• Non ci sono risultati.

Impatto della positività di GM e BDG sulla sopravvivenza

In questa popolazione di 171 pazienti neutropenici, la mortalità calcolata dall’inizio dello screening è risultata del 60.1% (51.6-68.7%), con un follow-up mediano di 160 giorni (range, 1-319 giorni). Nei pazienti con AI, la mortalità è risultata dell’ 81.6% (61-95.2%) con un follow-up mediano di 18 giorni (range, 1-35 giorni), mentre nei pazienti senza AI, la mortalità è risultata del 57.2% (48.1%- 66.7%), con un follow-up mediano di 574 giorni (range, 319-830 giorni) (p<0.001) (figura 7); tuttavia quando si confrontano pazienti con AI e il risultato di BDG, il confronto tra la sopravvivenza è statisticamente significativo solo per pazienti senza AI vs pazienti con AI e risultato positivo di BDG (p < 0.001) (figura 8).

Figura 7: Survival curves in patients with IA and No IA. When comparing the overall survival in IA vs no IA patients a significant differences was found (p<0.001).

35 Figura 8: Significant difference (p<0.001) only comparing No IA vs IA-BDG+; No IA vs IA-BDG- not reached the statistical significance (p=0.08) while IA-BDG- vs IA-BDG+ were not significantly different (p=0.23).

La sopravvivenza è stata analizzata e confrontata anche per pazienti senza AI e risultati falsi positivi per GM e BDG. (figura 9). La mortalità è risultata del 64.8% (39.3-88.8%) per pazienti senza AI e risultati falsi positivi per GM, e 66.8% (49.3-83.3) per pazienti senza AI e risultati falsi positivi per BDG. In entrambi i casi la sopravvivenza è risultata più alta in pazienti senza AI (45%), ma è risultata statisticamente significativa solo quando si confrontano pazienti senza AI vs pazienti NO- AI e falsi positivi per BDG (p=0.003) (figura 9).

36 Figura 9: Survival curves in patients with IA and patients with false positive GM and BDG results. 9A) Significant differences comparing No IA vs IA (p<0.001) and NO IA vs No IA-BDG+ (p=0.003); not significant difference comparing No IA – BDG+ and IA (p=0.19). 9B) Significant difference (p<0.001) only comparing No IA vs IA; no significant differences comparing No IA-GM+ vs No IA (p=0.17) and IA vs No IA-GM+ (p=0.28).

37

6. DISCUSSIONE

La diagnosi di AI rimane tutt’oggi difficile sia perché le manifestazioni cliniche non sono specifiche, sia perché i quadri radiologici possono essere suggestivi ma non sono patognomonici, sia infine perché le colture del tratto respiratorio spesso mancano di sensibilità. Inoltre, la dimostrazione di ife invasive è particolarmente complessa in un paziente che per la sua malattia ematologica si presenta piastrinopenico e spesso in gravi condizioni cliniche.

Per questi motivi la valutazione di nuove metodiche diagnostiche non-colturali che possano facilitare la diagnosi di aspergillosi, come la rilevazione di antigeni fungini nel siero e in altri fluidi biologici (GM e BDG) o saggi diagnostici di biologia molecolare, hanno ricevuto notevole interesse negli ultimi anni. [18, 57, 120].

Diversi studi hanno riportato una performance del GM e del BDG molto simile per la diagnosi di AI, nonostante l’ampia dispersione dei valori di sensibilità e specificità; in particolare, è stata riportata una sensibilità e specificità per il GM che variano rispettivamente dal 30 al 100% e dal 38 al 98% [91, 121], e una sensibilità e specificità per il BDG che variano rispettivamente dall’80 al 90% e dal 36 al 92% [122]. Pochi studi però, hanno confrontato direttamente i 2 test per la diagnosi di AI nella stessa popolazione di pazienti, spesso riportando risultati contrastanti. Due studi hanno favorito il BDG [80, 116], uno studio ha favorito il GM [120], mentre altri 3 studi non hanno mostrato differenze significative tra i due markers [92, 123, 124].

