• Non ci sono risultati.

1. Įvertinus medetomidino, butorfanolio ir ketamino poveikį anestezuojamų sveikų šunų dalinio aktyvinto tromboplastino ir protrombino laiko parametrams X smulkiųjų gyvūnų veterinarijos klinikoje, nustatyta, kad: tiriamiesiems šunims PL pirminė reikšmė sudarė vidutiniškai 16,41±1,29 s, o po anestetinių preparatų (medetomidino, butorfanolio ir ketamino) suleidimo padidėjo vidutiniškai 1,42±4,79 s iki 17,85±4,95 s. DATL pirminė reikšmė sudarė vidutiniškai 106,69±7,08 s, o po anestetinių preparatų (medetomidino, butorfanolio ir ketamino) suleidimo padidėjo vidutiniškai 3,82±8,30 s iki 110,52±10,55 s;

2. Atlikus statistinę rezultatų analizę, tiek PL rodiklio, tiek DATL rodiklio reikšmių skirtumai po anestetinių preparatų suleidimo nebuvo statistiškai reikšmingi – teigiamų sąsajų tarp medetomidino, butorfanolio ir ketamino su daliniu aktyvintu tromboplastino ir protrombino laiku nebuvo.

3. PL ir DATL rodiklių nustatymas yra kliniškai svarbus vertinant anestezuojamų šunų hemostazės rodiklius bei prognozuojant perioperacinį ir pooperacinį laikotarpį. Remiantis atlikto tyrimo duomenimis, galima teigti, kad anestetiniai preparatai medetomidinas, butorfanolis ir ketaminas pacientų kraujo hemostazės, perioperacinio bei pooperacinio laikotarpio atžvilgiu buvo saugūs.

LITERATŪROS SĄRAŠAS

1. Khafagy HF, Hussein NA, Radwan KG, Refaat AI, Hafez HS, Essawy FM, et al. Effect of general and epidural anesthesia on hemostasis and fibrinolysis in hepatic patients. Hematology. 2010; 15(5): 360-367.

2. Faradey N. Platelets, Perioperative Hemostasis, and Anesthesia. Anesthesiology. 2002; 96(05): 1042-1043.

3. Khan HA, Alhomida AS, Rammah TYA, Sobki SH, Ola MS, Khan AA. Alterations in prothrombin time and activated partial thromboplastin time in patients with acute myocardial infarction. International Journal of Clinical and Experimental Medicine. 2013; 6(4): 294–297.

4. Dugdale A. Concepts of general anaesthesia; Pain; Small animal sedation and premedication. Iš Veterinary Anaesthesia. Principles to practice.: Wiley-Blackwell; 2010. p. 1-4; 8-30; 30-45.

5. Pascoe PJ., Steffey EP.Introduction to drugs acting on the central nervous system and principles of anesthesiology. Iš Riviere JE, Papich MG. Veterinary Pharmacology and Therapeutics. Ames: Wiley - Blackwell; 2009. p. 183-211.

6. Tranquilli WJ, Grimm KA. Introduction: Use, Definitions, History, Concepts, Classification, and Considerations for Anesthesia and Analgesia. Iš Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA. Veterinary Anesthesia and Analgesia. The 5th Edition of Lumb and Jones.: John Wiley & Sons; 2015. p. 4.

7. Clarke KW, Trim CM, Hall LW. An introduction to anaesthesia and general considerations; Sedatives and Tranquilizers. Iš Veterinary Anaesthesia.: Saunders; 2014. p. 6-8; 196-205.

8. Son Y. Molecular mechanisms of general anesthesia. Korean Journal of Anesthesiology. 2010 Jul; p. 3-8.

9. Pleuvry BJ. Mechanism of action of general anaesthetic drugs. Anesthesia & Intesive Care Medicine. 2008 Apr;(04): p. 152-153.

10. Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, Homanics GE, Kendig J, Orser B, Raines DE, Trudell J, Vissel B, Eger EI. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesthesia and Analgesia. 2003 Sep; 97(3): 718-740.

11. Zykutė D, Liutkus J. Effects of glutamate and gamma-aminobutyric acid receptor modulation on the developing brain. Medical Sciences. 2020; 8: 289-295.

12. Cherubini E, Ben-Ari Y. The immature brain needs GABA to be excited and hyper-excited. The Journal of Physiology. 2011;(589): 2655–2656.

13. Jewett BE, Sharma S. Physiology of GABA, 2020. Iš StatPearls Publishing [interaktyvus],

[žiūrėta 2020 m. birželio 8 d.]. Prieiga per internetą:

<https://www.ncbi.nlm.nih.gov/books/NBK513311/>

14. Vargas RA. The GABAergic System: An Overview of Physiology, Physiopathology and Therapeutics. International Journal of Clinical Pharmacology and Pharmacotherapy. 2018; 3.

15. Carter CRJ, Kozuska JL, Dunn SMJ. Insights into the structure and pharmacology of GABAA receptors. Future Medicinal Chemistry. 2010 May;(5): 859-875.

16.Bormann J. The 'ABC' of GABA receptors. Trends in Pharmacological Sciences. 2000 Jan: 16-19.

17. Nestler EJ, Hyman SE, Holtzman DM, Malenka RC. Excitatory and Inhibitory Amino Acids; Autonomic nervous system. In Molecular Neuropharmacology. A Foundation for Clinical Neuroscience.: McGraw-Hill Education; 2015. p. 216-162; 390-420.

18. Bridges RJ, Esslinger CS. The excitatory amino acid transporters: pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes. Pharmacology and Therapeutics. 2005 Sep;(3): 271-285.

19. Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary. Iš Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders, 2011 [interaktyvus], [žiūrėta 2020 liepos 5 d]. Prieiga per internetą: <https://www.ncbi.nlm.nih.gov/books/NBK62179/>

20. Whittem TB, Bauquier SH, Berry SH. General Pharmacology of Anesthetic and Analgesic Drugs; Injectable Anesthetics. In Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA. Veterinary Anesthesia and Analgesia.: Wiley-Blackwell; 2015. p. 147-178; 277-297.

21. Bennett RC, Restitutti F. Dexmedetomidine or medetomidine: which should veterinary surgeons select? Companion animals. 2016 Mar; 21(03): 130-137.

22. Medetomidine hydrochloride, 2007, [interaktyvus], [žiūrėta 2020 birželio 30 d]. Prieiga per

internetą:<https://www.zoetisus.com/_locale-assets/mcm-portal-assets/products/pdf/dexdomitorusa/domitor_pi_103107.pdf>

23. Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, Scheinin M, Olkkola KT. Bioavailability of dexmedetomidine after intranasal administration. European Journal of Clinical Pharmacology. 2011 Aug;(8): 825-831.

24. Grimsrud KN, Ait-Oudhia S, Durbin-Johnson BP, Rocke DM, Mama KR, Rezende ML, Stanley SD, Jusko WJ. Pharmacokinetic and pharmacodynamic analysis comparing diverse effects of detomidine, medetomidine, and dexmedetomidine in the horse: a population analysis. Journal of Veterinary Pharmacology and Therapeutics. 2015 Feb;(1): 24-34.

25. Kuusela E, Raekallio M, Anttila M, Falck I, Moèlsaè S, Vainio O. Clinical effects and pharmacokinetics of medetomidine and its enantiomers in dogs. Journal of Veterinary Pharmacology and Therapeutics. 2000;(23): 15-20.

26. Amornyotin S. Ketamine: Pharmacology Revisited. International Journal of Anesthesiology Research. 2014;(2): 42-44.

27. Dodam J, Robertson S, Murrell J. Ketamine iš Vetstream, [interaktyvus], [žiūrėta 2020 m. liepos 28 d]. Priega per internetą: < https://www-vetstream-com.ezproxy.dbazes.lsmuni.lt/treat/canis/generics/ketamine>.

