• Non ci sono risultati.

Interfacce brain-computer

9. Considerazioni finali e prospettive di ricerca

9.1 Interfacce brain-computer

Negli ultimi anni molto è stato dibattuto sulle interfacce cervello-computer; anche se il campo di ricerca è ancora relativamente giovane, e i risultati, seppur ottimistici, non hanno ancora trovato applicazione nella vita quotidiana.

Uno dei domini di sviluppo di BCI è legato alla riabilitazione motoria degli arti, soprattutto superiori. I sistemi BCI possono essere diversi, caratterizzati secondo diverse tecniche di acquisizione del segnale cerebrale, invasive e non- invasive. Tra le modalità non-invasive la tecnica più diffusa è l’elettroencefalografia (EEG), a sua volta basata su diversi possibili segnali di controllo, tra cui i potenziali evocati, i potenziali evocati visivi, i potenziali corticali, i ritmi senso-motori tramite immaginazione motoria.

I ritmi senso-motori sono caratterizzati da due principali caratteristiche: (i) sono potenziabili tramiti allenamento, (ii) sono generati non soltanto in corrispondenza dell’azione eseguita, ma anche dall’immaginazione motoria dell’azione stessa. Inoltre, i ritmi senso-motori possono essere modulati per uno specifico task motorio. Quindi un soggetto può apprendere come modularli a seconda delle proprie specifiche necessità tramite immaginazione motoria (Nicolas-Alonso & Gomez-Gil, 2012).

L’utilizzo di tecniche di immaginazione motoria è di notevole interesse per i bassi costi e per i buoni risultati sperimentali ottenuti, seppur preliminari. Inoltre, ancora più importante, può essere utilizzato in pazienti con patologie che non permettono loro alcun movimento. In questi soggetti la stimolazione delle aree motorie tramite immaginazione è l’unica strategia per interfacciarsi con sistemi BCI.

FIGURA 22:Schema di un sistema BCI.

Per controllare un sistema BCI (come schematizzato in Figura 22) i segnali neuro-fisiologici devono essere classificati in base a valori che permettano di distinguere differenti classi di segnali. È necessario, pertanto, tramite EEG

digitalizzare i ritmi senso-motori, ovvero i segnali rilevati nelle aree prossime alla corteccia motoria e sensoriale primarie, i quali sono modulati dai compiti motori, anche immaginati. Le modulazioni dei ritmi sensorimotori che risultano da una stimolazione sensoriale, da un atto motorio o dalla sua immaginazione sono di due tipi, desincronizzazione e sincronizzazione dei ritmi mu e beta, i quali sono fortemente connessi con l’attività motoria, anche solo immaginata (Pfurtscheller & Neuper, 2001).

Anche se il controllo dei ritmi senso-motori non è facilissimo, soprattutto perché per un soggetto non allenato ad utilizzare la pratica immaginativa è più facile ricorrere a feed-back visivi a supporto del compito mentale, attivando ritmi senso-motori diversi, è possibile comunque, come evidenziato nel corso della tesi, migliorare la propria prestazione mentale e la corretta gestione del compito.

Ciò che a oggi costituisce ancora un limite è la necessità di acquisizione del segnale cerebrale attraverso ritmi senso-motori ad una risoluzione costantemente molto alta, rendendo la tecnologia BCI in modalità non-invasiva ancora relegata nel campo della ricerca interdisciplinare, senza trovare ancora un utilizzo quotidiano nel campo della riabilitazione. I soggetti potenziali che potrebbero beneficiare di questa tecnologia sono (i) pazienti che hanno totalmente perso ogni controllo motorio, come ad esempio ad uno stadio terminale di sclerosi laterale amiotrofica, (ii) pazienti paralizzati con parziale movimento volontario residuo.

RIFERIMENTI BIBLIOGRAFICI

Afrouzeh, M., Sohrabi, M., Taheri, H.R., Afroozeh, A. (2013). Optimal Timing of Mental Practice on Learning the Volleyball Service Skill. Annals of

Applied Sport Science 1(3), 29-38.

Amemiya, K., Ishizu, T., Ayabe, T., Kojima, S. (2010). Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioural study. Brain Research 1343, 93-103.