In questo studio abbiamo confrontato retrospettivamente la performance diagnostica di due test di laboratorio utilizzati per la diagnosi di AI, il GM e il BDG, in una popolazione ad alto rischio di sviluppare questa infezione.

Il GM ha mostrato una buona performance diagnostica per AI, in termini di sensibilità e specificità, che sono risultate rispettivamente del 95 e del 91%; infatti, in tutti i casi di AI tranne 1, il GM è risultato positivo nel siero con elevati valori.

Il BDG invece ha dimostrato una sensibilità ridotta rispetto al GM (60% vs 95%). Solo 12/20 casi di AI avevano almeno 1 campione positivo per BDG entro 7 giorni dal giorno della diagnosi. Tuttavia, quando sono stati considerati 2 campioni di siero consecutivi, si aveva una diminuzione della sensibilità del BDG (60% vs 41%), ma un aumento della specificità (78% vs 92%). Tuttora però non

38 è stata formulata alcuna raccomandazione riguardo al numero di esami di BDG richiesti per definire la positività al test.

Quindi, nonostante le numerose cause di falsa positività conosciute che possono interferire con i risultati del test, il BDG ha dimostrato una buona specificità in questa popolazione di pazienti ad alto rischio, anche in caso di sorveglianza a lungo termine.

Nel nostro studio, nonostante la bassa sensibilità del BDG (60%), il valore predittivo negativo (NPV) è risultato alto (93%); questo significa che un risultato negativo per BDG non è in grado di escludere la presenza di aspergillosi invasiva in questa popolazione di pazienti ematologici ad alto rischio e i risultati del test devono sempre essere associati al quadro clinico, radiologico e microbiologico del paziente.

Quando abbiamo analizzato la performance combinata dei due test, come proposto anche da altri autori [92, 116], abbiamo riscontrato che l’uso combinato dei 2 test porta ad un vantaggio in termini di specificità; infatti, associando il risultato positivo sia per GM che per BDG la specificità è risultata del 98%, ma la sensibilità è risultata più bassa (40%), rispetto alla sensibilità di ogni singolo test (60% per BDG e 95% per GM).

Nel nostro studio il BDG ha confermato la diagnosi di AI nel 60% dei casi ed ha anticipato la diagnosi nel 30% dei pazienti. Infatti, come riportato da altri autori, in alcuni casi, il BDG può precedere la diagnosi clinica o microbiologica di AI [92, 93, 125].

In conclusione, nel nostro studio il GM ha dimostrato una performance migliore del BDG per la diagnosi di AI in una popolazione di pazienti ematologici ad alto rischio di sviluppare l’infezione, soprattutto con l’utilizzo di 2 campioni di siero consecutivi, mentre il BGD dimostra un’elevata specificità e in alcuni casi dimostra di essere un utile supporto per una diagnosi precoce di AI.

39

7. BIBLIOGRAFIA

1. Voss, A., et al., Candidemia in intensive care unit patients: risk factors for mortality. Infection, 1997. 25(1): p. 8-11.

2. Maertens, J., et al., Advances in the serological diagnosis of invasive Aspergillus infections in patients with haematological disorders. Mycoses, 2007. 50 Suppl 1: p. 2-17.

3. Zaragoza, R., et al., Clinical significance of the detection of Candida albicans germ tube-specific antibodies in critically ill patients. Clin Microbiol Infect, 2009. 15(6): p. 592-5.

4. Martinez-Jimenez, M.C., et al., Potential role of Candida albicans germ tube antibody in the diagnosis of deep-seated candidemia. Med Mycol, 2014. 52(3): p. 270-5.

5. Beyda, N.D., M.J. Alam, and K.W. Garey, Comparison of the T2Dx instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Diagn Microbiol Infect Dis, 2013. 77(4): p. 324-6.

6. Neely, L.A., et al., T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med, 2013. 5(182): p. 182ra54.

7. Bitar, D., et al., Population-based analysis of invasive fungal infections, France, 2001-2010. Emerg Infect Dis, 2014. 20(7): p. 1149-55.

8. Erjavec, Z. and P.E. Verweij, Recent progress in the diagnosis of fungal infections in the immunocompromised host. Drug Resist Updat, 2002. 5(1): p. 3-10.

