGFHHDVGGTNGDPLVLAN TLAKKHTPKKDRHSKINRPQGPRDRRVRLSIGIARKFFDLQEMLGFDKPSKTLDWLLTKSKEAIKELVQSKSSKSNIS NSPSECDQEVLSADLPYIGSSKGKAAVGLNSNKCKGGRDAVDLAKESRAKARARARERTKEKMCIKQLNQERNKSYEW NPSVLFQSKSSQQFEVSGPSTNYEELNQESIMIKRKLKQNHPSMFGFQPENATENWDYYSNFTSQS NQLCAILDQHKFIN >HdCYC2c MNLYLNFFVNYYCYCFFHIQITMFSSNPFPQIPSSIHVSHPFNSFFDLEKNDVYLNHHEDNNNPFVSGDPFFHSYNNF

LSIDIARKFFVLQDLLGFDKASKTLDWLFTKSKKAIKELIEETKHSSSSTVSTNQCEMAFLETIQGGSGSDEDKGQKM SALKFLDGEKKKMTQKCKSGFHASLARGQSRAEARARARERTKQKLRIKELDNDLKKVPDDYPCHALSPSNTTLQSNS WVQFESQSDYNDILHGSMLEQRFSVSSSTLYTYNHNFVVSDEWISQISSKGMPKFKVIHEEQSHRAMI >HxmCYC2cA MNLYLNFFVNYYCYCFFHIQITMFSSNPFPQIPSSIHVSHPFNSFFDLEKNDVYLNHHEDNNNPFVSGDSFFHSYSNF APQPSALPPVTDYMPSNTQELDSQNQLLDHEGSGLQYCDNYSDLLESVVYPSKKKVVTSKKDGHSKIHTAQGPRDRRV RLSIDIARKFFVLQDLLGFDKASKTLDWLFTKSKKAIKELIEETKHSSSSTVSTNQCEMAFLETIQGGSGSGSDEDKG QKMSALKFLDGEKKKMTQKCKSGFHASLARGQSRAEARARARERTKQKLRIKELDNDLKKVPDDYPCHALSPSNATLQ SNSWGQFESQSDYNDILQGSMLEQRFSVSSSTLYTYNHNFVVSDEWISQISSKGMPKFKVIHEEQSHRAMI >HaCYC2c (EU088370.1) MNLYLNFFVNYYCYCFFHFQITMFSSNPFPQIPSPIHVSHPFNSFFDLERNDVYFNHHEDNNNPFVSGDSFLHSYSSF APQPSTLPPVTDYIPSNAQELDSQNQLLDHEGSGLQYCDNYSDLLESVVYPSKKKVAISKKDGHSKIYTAQGPRDRRV RLSIDIARKFFVLQDLLGFDKASKTLDWLFTKSKKAIKELIEETKHSSSSTVSTNQCEMAFLETIKGGSGSDEDKGQK MSALRFLDGEKKKMTQKCKSGFHASLARGQSRAEARARARERTKQKLRIKELDNDLKKIPDDYPCHALSPSNTTLQSN SWGQFESQSDYNDILHGSMLEQRFSVSSSTLYTYNHNFVVSDECISQISSKGMPKFKVIHEEQSHRAMI >HaCYC2d (EU088371.1) MFPSNLVQPHPSSIHVFPSSSSLFDLEKDGVHFHHHYHHHHNNQFINGDCFFHGYNTAPPPVLTDNIKGSGFHYSDDH NSLLEAVIYPSKKKVANMKKDGHSKIHTAQGPRDRRVRMSIDVARKFFYLQDLLGFDKASKTLDWLFTKSKIAIKELV EEMKHCSSPGATDQCEDVFQETLKRSGEELDKGEKKKSAPKFVDAKKKRKYRSVVDVNQSRAEARARARERTKEKLQS KKLDDESKKVPHESSFWSQIESKKEFNERTNESIMEPKIPMSSSVVYGYQHNFLVPNDSSSQIKYTSFLNLH >HaCYC2b (EU088369.1) MLSSSTNAFSPSKSFFDNQKDNHDFNYPQEIDNPFISTDFVCHTYTGPAHVPQVTEEATTLEQGFVLQHQFSEDHDDL LESVVSSYKKKIVTTKKDGHSKICTAGGLRDRRVRLSIDISRKFFCLQELLGFDKASKTLDWLFTKSLTAIKDLVEQT NHSSSSALTDESNAKFLESIKGDSDDENTQKEKSLLKRVDGKGKKGTQRAKVRSQESFSREQSRAEARERARKRTKEK NRAKKFDDCESGLECSMDQETSNQSKDSSFQVRA >HaCYC2e (EU088372.1) MSSSNPFPQVTSSSHYVFPPSNPFLDHEKDDLYINNFNPFLSGDCFPDNENNTTRKQDLVEEVGLEEECDENDHLFWS VVKNNKGSNKDHHSKIHTAQGPRDRRVRLSIEVAKRFFYLQDLLGFDKGSKTLDWLFNKSKNSIDELIKRKKESSSSS LTDQLEVVFLETDEQAKGRKNKCGEGKRKKIARKCTSGVTVNQSRAEARARARERTKEKMNVKKLDKESKSAPVDCCS SNLTLQSSFWNSFESQNDYNDKIGEALLEDDISLLYSYQHNLAVSNDSSSEFNCMPDVHEHWGGDCAAI >HaCYC2a (EU088368.1) MFSSSNPFTSSIHGLPPSSNIFLGQEKDGVYFNPFFTGEYCSFDPPIKESELQNCENNNNNDNNNNNNNNHLKLSDSV ISPSRKRVAASKKDRHSKIFTAQGPRDRRVRLSIDISKKFFGLQDLLGFDKASKTLDWLFTRSKAAIKDLVEEMKHTS SSTLSDQCEEVFMEKGSDYLHKNGRKKKPAAKCIKRKKKTAQEHKSGIHLNLAARSQLRAEARARARERTLEKLRMKK LNNDVKNVVGDSDYCFLQTTQIQSQSNHEVKIGEALTQGKLPKPYSLLYNSQHNYVYSKGSRSHFKNCAH >GhCYC7 (JN190061.1) MFNSSNPFPSSIHGFPPPSASFFGHENDDVYFTHHPFLVGDCSFHDGNVIAPPPPPAGNIKASGSQYCEDNNNNNNNN NNDNHQLQDSVISTSRKRVAASKKDRHSKIFTAQGPRDRRVRLSIEISRKFFGLQDLLGFDKASKTLDWLFTKSMTAI KDLVQEMKHGSSSSLSDRCEVVFMEDEERKNRGLKKKKPLAKCVNGGKRKKKMTQKHKTGFHVNLATRNQLRAEARAR ARERTIEKLQIKKLHHDSKNVVLDHNNYCYDLQSRTTNLFYTSQQNFVDSKDSSCLIKHSHSPKFIQDQQGDHNPLI >GhCYC4 (EU429305.1) MFSSNPFQDLPPSIHVFPPLDPNIDHDRDDAYYNYHHSNDPFISEDCLLHSYNDISPSSPLDMEKINKIKQDFLRQQR QIYEGSGLQYCEDRDDLLDSVVSSSKKKMATSKKDGHSKIYTAGGPRDRRVRLSIGIAKKFFCLQDLLGFDKASKTLD WLFTKSKTAIKDLVEEKKHCSSRSSTVTEVSFLETINGELDEEDKGQKKKCVDGKPKKMKRKSNSQLQANLARDQSRA EARARARERTREKMRIKKLGNEYLETLVPENFDYHVSPSNPTLQSSCWSNFESQSDYNDITWESIMDPVKYADLPNFG AFPEQQGDHATYDLDLL >GhCYC9 (JN190063.1) MFSSNPFPQPPYVLSPPNTYFHHEEDDGYFNYHRSNTDADDPFISGDCFLPSCNDLAPPSPLVMENLTKNKQDFLEIH DDLLDSVVSSSKKKMPTSKKDGRSKIYTAGGPRDRRVRLSIEIARKFFCLQDLLGFDKPSKTLDWLFAKSKTAIKDLV