Anguera, J.A., Russell, C.A., Noll, D.C., Seidler, R.D. (2007). Neural correlates associated with intermanual transfer of sensorimotor adaptation. Brain

Research 1185, 136-151.

Baeck, J.S., Kim, Y.T., Seo, J.H., Ryeom, H.K., Lee, J., Choi, S.M., Woo, M., Kim, W., Kim, J.G., Chang, Y. (2012). Brain activation patterns of motor imagery reflect plastic changes associated with intensive shooting training. Behavioural Brain Research 234, 26-32.

Bak, T.H., O'Donovan, D.G., Xuereb, J.H., Boniface, S., Hodges, J.R. (2001). Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease- dementia-aphasia syndrome. Brain 124(1), 103-120.

Bakker, M., de Lange, F.P., Stevens, J.A., Toni, L., Bloem, B.R. (2007). Motor imagery of gait: a quantitative approach. Experimental Brain Research 179, 497-504.

Battaglia, F., Quartone, A., Ghilardi, M.F., Dattola, R., Bagnato, S., Rizzo, V., Morgante, L., Girlanda, P. (2006). Unilateral cerebellar stroke disrupts movement preparation and motori imagery. Clinical Neurophysiology 117, 1009-1016.

Bonda, E., Petrides, M., Frey, S., Evans, A. (1995). Neural correlates of mental transformations of the body-in-space. Proceedings of the National

Boulenger, V., Roy, A.C., Paulignan, Y., Deprez, V., Jeannerd, M., Nazir, T.A. (2006). Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. Journal of Cognitive

Neuroscience 18(10), 1607-1615.

Boulenger, V., Mechtouff, L., Thobois, S., Broussolle, E., Jeannerod, M., Nazir, T.A. (2008). Word processing in Parkinson's disease is impaired for action verbs but not for concrete nouns. Neuropsychologia 46(2), 743- 756.

Bunno, Y., Onigata, C., Suzuki, T. (2015). Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100%. Journal of Physical Therapy Science 27(9), 2775-2778.

Calautti, C., Leroy, F., Guincestre, J.Y., Marie, R.M., Baron, J.C. (2001). Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport 12(18), 3883-3886. Callow, N., Hardy, L. (2004). The relationship between the use of kinaesthetic

imagery and different visual imagery perspectives. Journal of Sports

Science 22, 167-177.

Campos A, Perez M. (1990). A factor analysis study of two measures of mental imagery. Perceptual Motor Skills 71, 995-1001.

Carli, G., Cavallaro, F.I., Rendo, C.A., Santarcangelo, E.L. (2007). Imagery on different sensory modalities: hypnotizability and body sway.

Experimental Brain Research 179, 47-54.

Carrasco, D.G. & Cantalapiedra, J.A. (2016). Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review.

Neurologia 31(1), 43-52.

Chang, Y., Lee, J.J., Seo, J.H., Song, H.J., Kim, Y.T., Lee, H.J., et al. (2011). Neural correlates of motor imagery for elite archers. NMR Biomedicine 24, 366-372.

Cowley, P.M., Clark, B.C., Ploutz-Snyder, L.L. (2008). Kinesthetic motor imagery and spinal excitability: the effect of contraction intensity and spatial localization. Clinical Neurophysiology 119(8), 1849-1856.

Craighero, L., Fadiga, L., Umilta, C.A., Rizzolatti, G. (1996). Evidence for visuomotor priming effect. Neuroreport, 8, 347-349.

Cumming, J., Ramsey, R. (2009). Imagery interventions in sport. In S.D. Mellalieu & S. Hanton (Eds.), Advances in applied sport psychology: A

review, 5-36). London: Routledge.

Cumming, J., Williams, S.E. (2012). The role of imagery in performance. In Murphy S.M. (ed.) Handbook of sport and performance psychology, 213- 232. USA: Oxford University Press.

Cumming, J., Olphin, T., Law, M. (2007). Self-reported psychological states and physiological responses to different types of motivational general imagery. Journal of Sport & Exercise Psychology 29, 629-644.

Debarnot, U., Sperduti, M., Di Rienzo, F., Guillot, A. (2014). Experts bodies, experts minds: How physical and mental training shape the brain.

Frontiers in Human Neuroscience 8, 1-17 (280).