9. Howard, S.J., et al., Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis, 2009. 15(7): p. 1068-76.

10. Hope, W.W., T.J. Walsh, and D.W. Denning, The invasive and saprophytic syndromes due to Aspergillus spp. Med Mycol, 2005. 43 Suppl 1: p. S207-38.

11. Wu, N., et al., Isolated invasive Aspergillus tracheobronchitis: a clinical study of 19 cases. Clin Microbiol Infect, 2010. 16(6): p. 689-95.

12. Kazan, E., et al., A retrospective series of gut aspergillosis in haematology patients. Clin Microbiol Infect, 2011. 17(4): p. 588-94.

13. Mays, S.R., M.A. Bogle, and G.P. Bodey, Cutaneous fungal infections in the oncology patient: recognition and management. Am J Clin Dermatol, 2006. 7(1): p. 31-43.

14. Chen, C.Y., et al., Invasive fungal sinusitis in patients with hematological malignancy: 15 years experience in a single university hospital in Taiwan. BMC Infect Dis, 2011. 11: p. 250.

15. Kousha, M., R. Tadi, and A.O. Soubani, Pulmonary aspergillosis: a clinical review. Eur Respir Rev, 2011. 20(121): p. 156-74.

16. Lass-Florl, C., The changing face of epidemiology of invasive fungal disease in Europe. Mycoses, 2009. 52(3): p. 197-205.

17. Steinbach, W.J., Invasive aspergillosis in pediatric patients. Curr Med Res Opin, 2010. 26(7): p. 1779-87.

18. Perfect, J.R., et al., The impact of culture isolation of Aspergillus species: a hospital-based survey of aspergillosis. Clin Infect Dis, 2001. 33(11): p. 1824-33.

19. Segal, B.H., et al., Aspergillus nidulans infection in chronic granulomatous disease. Medicine (Baltimore), 1998. 77(5): p. 345-54.

20. Marr, K.A., et al., Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis, 2002. 34(7): p. 909-17.

21. Zbinden, A., et al., Fatal outcome after heart transplantation caused by Aspergillus lentulus. Transpl Infect Dis, 2012. 14(5): p. E60-3.

22. Denning, D.W., Invasive aspergillosis. Clin Infect Dis, 1998. 26(4): p. 781-803; quiz 804-5.

23. Steinbach, W.J. and T.J. Walsh, Mycoses in pediatric patients. Infect Dis Clin North Am, 2006. 20(3): p. 663-78.

24. Klont, R.R., M.A. Mennink-Kersten, and P.E. Verweij, Utility of Aspergillus antigen detection in specimens other than serum specimens. Clin Infect Dis, 2004. 39(10): p. 1467-74.

25. Thomas, L., et al., Diagnosis and treatment of aspergillosis in children. Expert Rev Anti Infect Ther, 2009. 7(4): p. 461-72.

26. Tragiannidis, A., et al., Invasive aspergillosis in children with acquired immunodeficiencies. Clin Infect Dis, 2012. 54(2): p. 258-67.

40 28. Sherif, R. and B.H. Segal, Pulmonary aspergillosis: clinical presentation, diagnostic tests,

management and complications. Curr Opin Pulm Med, 2010. 16(3): p. 242-50.

29. Meyer, R.D., et al., Aspergillosis complicating neoplastic disease. Am J Med, 1973. 54(1): p. 6-15. 30. Diamond, R.D., et al., Damage to hyphal forms of fungi by human leukocytes in vitro. A possible

host defense mechanism in aspergillosis and mucormycosis. Am J Pathol, 1978. 91(2): p. 313-28. 31. Li, L., et al., Risk factors for invasive mold infections following allogeneic hematopoietic stem cell

transplantation: a single center study of 190 recipients. Scand J Infect Dis, 2012. 44(2): p. 100-7. 32. Nicolle, M.C., et al., Invasive aspergillosis in patients with hematologic malignancies: incidence and

description of 127 cases enrolled in a single institution prospective survey from 2004 to 2009. Haematologica, 2011. 96(11): p. 1685-91.