EETKNCSSRSSTVTEVSFLEAINGGLDEEGKGKTKKSVDGKSKKMKRKSNSQIQVNPARDQSRAEARARARERTREKM RVKKLDDELMSLVS >GhCYC2 (EU429303.1) MFSTNPFQELNSSSHVFPPPNSFLDHEQDDLFHHRSNHPFVSGDSFFGAMADFKDSGGQHQLFSGSGLEYNDEYNNTL ESGVSKMKNKKKISKKDHHSKIDTAHGPRDRRVRLSIDIARKFFCLQDLLGFDKASKTLDWLFTKSKPAIDELLEGTK NSSSSTVTDQSEVGVLEIINGGSNEEDKAKKKKTTPNCVDEKGKKTTRKHKSGSFPVNQSRAEARARARERTKEKWHI KKLDDGSKKVLNECRCPVSDSNLTLQSSVWSPMI >GhCYC5 (JN190059.1) MFSSNPFPQIPNSIHVSPHPSSSFFNHEENGIYLNHHGHNSNLFVSGDCFFHAYNSIAPPASPPPLLTNYMATNTQDL FRQQQQLSEGSGFHSCDNHNDLLESVIYPSKKKRETSKKDGHSKIYTAQGPRDRRVRLSIEIAQKFFVLQDLLGFDKA SKTLDWLFTKPKTAIKELVEETKQCSYSTVSTDQCEVVFQETFKGRSYEDKCQKKKSPLMCVEGKRKKMAQKYKSGYH VNHARDLSRAEARARARERTKEKLRVKMLDDKSKKVPGDYYCPSNLTIQSSFWSPNESQSEYIDILRGATMEQRFPMP SWIPYSYQHNLLVSDSSGSKVKYTSFPNNAMI >GhCYC3(EU429304.1) MFSSNPFPQLPPSIHVFPPQNSFFELEKDGDYLNNHDHNNQFVSGDCFFNAYNNIAPPPVTDNITEHQNQQLSKGSGL QYCDDNNHFLESVAYSSKKKMGTSKKDGHSKIYTAQGPRDRRVRLSIEIAQKFFVLQDLLGFDKASKTLDWLFTKSKT AIRELVEEMKHCSSSSVTDQCEVVFQETMKEGSDEEDKGQQKKSAPMCLDGKKKKTTRKYKSGVSRAEASARARERTK EKLHIKKLDDDSRKVPDDCYRPGSPSNLTLQSSFWSRTESQSDYNDRTCESVMELKMSMPFSALFGYQHNHLSNDLTT QTKYTSFLNLQ >SvRAY1 (FJ356698.1) MFSSNPFHQIPSSIHVFSPSNSFFDHEKDGGHFNHHNDISQFVSGDCIFDSYNNLAPPPVIADNIMVRQQDQLSKDSG FHFCDDKSNLLESVIYSSKKKMTNLKKDGHSKIHTAQGPRDRRVRLSIEVARKFFSLQDLLGFDKASKTLDWLFTKSK TAIKELVEEMKHCSSSGATDHCEVVFQETIKRGSDEEDKGQKKKSGTKYIEGKKKKMSRKYKSGVDVNQSRAEARARA RERTREKLQNKKLDDDSKKVPNNCYRPASPSNLTLQSSFWSEIESQNELNHRTGESTMVPKVPMPSSMFFAYQHNLLE SNDLSSQIKYTSFLNLH >SvRAY2 (FJ356701.1) MFSTNPFSHLASSIQVSPPSNSFLDFEKEEPYFYHHHQSSNPFDPADCLPAREKFSTSDHNLLEELGLEAYDEYTHFE SDTKKNHSPKKDHHSKIHTAQGTRDRRVRLSIEVAKKFFYLQDLLGFDKASKTLDWLFDKSKIPINELVQTKKQSLSS TVSDQSEVVFGETVEEGPDEQDKGQKKKKCVDRKRKKITRKYQSGSPVNQSRADARARARERTKEKLNSKKLDIESKS