Decety, J. (1996a). The neurophysiological basis of motor imagery. Behavioral

Brain Research 77, 45-52.

Decety, J. (1996b). Do imagined and executed actions share the same neural substrate? Cognitive brain research 3(2), 87-93.

Decety, J., Boisson, D. (1990). Effect of brain and spinalcord injuries on motor imagery. European Archives of Psychiatry and Clinical Neuroscience 240(1), 39-43.

Decety, J., Michel, F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. Brain and Cognition 11, 87-97. Decety, J., Jeannerod, M. (1996). Mentally simulated movements in virtual

reality: does Fitts' law hold in motor imagery? Behavioral Brain Research 72, 127-134.

Decety J, Lindgren M. (1991). Sensation of effort and duration of mentally executed actions. Scandinavian Journal of Psychology 32, 97-104.

Decety, J., Philippon, B., Ingvar, D.H., (1988). rCBF landscapes during motor performance and motor ideation of a graphic gesture, European

Archives of Psychiatry and Neurological Sciences 238(1), 33-38.

Decety, J., Jeannerod, M., Prablanc, C. (1989). The timing of mentally represented actions. Behavioral Brain Research 34, 35-42.

Decety, J., Sjöholm, H., Ryding, E., Stenberg, G., lngvar, D. (1990). The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow. Brain Research 535, 313-317.

Decety, J., Jeannerod, M., Germain, M., Pastene, J. (1991). Vegetative response during imagined movement is proportional to mental effort

Behavioural Brain Research 42, 1-5.

Decety, J., Jeannerod, M., Durozard, D., Baverel, G. (1993). Central activation of autonomic effectors during mental simulation of motor actions in man.

Journal of Physioliogy 461, 549-563.

Dechent, P., Merboldt, K.D., Frahm, J. (2004). Is the human primary motor cortex involved in motor imagery? Cognitive Brain Research 19(2), 138- 144.

de Lange, F.P., Helmich, R.C., Toni, I. (2006). Posture influences motor imagery: an fMRI study. Neuroimage 33, 609-617.

Demougeot, L., Papaxanthis, C. (2011). Muscle fatigue affects mental simulation of action. The Journal of Neuroscience: The Official Journal of

the Society for Neuroscience 31, 10712-10720.

Dominey, P., Decety, J., Broussole, E., Chazot, G., Jeannerod, M. (1995). Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson's patients. Neuropsychologia 33, 727-741.

Doyon, J. (2008). Motor sequence learning and movement disorders. Current

Opinion in Neurology 21(4), 478-483.

Dunsky, A., Dickstein, R., Marcovitz, E., Levy, S., Deutsch, J. (2008). Homebased motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Archives of Physical Medicine and

Rehabilitation 89, 1580-1588.

Duque, J., Labruna, L., Verset, S., Olivier, E., Ivry, R.B. (2012). Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. The Journal of Neuroscience 32(3), 806-816.

Eccles, J.C. (1955). The central action of antidromic impulse in motor nerve fibers. Plüger’s Archives Physiology 260, 385-415.

Ehrsson, H.H., Geyer, S., Naito, E. (2003). Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. Journal of neurophysiology 90(5), 3304-3316. Enoka, R.M. (1988). Muscle strength and its development. Sports Medicine

6(3), 146-168.

Facchini, S., Muellbacher, W., Battaglia, F., Boroojerdi, B., Hallett, M. (2002). Focal enhancement of motor cortex excitability during motor imagery: A transcranial magnetic stimulation study. Acta Neurologica Scandinavica 105(3), 146-151.

Fadiga, L., Buccino, G., Craighero, L., Fogassi, L., Gallese, V., Pavesi, G. (1999). Corticospinal excitability is specifically modulated by motor imagery: A magnetic stimulation study. Neuropsychologia 37, 147-158. Feltz, D.L., Landers, D.M. (1983). The effects of mental practice on motor skill

learning and performance: A meta-analysis. Journal of Sport Psychology 5, 25-27.

Féry, Y.A. (2003). Differentiating visual and kinesthetic imagery in mental practice. Canadian Journal of Experimental Psychology 57, 1-10.