33. Montagna, M.T., et al., Invasive fungal infections in patients with hematologic malignancies (aurora project): lights and shadows during 18-months surveillance. Int J Mol Sci, 2012. 13(1): p. 774-87. 34. Slobbe, L., et al., Outcome and medical costs of patients with invasive aspergillosis and acute

myelogenous leukemia-myelodysplastic syndrome treated with intensive chemotherapy: an observational study. Clin Infect Dis, 2008. 47(12): p. 1507-12.

35. Steinbach, W.J., et al., Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect, 2012. 65(5): p. 453-64.

36. Baddley, J.W., Clinical risk factors for invasive aspergillosis. Med Mycol, 2011. 49 Suppl 1: p. S7- S12.

37. Kontoyiannis, D.P., et al., Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis, 2010. 50(8): p. 1091-100.

38. Girmenia, C., A. Ferretti, and W. Barberi, Epidemiology and risk factors for invasive fungal diseases in hematopoietic stem cell transplantation. Curr Opin Hematol, 2014. 21(6): p. 459-65.

39. Singh, N., S. Husain, and A.S.T.I.D.C.o. Practice, Invasive aspergillosis in solid organ transplant recipients. Am J Transplant, 2009. 9 Suppl 4: p. S180-91.

40. Ader, F., Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: an emerging fungal disease. Curr Infect Dis Rep, 2010. 12(6): p. 409-16.

41. Dutkiewicz, R. and C.A. Hage, Aspergillus infections in the critically ill. Proc Am Thorac Soc, 2010. 7(3): p. 204-9.

42. Glockner, A. and M. Karthaus, Current aspects of invasive candidiasis and aspergillosis in adult intensive care patients. Mycoses, 2011. 54(5): p. 420-33.

43. Garcia-Vidal, C., et al., Invasive aspergillosis complicating pandemic influenza A (H1N1) infection in severely immunocompromised patients. Clin Infect Dis, 2011. 53(6): p. e16-9.

44. Jensen, J., et al., Post-surgical invasive aspergillosis: an uncommon and under-appreciated entity. J Infect, 2010. 60(2): p. 162-7.

45. Holding, K.J., et al., Aspergillosis among people infected with human immunodeficiency virus: incidence and survival. Adult and Adolescent Spectrum of HIV Disease Project. Clin Infect Dis, 2000. 31(5): p. 1253-7.

46. De Pauw, B., et al., Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis, 2008. 46(12): p. 1813-21.

47. Morton, C.O., et al., Dynamics of extracellular release of Aspergillus fumigatus DNA and galactomannan during growth in blood and serum. J Med Microbiol, 2010. 59(Pt 4): p. 408-13. 48. Hope, W.W., et al., Pathogenesis of Aspergillus fumigatus and the kinetics of galactomannan in an

in vitro model of early invasive pulmonary aspergillosis: implications for antifungal therapy. J Infect Dis, 2007. 195(3): p. 455-66.

49. Latge, J.P., Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev, 1999. 12(2): p. 310-50. 50. Yeo, S.F. and B. Wong, Current status of nonculture methods for diagnosis of invasive fungal

infections. Clin Microbiol Rev, 2002. 15(3): p. 465-84.

51. Machetti, M., et al., Comparison of an enzyme immunoassay and a latex agglutination system for the diagnosis of invasive aspergillosis in bone marrow transplant recipients. Bone Marrow Transplant, 1998. 21(9): p. 917-21.

41 52. Stynen, D., et al., A new sensitive sandwich enzyme-linked immunosorbent assay to detect

galactofuran in patients with invasive aspergillosis. J Clin Microbiol, 1995. 33(2): p. 497-500. 53. Caillot, D., et al., Improved management of invasive pulmonary aspergillosis in neutropenic patients

using early thoracic computed tomographic scan and surgery. J Clin Oncol, 1997. 15(1): p. 139-47. 54. Groll, A.H., et al., Trends in the postmortem epidemiology of invasive fungal infections at a

university hospital. J Infect, 1996. 33(1): p. 23-32.

55. Maertens, J., et al., Screening for circulating galactomannan as a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenic patients and stem cell transplantation recipients: a prospective validation. Blood, 2001. 97(6): p. 1604-10.