28. Ketamine iš PubChem, [interaktyvus], [žiūrėta 2020 m. liepos 28 d]. Prieiga per internetą: <https://pubchem.ncbi.nlm.nih.gov/compound/Ketamine>

29. Sleigh J, Harvey M, Voss L, Denny B. Ketamine e More mechanisms of action than just NMDA blockade. Trends in Anaesthesia and Critical Care. 2014; 4(2-3): 76-81.

30. Peltoniemi MA, Hagelberg NM, Olkkola KT, Saari TI. Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy. Clinical Pharmacokinetics. 2016; 55(9): 1059-1077.

31. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA, Gould TD. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacological Reviews. 2018; 70(3): 621-660.

32. Hall JE, Hall ME. Hemostasis and Blood Coagulation. Iš Guyton and Hall Textbook of Medical Physiology, 14th ed.. Philadelphia: Elsevier; 2020. p. 477-488.

33. Mischke R. Overview of haemostasis. Iš Day MJ, Kohn B. BSAVA Manual of Canine and Feline Haematology and Transfusion Medicine. Gloucester: BSAVA; 2012. p. 182-188.

34. Alcott C, Brockus C, Sponseller B. Hemostasis. Compendium Equine: Continuing Education for Veterinarians. 2009 Mar: 78-89.

35. LaPelusa A, Dave. HD. Physiology, Hemostasis, 2020 iš StatPearls [interaktyvus], [žiūrėta 2020 m. liepos 5 d]; Prieiga per internetą: <https://www.ncbi.nlm.nih.gov/books/NBK545263/>

36. Rezaie AR. Regulation of the Protein C Anticoagulant and Antiinflammatory Pathways. Current Medicinal Chemistry. 2010;(17): 2059–2069.

37. Kasthuri RS, Glover SL, Boles J, Mackman N. Tissue Factor and Tissue Factor Pathway Inhibitor as Key Regulators of Global Hemostasis: Measurement of Their Levels in Coagulation Assays. Seminars in Thrombosis and Hemostasis. 2010; 36(7): 764-771.

38. Hackeng TM, Rosing J. Protein S as cofactor for TFPI. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009; 29(12): 2015-2020.

39. Maunder CL, Costa M, Cue SM, Crawford EM, Papasouliotis K, Murphy KF. Measurement of prothrombin time and activated partial thromboplastin time in citrated whole blood samples from clinically ill dogs following storage. Journal of Small Animal Practice. 2012; 53(9): 531-535.

40. Levy JH, Szlam F, Wolberg AS, Winkler AM. Clinical Use of the Activated Partial Thromboplastin Time and Prothrombin Time for Screening. Clinics in Laboratory Medicine. 2014 Sep;(3): 453-477.

41. Rasmussen KL, Philips M, Tripodi A, Goetze JP. Unexpected, isolated activated partial thromboplastin time prolongation: A practical mini-review. European Journal of Haematology. 2020;(140): 519-525.

42. Brisset AC, Ferrández A, Krause M, Rathbun S, Marlar R, Korte W. The PiCT test is a reliable alternative to the activated partial thromboplastin time in unfractionated heparin therapy management: results from a multicenter study. Journal of Thrombosis and Haemostasis. 2016 Nov; 14(11): 2187-2193.

43. Hellenbart EL, Faulkenberg KD, Finks SW. Evaluation of bleeding in patients receiving direct oral anticoagulants. Vascular Health and Risk Management. 2017;(13): 325-342.

44. Winter WE, Flax SD, Harris NS. Coagulation Testing in the Core Laboratory. Laboratory Medicine. 2017; 48(4): 295-313.

45. Barcellona D, Fenu L, Marongiu F. Point-of-care testing INR: an overview. Clinical Chemistry and Laboratory Medicine. 2017; 55(6): 800-805.