Frak, V., Paulignan, Y., Jeannerod, M. (2001). Orientation of the opposition axis in mentally simulated grasping. Journal of Experimental Psychology 136, 120-127.

Ganis, G., Keenan, J.P., Kosslyn, S.M., Pascual-Leone, A. (2000). Transcranial magnetic stimulation of primary motor cortex affects mental rotation.

Cerebral Cortex 10, 175-180.

Gentili, R., Papaxanthis, C., Pozzo, T. (2006). Improvement and generalization of arm motor performance through motor imagery practice.

Neuroscience 137(3), 761-772.

Gerardin, E., Sirigu, A., Lehericy, S., Poline, J.B., Gaymard, B., Marsault, C., Agid, Y., Le Bihan, D. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex 10, 1093-1104. González, B., Rodriguez, M., Ramirez, C., Sabate, M. (2005). Disturbance of

motor imagery after cerebellar stroke. Behavioral Neuroscience 119, 622-626.

Gould, D., Damarjian, N. (1996). Imagery training for peak performance. In J.L. Van Raalte, B.W. Brewer (Eds.), Exploring sport and exercise

psychology, 25-50. Washington, DC: American Psychological

Association.

Grafton, S.T., Hazeltine, E., Ivry, R.B. (2002). Motor sequence learning with the nondominant left hand. Experimental Brain Research 146(3), 369-378. Grosprêtre, S., Ruffino, C., Lebon, F. (2016). Motor imagery and cortico-spinal

excitability: A review. European Journal of Sport Science 16(3), 317-324. Guillot, A., Collet, C. (2005). Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Research

Reviews 50(2), 387-397.

Guillot, A., Collet, C. (2008). Construction of the Motor Imagery Integrative Model in Sport: a review and theoretical investigation of motor imagery use. International Review of Sport and Exercise Psychology 1 (1), 31-44. Guillot, A., Collet, C., Nguyen, V.A., Malouin, F., Richards, C., Doyon, J. (2008). Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage 41, 1471-1483.

Guillot, A., Collet, C., Nguyen, V.A., Malouin, F., Richards, C., Doyon, J. (2009). Brain activity during visual versus kinesthetic imagery: an fMRI study.

Human brain mapping 30(7), 2157-2172.

Guillot, A., Genevois, C., Desliens, S. Saieb, S., Rogowoski, I. (2012). Motor imagery and ‘placebo-racket effects’ in tennis serve performance.

Psychology of Sport and Exercise 13, 533-540.

Guttman, A., Burstin, A., Brown, R., Bril, R., Bril, S., Dickstein, R. (2012). Motor imagery practice for improving sit to stand and reaching to grasp in individuals with postroke hemiparesis. Topics in Stroke Rehabilitation 19, 306-319.

Hall, C. (2001). Imagery in sport and exercise. In R. N. Singer, H. Hausenblas, & C. M. Janelle (Eds.), Handbook of sport psychology, 529-549. New York, NY: John Wiley & Sons.

Hanakawa, T. (2011). Rostral premotor cortex as a gateway between motor and cognitive networks. Neuroscience research 70(2), 144-154.

Hanakawa, T. (2016). Organizing motor imageries. Neuroscience Research 104, 56-63.

Hanakawa, T., Immisch, I., Toma, K., Dimyan, M.A., Van Gelderen, P., Hallett, M. (2003). Functional properties of brain areas associated with motor execution and imagery. Journal of Neurophysiology 89(2), 989-1002. Hanakawa, T., Parikh, S., Bruno, M.K., Hallett, M. (2005). Finger and face

representations in the ipsilateral precentral motor areas in humans.

Journal of Neurophysiology 93(5), 2950-2958.

Hanakawa, T., Dimyan, M.A., Hallett, M. (2008). Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cerebral cortex 18(12), 2775-2788.

Hara, M., Kimura, J., Walker, D.D., Taniguchi, S., Ichikawa, H., Fujisawa, R., Shimizu, H., Abe, T., Yamada, T., Kayamori, R., Mizutani, T. (2010). Effect of motor imagery and voluntary muscle contraction on the F wave.

Hardy, L. (1997). The Coleman Roberts Griffith address: three myths about applied consultancy work. Journal of Applied Sport and Psychology 9, 277-294.