56. Severens, J.L., et al., Two strategies for managing invasive aspergillosis: a decision analysis. Clin Infect Dis, 1997. 25(5): p. 1148-54.

57. Mennink-Kersten, M.A., J.P. Donnelly, and P.E. Verweij, Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. Lancet Infect Dis, 2004. 4(6): p. 349-57. 58. Becker, M.J., et al., Galactomannan detection in computerized tomography-based broncho-alveolar lavage fluid and serum in haematological patients at risk for invasive pulmonary aspergillosis. Br J Haematol, 2003. 121(3): p. 448-57.

59. Salonen, J., et al., Aspergillus antigen in serum, urine and bronchoalveolar lavage specimens of neutropenic patients in relation to clinical outcome. Scand J Infect Dis, 2000. 32(5): p. 485-90. 60. Siemann, M. and M. Koch-Dorfler, The Platelia Aspergillus ELISA in diagnosis of invasive

pulmonary aspergilosis (IPA). Mycoses, 2001. 44(7-8): p. 266-72.

61. Hurst, S.F., et al., Comparison of commercial latex agglutination and sandwich enzyme immunoassays with a competitive binding inhibition enzyme immunoassay for detection of antigenemia and antigenuria in a rabbit model of invasive aspergillosis. Clin Diagn Lab Immunol, 2000. 7(3): p. 477-85.

62. Kami, M., et al., Early diagnosis of central nervous system aspergillosis using polymerase chain reaction, latex agglutination test, and enzyme-linked immunosorbent assay. Br J Haematol, 1999. 106(2): p. 536-7.

63. Viscoli, C., et al., Aspergillus galactomannan antigen in the cerebrospinal fluid of bone marrow transplant recipients with probable cerebral aspergillosis. J Clin Microbiol, 2002. 40(4): p. 1496-9. 64. Rimek, D., et al., Disseminated Penicillium marneffei infection in an HIV-positive female from

Thailand in Germany. Mycoses, 1999. 42 Suppl 2: p. 25-8.

65. Nucci, M., et al., Earlier diagnosis of invasive fusariosis with Aspergillus serum galactomannan testing. PLoS One, 2014. 9(1): p. e87784.

66. Mikulska, M., et al., Galactomannan testing might be useful for early diagnosis of fusariosis. Diagn Microbiol Infect Dis, 2012. 72(4): p. 367-9.

67. Tortorano, A.M., et al., Cross-reactivity of Fusarium spp. in the Aspergillus Galactomannan enzyme-linked immunosorbent assay. J Clin Microbiol, 2012. 50(3): p. 1051-3.

68. Kappe, R. and A. Schulze-Berge, New cause for false-positive results with the Pastorex Aspergillus antigen latex agglutination test. J Clin Microbiol, 1993. 31(9): p. 2489-90.

69. Ozkaya-Parlakay, A., et al., Geotrichum capitatum septicemia in a hematological malignancy patient with positive galactomannan antigen: case report and review of the literature. Turk J Pediatr, 2012. 54(6): p. 674-8.

70. Cummings, J.R., et al., Cross-reactivity of non-Aspergillus fungal species in the Aspergillus galactomannan enzyme immunoassay. Diagn Microbiol Infect Dis, 2007. 59(1): p. 113-5.

71. Narreddy, S. and P.H. Chandrasekar, False-positive Aspergillus galactomannan (GM) assay in histoplasmosis. J Infect, 2008. 56(1): p. 80-1.

72. Vergidis, P., et al., False-positive Aspergillus galactomannan assay in solid organ transplant recipients with histoplasmosis. Transpl Infect Dis, 2012. 14(2): p. 213-7.

73. Petti, M.C., et al., Cross-recognition of aspergillus galactomannan caused by Listeria monocytogenes infection. Diagn Microbiol Infect Dis, 2013. 76(2): p. 250-1.

74. Sulahian, A., S. Touratier, and P. Ribaud, False positive test for aspergillus antigenemia related to concomitant administration of piperacillin and tazobactam. N Engl J Med, 2003. 349(24): p. 2366-7. 75. Viscoli, C., et al., False-positive galactomannan platelia Aspergillus test results for patients

42 76. Vergidis, P., et al., Reduction in false-positive Aspergillus serum galactomannan enzyme immunoassay results associated with use of piperacillin-tazobactam in the United States. J Clin Microbiol, 2014. 52(6): p. 2199-201.