46. Valle PD, Crippa L, Garlando AM, Pattarini E, Safa O, D'Angelo SV, et al. Interference of lupus anticoagulants in prothrombin time assays: implications for selection of adequate methods to optimize the management of thrombosis in the antiphospholipid-antibody syndrome. Haematologica. 1999; 84(12): 1065-1074.

47. Bolliger D, Tanaka KA. Point-of-Care Coagulation Testing in Cardiac Surgery. Seminars in Thrombosis and Hemostasis. 2017; 43(4): 386-396.

48. Hematology: Prothrombin time, iš Vetstream [interaktyvus], [žiūrėta 2020 m. birželio 27

d]. Prieiga per internetą: <

https://www-vetstream-com.ezproxy.dbazes.lsmuni.lt/treat/canis/labtest/hematology-prothrombin-time>.

49. Lamont L, Burton S, Caines D, Masaoud E, Troncy E. Effects of 2 different medetomidine infusion rates on selected neurohormonal and metabolic parameters in dogs. Canadian Journal of Veterinary Research. 2012 Apr; 76(2): 143-148.

50. Ambrisko TD, Hikasa Y. Neurohormonal and metabolic effects of medetomidine compared with xylazine in beagle dogs. Canadian Journal of Veterinary Research. 2002 Jan; 66(1): 42-49.

51. Maze M, Virtanen R, Daunt D, Banks SJ, Stover EP, Feldman D. Effects of dexmedetomidine, a novel imidazole sedative-anesthetic agent, on adrenal steroidogenesis: in vivo and in vitro studies. Anesthesia and Analgesia. 1991; 73(2): 204 - 208.

52. Kral JG, Ablad B., Johnsson G., Korsan-Bengsten K. Effects of Adrenaline and Alprenolol (Aptin ®) on Blood Coagulation and Fibrinolysis in Man. European Journal of Clinical Pharmacology. 1971: 144-147.

53. Hikasa Y, Abe M, Satoh T, Hisashi Y, Ogasawara S, Matsuda H. Effects of imidazoline and non-imidazoline alpha-adrenergic agents on canine platelet aggregation. Pharmacology. 1999 Apr; 58(4): 171-182.

54. Matsukawa T, Hikasa Y. Effects of systemic administrations of medetomidine and xylazine on ex vivo platelet aggregation in clinically normal cats. The Thai Journal of Veterinary Medicine. 2020; 50(3): 305-314.

55. Volpato J, Mattoso CRS, Beier SL, Coelho MM, Tocheto R, Kirsten CE, et al. Sedative, hematologic and hemostatic effects of dexmedetomidine–butorphanol alone or in combination with ketamine in cats. Journal of Feline Medicine and Surgery. 2015 Jun; 17(6): 500-506.

56. Ogurtan Z, Ceylan C, Ipek H, Izci C. Effect of xylazine-ketamine and diazepam- ketamine anesthesia on activated partial thromboplastin time, prothrombin time and bleeding time in dogs. Revue de Médecine Vétérinaire. 2002; 153(4): 243-246.

57. Choi SY, Hwang JS, Kim IH, Hwang DY, Kang HG. Basic data on the hematology, serum biochemistry, urology, and organ weights of beagle dogs. Laboratory Animal Research. 2011; 27(4): 283-291.

58. Carlos MML, Melo MM, Soto-Blanco B. Influence of sex on activated partial thromboplastin time (aPTT) and prothrombin time (PT) in sheep. Veterinaria Italiana. 2017 Sep; 53(3): 255-258.

59. Barbosa ADA, Martins NF, Rosário SA, Nunes PCS, Passarelli D, Leite-Dellova DCA. Evaluation of Coagulation Parameters in Dogs with Overweight or Obesity. Acta Scientiae Veterinariae, 2019. 47: 1638. 2019; 47(1): 1-7.

Documenti correlati