VYNGDCCSNIWSVIESDKIEESLIEKEISLPYPMLYSYQPNLTVSNDSSSSSSKFNNNSFPNFTVTYE >SvRAY3 (KT722935) SKTLDWLLTKSLTAIKDLVEETSQCSSSIITTDQYSKVEFLESIKGTSDEDKNCQKKKSLCVDEKKKKMTQRCSKAGL IQDNLTRDQLRAEARARARER >SvCYC4 (KU663021) SDQSEVVFGETVKGEKKKKNVEGKRKKITRKYKSGSPVNQSRVEARARARERTKKKLKLKSSMTNPKVFMVTLVLQIQ QSSQAFGVQLNQKR >SvCYC5 (KU663022) RVRLSIEIAKKFFYLQDLLGFDKASKTLDWLFSQSKIPINELVQSKKQSSSSSVSDQSEVVFGETVKGEKKKKNVEGK RKKITRKYKSGSPVNQSRVEARARARERTKKRLNIKKLDDESKSIHGDSCSSNSTIQSSFWSAIESEKIDDYMSSSML YSYQPNLSVLSVSNNSSSNVTGLPKFTLVHEPQGDRAMI >SvCYC7 (KU663024) DKPSKTLDWLFTKSKIAIKDLVEEMKHTSSSTLSDQCEQVFMEKGDYLEKKGKKKKPVAKCVKRKKKITQKQKSGVQV SLGARSQLRAEARARARVRTIEKLRIKRLSNDEKNVLGDNYYYYLLSTTGNQVQS >GhCYC1 (EU429302.1) MYSSSNTNGNTSSTSSNQPKTSFFCNYNNEYHSKPSQEHYHPPSSSSFHFHYPHYTPLEDEAIFRELFLQQQTFSNDH NYQNTVVVAHEQQPCKTTTNLQCTMEKCSYNKGKYVTNDGEDHFNSHQFLKNSGLTKRSSKKDRHSKIDTARGPRDRR MRLSLDVAKQFFRLQDMLGFDKASNTVEWLLMKSKAAIHYLLPQQLNKSCSLMCVSNSASSASECEVLSGIDDQSMEK

TGDDLVITMDKVKSSYCSGNIEKKRVVRGVRRSAYIDHSLAKETRERARARARKRTNEKRNNKLGWDQYPCLDHGMDQ NLNRLGSWIPFVENQVQTNDQPENRSSHFQWKQGVVGDNSSVMTGNWSPSFLFNNQHNAGPSHEHQFRDFQILGKPW >GhCYC10 (JN190064.1) MYPSLDNNGSKQPRTSFFFNYNNDIINHSRTPQEHYCHPSSFSSSFHLPSPHYIPLEDEAVFCEFFQQQQFFSNDHNY HNTIINLAQEQSTNEMTANVESTMGECSNNNGVQIATNDGDDDHYEFNTHVKPENSSPIRKKSSKRDRHSKINTARGP RDRRMRLSLDVAKKLFGLQDLLRFDKASKTIDWLITKSKTAIQELLPDPSCSFMGVSNSASSTSECEVLSGIGDLPID DQATTKNKAKSSSSSRKKKVKITRVRRTANLHHPLAKATRERARARARERTVEKRNNKLGGGQDSNFKPCMDQATDQD VNRVVSWSPFEERQVQSIDQHKQGFVGDTSSLMMTGNWSPSYFNYQHSAGLTHEHQFNDFQIIGKGWEGNNN >HaCYC1b (EU088367.1) MSSSNLSNYHNDSFHSKTPQEPYHTPSCSSFLLPSPIYTPLEDESAFCELFQQQQFLSNDHNHNLLVHEMSNNVGECS NKKGKITTNDGDDDHCDVNTHVEPDKDSPRKIPSNRDRHSKINTAQGPRDRRMRLSLDVAKKFFGLQDLLGFDKASKT IDWLLTESKTAILDLLPDHSCSFMDVSNSTSSTSECEVVSGIGDQFMVKTGDDQATTKTKAKSSSGNNKKQKEKITRV