77. Xavier, M.O., et al., Galactomannan detection from piperacillin-tazobactam brands available in the Brazilian market. Braz J Infect Dis, 2009. 13(5): p. 353-5.

78. Mikulska, M., et al., Piperacillin/tazobactam (Tazocin) seems to be no longer responsible for false- positive results of the galactomannan assay. J Antimicrob Chemother, 2012. 67(7): p. 1746-8. 79. Gerlinger, M.P., et al., False positive galactomannan Platelia due to piperacillin-tazobactam. Med

Mal Infect, 2012. 42(1): p. 10-4.

80. Hachem, R.Y., et al., Utility of galactomannan enzyme immunoassay and (1,3) beta-D-glucan in diagnosis of invasive fungal infections: low sensitivity for Aspergillus fumigatus infection in hematologic malignancy patients. J Clin Microbiol, 2009. 47(1): p. 129-33.

81. Xavier, M.O., et al., Variability in Galactomannan detection by Platelia Aspergillus EIA according to the Aspergillus species. Rev Inst Med Trop Sao Paulo, 2013. 55(3).

82. Martin-Rabadan, P., et al., False-positive Aspergillus antigenemia due to blood product conditioning fluids. Clin Infect Dis, 2012. 55(4): p. e22-7.

83. Asano-Mori, Y., et al., False-positive Aspergillus galactomannan antigenaemia after haematopoietic stem cell transplantation. J Antimicrob Chemother, 2008. 61(2): p. 411-6.

84. Siemann, M., M. Koch-Dorfler, and M. Gaude, False-positive results in premature infants with the Platelia Aspergillus sandwich enzyme-linked immunosorbent assay. Mycoses, 1998. 41(9-10): p. 373-7.

85. Marr, K.A., et al., Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immunoassay. Clin Infect Dis, 2005. 40(12): p. 1762-9.

86. McCulloch, E., et al., Antifungal treatment affects the laboratory diagnosis of invasive aspergillosis. J Clin Pathol, 2012. 65(1): p. 83-6.

87. Hope, W.W., T.J. Walsh, and D.W. Denning, Laboratory diagnosis of invasive aspergillosis. Lancet Infect Dis, 2005. 5(10): p. 609-22.

88. Sulahian, A., et al., Value of antigen detection using an enzyme immunoassay in the diagnosis and prediction of invasive aspergillosis in two adult and pediatric hematology units during a 4-year prospective study. Cancer, 2001. 91(2): p. 311-8.

89. Maertens, J., et al., Use of circulating galactomannan screening for early diagnosis of invasive aspergillosis in allogeneic stem cell transplant recipients. J Infect Dis, 2002. 186(9): p. 1297-306. 90. Maertens, J.A., et al., Optimization of the cutoff value for the Aspergillus double-sandwich enzyme

immunoassay. Clin Infect Dis, 2007. 44(10): p. 1329-36.

91. Pfeiffer, C.D., J.P. Fine, and N. Safdar, Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis, 2006. 42(10): p. 1417-27.

92. Pazos, C., J. Ponton, and A. Del Palacio, Contribution of (1->3)-beta-D-glucan chromogenic assay to diagnosis and therapeutic monitoring of invasive aspergillosis in neutropenic adult patients: a comparison with serial screening for circulating galactomannan. J Clin Microbiol, 2005. 43(1): p. 299-305.

93. Odabasi, Z., et al., Differences in beta-glucan levels in culture supernatants of a variety of fungi. Med Mycol, 2006. 44(3): p. 267-72.

94. Yasuoka, A., et al., (1-->3) beta-D-glucan as a quantitative serological marker for Pneumocystis carinii pneumonia. Clin Diagn Lab Immunol, 1996. 3(2): p. 197-9.

95. Yoshida, M., et al., Detection of plasma (1 --> 3)-beta-D-glucan in patients with Fusarium, Trichosporon, Saccharomyces and Acremonium fungaemias. J Med Vet Mycol, 1997. 35(5): p. 371- 4.