Hardy, L., Callow, N. (1999). Efficacy of external and internal visual imagery perspectives for the enhancement of performance on tasks in which form is important. Journal of Sport Exercise and Psychology 21, 95-112. Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., Rizzolatti, G.

(1998). Activation of human primary motor cortex during action observation: a neuromagnetic study. Proceedings of the National

Academy of Sciences 95, 15061-15065.

Hashimoto, R., Rothwell, J.C. (1999). Dynamic changes in corticospinal excitability during motor imagery. Experimental Brain Research 125(1), 75-81.

Hatfield, B.D., Haufler, A.J., Spalding, T.W. (2006). A cognitive neuroscience perspective on sport performance. In E.O. Acevedo & P. Ekkekakis (Eds.), Psychobiology of physical activity. 221-241. Champaign, IL: Human Kinestics.

Hauk, O., Johnsrude, I., Pulvermüller, F. (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron 41, 301-307. Holmes, P, Calmels, C. (2008). A neuroscientific review of imagery and

observation use in sport. Journal of Motor Behavior 40(5), 433-445. Holmes, P.S., Collins, D.J. (2001). The PETTLEP approach to motor imagery:

A functional equivalence model for sport psychologists. Journal of

Applied Sport Psychology 13, 60-83.

Holmes, P.S., Cumming, J., Edwards, M.G. (2010). Movement imagery, observation, and skill. In A. Guillot & C. Collet (Eds.), The

neurophysiological foundations of mental and motor imagery. 245-269.

Hoshi, E., Tanji, J. (2004). Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution. Journal of Neurophysiology 92(6), 3482-3499.

Houston, M.E., Froese, E.A., St P, V., Green, H.J., Ranney, D.A. (1983). Muscle performance, morphology and metabolic capacity during strength training and detraining: a one leg model. European journal of applied

physiology and occupational physiology 51(1), 25-35.

Hwang, S., Jeon, H., Yi, C., Kwon, O., Cho, S., You, S. (2010). Locomotor imagery training improves gait performance in people with chronic hemiparetic stroke: a controlled clinical trial. Clinical Rehabilitation 24, 514-522.

Ingvar, D.H., Philipson, L. (1977). Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance,

Annals of Neurology 2, 230-237.

Isaac, A.R., Marks, D.M. (1994). Individual differences in mental imagery experience: Developmental changes and specialization. British Journal

of Psychology 85, 479-500.

Iseki, K., Hanakawa, T., Shinozaki, J., Nankaku, M., Fukuyama, H. (2008). Neural mechanisms involved in mental imagery and observation of gait.

Neuroimage 41(3), 1021-1031.

Jackson, P.L., Lafleur, M.F., Malouin, F., Richards, C.L., Doyon, J. (2003). Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage 16, 142-157. Jeannerod, M. (1994). The representing brain: neural correlates of motor

intention and imagery. Behavioral Brain Research 17, 187-245.

Jeannerod, M. (1995). Mental imagery in the motor cortex. Neuropsychologia 33(11), 1419-1432.

Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14, 103-109.

Jeannerod, M., Decetey, J. (1995). Mental motor imagery: a window into the representational stages of action. Current opinion in neurobiology 5(6), 727-732.

Jiang, C., Ranganathan, V.K., Zhang, J., Siemionow, V., Yue, G.H. (2016). Motor effort training with low exercise intensity improves muscle strength and descending command in aging. Medicine 95(24), e3291.

Johansson, B.B. (2011). Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurologica Scandinavica 123(3), 147- 159.

Jola, C., Mast, F.W. (2005). Mental object rotation and egocentric body transformation: two dissociable processes? Spatial Cognition &

Computation 5, 217-237.

Kanthack, T.F.D., Bigliassi, M., Vieira, L.F., Altimari, L.R. (2014). Acute effect of motor imagery on basketball players’ free throw performance and self- efficacy. Revista Brasilera de Cineantropometria e Desempenho

Humano 16(1), 47-57.

Kimberley, T.J., Khandekar, G., Skraba, L.L., Spencer, J.A., Van Gorp, E.A., Walker, S.R. (2006). Neural substrates for motor imagery in severe hemiparesis. Neurorehabilitation and Neural Repair 20(2), 268-277. Kosslyn, S.M., Margolis, J.A., Barrett, A.M., Goldknopf, E.J., Daly, P.F. (1990).