RKCADLQHPLAKETRVRARQRARERTIQKQNNYYNHGVGQDSTFGPFLDQVMDQDVNQLGSWSTFQESPHKSIDQVNQ MSSNFQYNRGFVGDNSSLSMTRNCTPSYFFDSQHSTGVMDEHQFDDLQKKKKASEGNNT >HaCYC1a (EU088366.1) MPPSTSVFGNCYNDNNPSKTPQEYYNTPSSSSFLLSSPIYIPLEDEAVFCDFFQQQQFFSNDYNHHNSMVVPHEECSN NNGQAVTNEGDDDHCIFNTHVEPESSSPRKRPRKRDRHSKIDTARGPRDRRMRLSLDVAKKLFGLQDLLGFDKASKTV DWLLTKSKASILELLPDRSCSFMDVANCASSTSECEVLSGTADHSLVKTGDDQATTKNKAQSSSGSSKKKKEKVTRVR KCVDFHHPLAKATRERARERARERTIEKRNNKRGGGTQDSNFRSCLDQAMDQDVNQYGSWSTIQENQRQNIGQMSLDF QVHQGFVGDNSSLLMTSNWTPSYLLNYQHSSGVIHEHQFNGLEMNVKAWEGNNN >SvCYC6(KU663023) PSKTLDWLITKSETAILELFPDHSCSFMGVSNSASCSSECEVLSGARAADQPMVVIETGDDQETMKNKENXIFESIKK PQRKSSXKNLGNVADFHHPVAKATRERARERARERTTEKRNNKHKSIGRLEQAMDQNVTQLRSWSPFEENRLEPIDQV DQMSSNLHIKQGFVNDNSSMFMMGNWNPSYMFNYQHTSGLTREH >GhCYC6 (JN190060.1) MDYVFSSSNSETMLVNSNNEANLENLDSRHEEDVPLFLQFPSPFLDDISTTSILPNHHLHHLTSDQRETITTEPPPSP SKTKRVRKKRSAGKKDRHSKIHTAQGLRDRRMRLSLQIARKFFGLQDMLGFDKASKTIEWLFCKSKKAIEEVTESLKS QNTTQSAIRECESPLSDCEVDSGLEFNAPSNKGKQLKLQDEIKDSGNSRKPIESNLLARESRDKARARARERTRERMM ISQLEKSKQMFEANPTDDFGKLQLGFSTNPNSHYMDESSSSPLEYTGSHHFLDQAQVDNMPQNAAASSSTYFSTFDYN KNFANPPAGWLNSSNTFLGFLGGWDSENFRMEAENYGILPNIAPFTGDIHGQNPSSIIISSSNLVHFQTENIRK >GhCYC8 (JN190062.1) MEHVCSSRKDKCLLIDPNKEDGHEILNSSHEEPPLFLHFPSPFFDDTSTTPILANNYTHHHSSPNKPLNMTEEPSPSE SKRVKKRSVGKKDRHSKIHTAQGLRDRRMRLSLHIARKFFDLQDLLGFDKASKTIEWLFCKSNKAIKEVAESFNSQNT NQSLSGEIETMDSLLSESEVGLTSEIETATNKGENSKDDEIKNRESRKRIQTNSLAREQARERARERTREKMMIKDLE KSKQLFKRNPKDEFYKLGLGYSTSPNYQNVDELGYTSSPFDPIQQESSNPSLEPSSTQHLLRRPQSVNNVDSFENYSG GIVGSSRYCSILSNHNPPASWLNSSNGFLGISGGWDADSFITESYNYGIVPSTAPLTGDIYEQTLAYFSCLQPIQSQN EDK >HaCYC3a (EU088373.1) MEHVGSSNIHQEEPPLFLDFPSPFFDSISTTPIQTNDLSTPNKPLNVTEPSPSESKRLKKRCGGKKDRHSKIHTAQGL RDRRMRLSLHIARKFFDLQDLLGFDKASKTIEWLFSKSNKAIKEVSENFSPQHTNTSMNDQDTSEVGLTSENKTATNN