96. Nakamura, T., et al., [Bacterial endotoxin-mediated activation of Limulus amebocytes and its molecular mechanism]. Nihon Saikingaku Zasshi, 1983. 38(6): p. 781-803.

97. Obayashi, T., et al., Determination of plasma (1-->3)-beta-D-glucan: a new diagnostic aid to deep mycosis. J Med Vet Mycol, 1992. 30(4): p. 275-80.

98. Brown, G.D. and S. Gordon, Immune recognition of fungal beta-glucans. Cell Microbiol, 2005. 7(4): p. 471-9.

99. Ikemura, K., et al., False-positive result in Limulus test caused by Limulus amebocyte lysate-reactive material in immunoglobulin products. J Clin Microbiol, 1989. 27(9): p. 1965-8.

43 100. Hanson, K.E., et al., beta-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study. PLoS One, 2012. 7(8): p. e42282.

101. Kanamori, H., et al., Measurement of (1-3)-beta-D-glucan derived from different gauze types. Tohoku J Exp Med, 2009. 217(2): p. 117-21.

102. Ellis, M., et al., Assessment of the clinical utility of serial beta-D-glucan concentrations in patients with persistent neutropenic fever. J Med Microbiol, 2008. 57(Pt 3): p. 287-95.

103. Held, J., et al., Comparison of (1->3)-beta-D-glucan, mannan/anti-mannan antibodies, and Cand- Tec Candida antigen as serum biomarkers for candidemia. J Clin Microbiol, 2013. 51(4): p. 1158- 64.

104. Koncan, R., et al., Cross-reactivity of Nocardia spp. in the fungal (1-3)-beta-d-glucan assay performed on cerebral spinal fluid. Diagn Microbiol Infect Dis, 2015. 81(2): p. 94-5.

105. Otto, G.P., et al., Limitation of (1-->3)-beta-D-glucan monitoring in major elective surgery involving cardiopulmonary bypass. Crit Care, 2013. 17(3): p. 437.

106. Furfaro, E., et al., Bloodstream infections are an improbable cause of positive serum (1,3)-beta-D- glucan in hematology patients. Clin Vaccine Immunol, 2014. 21(9): p. 1357-9.

107. Metan, G., et al., Can bacteraemia lead to false positive results in 1,3-beta-D-glucan test? Analysis of 83 bacteraemia episodes in high-risk patients for invasive fungal infections. Rev Iberoam Micol, 2012. 29(3): p. 169-71.

108. Racil, Z., et al., Reactivity of the 1,3-beta-D-glucan assay during bacteraemia: limited evidence from a prospective study. Mycoses, 2013. 56(2): p. 101-4.

109. Desjardins, A., et al., Lack of 1-3-B-D-glucan detection in adults with bacteraemia. Med Mycol, 2015. 53(4): p. 405-8.

110. Hammarstrom, H., et al., How to interpret serum levels of beta-glucan for the diagnosis of invasive fungal infections in adult high-risk hematology patients: optimal cut-off levels and confounding factors. Eur J Clin Microbiol Infect Dis, 2015. 34(5): p. 917-25.

111. Del Bono, V., et al., Clinical performance of the (1,3)-beta-D-glucan assay in early diagnosis of nosocomial Candida bloodstream infections. Clin Vaccine Immunol, 2011. 18(12): p. 2113-7. 112. Karageorgopoulos, D.E., et al., beta-D-glucan assay for the diagnosis of invasive fungal infections: a

meta-analysis. Clin Infect Dis, 2011. 52(6): p. 750-70.

113. Lu, Y., et al., Diagnosis of invasive fungal disease using serum (1-->3)-beta-D-glucan: a bivariate meta-analysis. Intern Med, 2011. 50(22): p. 2783-91.

114. Onishi, A., et al., Diagnostic accuracy of serum 1,3-beta-D-glucan for pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol, 2012. 50(1): p. 7-15.

115. Lamoth, F., et al., beta-Glucan antigenemia assay for the diagnosis of invasive fungal infections in

Documenti correlati