Age differences in imagery ability. Child Development 61, 995-1010. Kosslyn, S.M., Ganis, G., Thompson, W.L. (2001). Neural foundations of

imagery. Nature Reviews Neuroscience 2, 635-642.

Krampe, R.T. (2002). Aging, expertise and fine motor movement. Neuroscience

& Biobehavioral Review 26, 769-776.

Krams, M., Rushworth, M.F.S., Deiber, M.P., Frackowiak, R.S.J., Passingham, R.E. (1998). The preparation, execution and suppression of copied movements in the human brain. Experimental Brain Research 120(3), 386-398.

Lacourse, M.G., Turner, J.A., Randolph-Orr, E., Schandler, S.L., Cohen, M.L. (2004). Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement. Journal of

rehabilitation research and development 41(4), 505.

Lafleur, M.F., Jackson, P.L., Malouin, F., Richards, C.L., Evans, A.C., Doyon, J. (2002). Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements.

Neuroimage 20, 1171-1180.

Land, W.M., Liu, B., Cordova, A., Fang, M., Huang, Y., Yao, W.X. (2016). Effects of Physical Practice and Imagery Practice on Bilateral Transfer in Learning a Sequential Tapping Task. PLoS ONE 11(4), 1-14.

Lang, P.J. (1977). Imagery in therapy: An Information-processing analysis of fear. Behavior Therapy 8, 862-886.

Lang, P.J. (1979). A bio-informational theory of emotional imagery.

Psychophysiology 16, 495-512.

Lang, P.J., Kozak, M.J., Miller, G.A., Levin, D.N., McLean, A.Jr. (1980). Emotional imagery: Conceptual structure and pattern of somato-visceral response. Psychophysiology 17, 179-192.

Lange R.K., Godde, B., Braun, C. (2004) EEG correlates of coordinate processing during intermanual transfer. Experimental Brain Research 159(2), 161-171.

Lange, R.K., Braun, C. Godde, B. (2006). Coordinate processing during the left- to-right hand transfer investigated by EEG. Experimental Brain Research 168(4), 547-556.

Lebon, F., Collet, C., Guillot, A. (2010). Benefits of motor imagery training on muscle strength. The Journal of Strength and Conditioning Research 24(6), 1680-1687.

Leonard, G., Tremblay, F. (2007). Corticomotor facilitation associated with observation, imagery and imitation of hand actions: A comparative study in young and old adults. Experimental Brain Research 177, 167-175.

Levin, O., Steyvers, M., Wenderoth, N., Li, Y., Swinnen, S.P. (2004). Dynamical changes in corticospinal excitability during imagery of unimanual and bimanual wrist movements in humans: A transcranial magnetic stimulation study. Neuroscience Letters 359, 185-189.

Li, C.R. (2000). Impairment of motor imagery in putamen lesions in humans.

Neuroscience Letters 287, 13-16.

Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. Journal

of Cognitive Neuroscience 11, 491-501.

Mahoney, M.J. Avener, M. (1977). Psychology of the elite athlete: an exploratory study. Cognitive Therapy and Research 1(2), 135-141.

Malouin, F., Richards, C.L. (2010). Mental practice for relearning locomotor skills. Physical Therapy 90, 240-251.

Malouin, F., Richards, C.L., Jackson, P.L., Dumas, F., Doyon, J. (2003). Brain activations during motor imagery of locomotor-related tasks: A PET study. Human Brain Mapping 19(1), 47-62.

Malouin, F., Richards, C.L., Doyon, L., Desrosiers, J. Belleville, S. (2004a). Training mobility tasks after stroke with combined mental and physical practice: a feasibility study. Neurorehabilitation and Neural Repair 18(2), 66-75.

Malouin, F., Richards, C.L., Desrosiers, J. Doyon, L. (2004b). Bilateral slowing of mentally simulated actions after stroke. Neuroreport 15(8), 1349-1353. Malouin F., Richards, C.L., Jackson, P.L., Lafleur, M.F., Durand, A., Doyon, J. (2007) The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. Journal of Neurologic Physical Therapy 31(1), 20-29.