LDNSREEDIKNRESRMKRIDPNNSSVRETRDQARARARERTRERLMIKELEKSKQLFGRNPNEEINKLGLGYLPSSNN NNAEELGFITSSPSEPIQQESSTSSLENSHTHHLLPVSQSNKQTNVSSNIPFKVGYENDETRANIFSIPGDREAAFTV PEWQSTTNNLNIFENYSGSVVGTSTTCSTLTNHNPPAGWLNSWNGFLPGEWDADNFVNEYYNYGIVPTTVSLTGDIYD QNPSSFILSSTTNILHVQSQNQGK >HaCYC3c (EU088375.1) MEYAYLSRNNEAILLPSNNEFNHENPESNHEEDAPYFRQFQTPLLDEILHNHQQHMTYSTANKPPPSPSKTKRARKQR SAGKKDRHSKIHTAQGLRDRRMRLSLHIARKFFGLQDMLGFDKASKTIEWLFCKSKKAIDEVTESVKSQNTTRSACNE NIESCESPLSDCEVHSGIEFDAASNKGKQLKVQDEINDSGSSKTATKSDILARELRGKARARARERTRERMLITNPEK SKQMFGANPNDDLDQLQLGFSSNPNNNHYIEDSSSTSPNEYSGTHHFFDHTQLNNNIAQKTEDYLGTAAASSSTYFSG YGYNKSFANPPAGWLNSSNTFLGFLGGWDSENFTENYGFLPNLAPLTGDIHGQNFSFIPPSNLVHFKTQNQRD

>HaCYC3b (EU088374.1) MAYENNESNHENLDSNYEEDAPLYGQFPSPFFDDIPHNHHQHKKSNTTDEPPPSTPKTKRVRKKRSAGKTDRHSKIHT AQGLRDRRMRLSLHIARKFFGLQDMLGFDKASKTIEWLFCKSKEAIDEVTESVKSQNTTQSVAGRENIESCDQCPDSD CEVDYNSGIEFYATSNKGVKQPTESELLARELRDKARARARARTKERMKSKQVYEPNPNDDYDQPQSGFSTNPNDDYD QPQLGYSENPNNPYTEGSSSSHLEYSGTHHFFDPTHLNNVAPSSSAYFSGYGYNKSFENPPAGWLNSSNTFLGFLGGW DSEHFTENYGHYYPNLAPTTGDEYHGQHFSSVVIPPPYNLMHYQTQYQRD

7. Ringraziamenti

Giunto alla fine di questo percorso ringrazio il Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali per tutte le conoscenze che mi ha permesso di acquisire.

Desidero ringraziare il Professor Andrea Cavallini, il Professor Claudio Pugliesi e il Professor Piero Picciarelli per i loro preziosi consigli, la disponibilità e la pazienza dimostratami, contribuendo alla stesura di questa tesi.

Un grande ringraziamento va alla mia famiglia per l’aiuto ed il supporto costante di tutti questi anni.

Ringrazio la mia compagna Irene per il fondamentale sostegno morale e l’incoraggiamento datomi di fronte alle difficoltà incontrate.

Documenti correlati