Malouin, F., Richards, C.L., Durand, A., Doyon, J. (2009). Added value of mental practice combined with a small amount of physical practice on the relearning of rising and sitting post-stroke: a pilot study. Journal of

Neurologic Physical Therapy 33, 195-202.

Malouin, F., Richards, C.L., Doyon, L. (2010a). Normal aging and motor imagery vividness: implications for mental practice training and rehabilitation. Archives of physical medicine and rehabilitation 91(7), 1122-1127.

Malouin, F., Richards, C.L., Jackson, P.L., Doyon, J. (2010b). Motor imagery for optimizing the reacquisition of locomotor skills after cerebral damage. In A. Guillot, C. Collet (Eds.), The neurophysiological foundations of mental

and motor imagery, 161-176. New York, NY: Oxford University Press.

Marconi, B., Pecchioli, C., Koch, G., Caltagirone, C. (2007). Functional overlap between hand and forearm motor cortical representations during motor cognitive tasks. Clinical Neurophysiology: Official Journal of the

International Federation of Clinical Neurophysiology 118, 1767-1775.

Martin, K.A., Moritz, S.E., Hall, C. (1999). Imagery use in sport: A literature review and applied model. The Sport Psychologist 13, 245-268.

Mayer, J., Bohn, J., Gorlich, P., Eberspacher, H. (2005). Mental gait training— Effectiveness of a therapy method in the rehabilitation after hip- replacement. Zeitschrift für Orthopädie und ihre Grenzgebiete 143(4), 419-423.

McCarthy, M., Beaumont, J.G., Thompson, R., Pringle, H. (2002). The role of imagery in the rehabilitation of neglect in severely disabled brain injured adults. Archives of Clinical Neuropsychology 17(5), 407-422.

McCullagh, P., Weiss, M.R. (2001). Modeling: Considerations for motor skill performance and psychological responses. In R.N. Singer, H.A. Hausenblas, C.M. Janelle (Eds.), The handbook of sport psychology, 205-238. New York: John Wiley & Sons Inc.

Mizuguchi, N., Sakamoto, M., Muraoka, T., Kanosue, K. (2009) Influence of touching an object on corticospinal excitability during motor imagery.

Mizuguchi, N., Sakamoto, M., Muraoka, T., Moriyama, N. Nakagawa, K. Nakata, H. (2012). Influence of somatosensory input on corticospinal excitability during motor imagery. Neuroscience Lett 514, 127-130.

Mizuguchi, N., Yamagishi, T., Nakata, H., Kanosue, K. (2015). The effect of somatosensory input on motor imagery depends upon motor imagery capability. Frontiers in Psychology 6, 104.

Moran, A. (1993). Conceptual and methodological issues in the measurement of mental imagery skills in athletes. Journal of Sport Behavior 16, 156- 170.

Mulder, T., Zijlstra, S., Zijlstra, W., Hochstenbach, J. (2004). The role of motor imagery in learning a totally novel movement. Experimental Brain

Research 154, 211-217.

Mulder, T., Hochstenbach, J.B., van Heuvelen, M.J., den Otter, A.R. (2007). Motor imagery: The relation between age and imagery capacity. Human

Movement Science 26, 203-211.

Munzert, J, Zentgraf K, Stark R, Vaitl D. (2008). Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements. Experimental Brain Research 188(3), 437-444. Munzert, J., Lorey, B., Zentgraf, K. (2009). Cognitive motor processes: The role

of motor imagery in the study of motor representations. Brain Research

Reviews 60, 306-326.

Murphy, S., Martin, K.A. (2002). The use of imagery in sport. In T. Horn (Ed.),

Advances in sport psychology, 405-439. Champaign, IL: Human

Kinetics.

Murphy, S., Nordin, S.M., Cumming, J. (2008). Imagery in sport, exercise and dance. In T. Horn (Ed.), Advances in sport and exercise psychology, 297-324. Champaign, IL: Human Kinetics.

Naish, K.R., Houston-Price, C., Bremner, A.J., Holmes, N.P. (2014). Effects of action observation on corticospinal excitability: Muscle specificity,

Naito, E., Kochiyama, T., Kitada, R., Nakamura, S., Matsumura, M., Yonekura, Y., Sadato, N. (2002). Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. The

Documenti correlati