• Non ci sono risultati.

istogramma rappresentativo del valore medio delle percentuali di Ai/Avs ottenuta a seguito di cicli di ischemia/riperfusione di cuori trattati con retigabina (30µM e 100µM) in

riferimento ai cuori trattati con il solo veicolo. Gli asterischi (*) indicano la significatività statistica rispetto al veicolo.

Come si può notare, la somministrazione di retigabina 30 µM non ha significativamente modificato l’insulto miocardico indotto dal ciclo di ischemia/riperfusione, in quanto i valori percentuali di RPP, dP/dt, CF e Ai/Avs risultano essere non significativamente diversi da quelli ottenuti per i cuori trattati con il solo veicolo; viceversa, la concentrazione superiore dell’attivatore KV7 (100 µM) ha portato ad un marcato e significativo miglioramento di tutti i parametri funzionali e morfologici (Grafico 6-9).

64

Per concludere, è importante sottolineare che si tratta del primo lavoro in cui viene valutata sia la presenza di canali KV7 a livello mitocondriale, e in particolare nel tessuto cardiaco, sia gli effetti cardioprotettivi provocati dagli attivatori di tali canali, come ad esempio la retigabina.

Questo lavoro quindi mette in evidenza, per la prima volta, come anche l’attivazione dei canali KV7 sia implicata nel meccanismo di cardioprotezione in

caso di ischemia del miocardio, patologia dove è noto che l’uso di attivatori dei canali mitoK, in particolare mitoKATP e mitoBKCa, ha funzioni protettive.

Pertanto, questo studio pone le basi per l’identificazione di un nuovo, originale e promettente target farmacologico, utile per eventuali strategie anti-ischemiche future e quindi possibile altro protagonista nello scenario della cardioprotezione.

65

5. Bibliografia

Aizawa K, Turner LA, Weihrauch D, Bosnjak ZJ, Kwok WM (2004) Protein kinase C-epsilon primes the cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel to modulation by isoflurane. Anesthesiology 101(2):381-9.

Aon MA, Cortassa S, Wei AC, Grunnet M, O'Rourke B (2010) Energetic performance is improved by specific activation of K+ fluxes through K(Ca) channels in heart mitochondria. Biochim Biophys Acta 1797(1):71-80.

Araki M, Tanaka M, Hasegawa K, Yokota R, Maeda T, Ishikawa M, Yabuuchi Y, Sasayama S (2000) Nitric oxide inhibition improved myocardial metabolism independent of tissue perfusion during ischemia but not during reperfusion. J Mol

Cell Cardiol 32(3):375-84.

Ardehali H, Chen Z, Ko Y, Mejía-Alvarez R, Marbán E (2004) Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ potassium channel activity. Proc Natl Acad Sci USA 101: 11880-5.

Armstrong S, Ganote CE (1994) Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes: evidence of A3 receptor involvement.

Cardiovasc Res 28(7):1049-56.

Baines CP, Pass JM, Ping P (2001) Protein kinases and kinase-modulated effectors in the late phase of ischemic preconditioning. Basic Res Cardiol 96(3):207-18. Bajgar R, Seetharaman S, Kowaltowski AJ, Garild KD, Paucek P (2001) Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J. Biol. Chem. 276(36): 33369-74.

Bednarczyk P, Kicińska A, Kominkova V, Ondrias K, Dolowy K, Szewczyk A (2004) Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J Membr Biol 199(2):63-72.

Bednarczyk P, Dołowy K, Szewczyk A (2005) Matrix Mg2+ regulates mitochondrial

ATP-dependent potassium channel from heart. FEBS Lett 579(7):1625-32.

Bednarczyk P, Barker GD, Halestrap AP (2008a) Determination of the rate of K+ movement through potassium channels in isolated rat heart and liver mitochondria.

Biochim Biophys Acta 1777: 540-8.

Bednarczyk P, Dolowy K, Szewczyk A (2008b) New properties of mitochondrial ATP-regulated potassium channels. J Bioenerg Biomembr 40: 325-35.

Bednarczyk P (2009) Potassium channels in brain mitochondria. Acta Biochim Pol 56(3):385-92.

66

Bentzen BH, Osadchii O, Jespersen T, Hansen RS, Olesen SP, Grunnet M (2009) Activation of big conductance Ca(2+)-activated K (+) channels (BK) protects the heart against ischemia-reperfusion injury. Pflugers Arch 457(5):979-88.

Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79(4):1127-55.

Bolli R (2001) Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 33(11):1897-918.

Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755-67.

Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275(9):6453-61. Brochiero E, Wallendorf B, Gagnon D, Laprade R, Lapointe JY (2002) Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal K(ATP) channel. Am. J. Physiol. Ren. Physiol. 282(2): F289-300.

Bugge E, Ytrehus K (1995) Ischaemic preconditioning is protein kinase C dependent but not through stimulation of alpha adrenergic or adenosine receptors in the isolated rat heart. Cardiovasc Res 29(3):401-6.

Burley DS, Ferdinandy P, Baxter GF (2007) Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol 152(6):855-69.

Burley DS, Baxter GF (2009) Pharmacological targets revealed by myocardial postconditioning. Curr Opin Pharmacol 9(2):177-88.

Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science 261(5118):221-4.

Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231(1):59-87.

Cai M, Li Y, Xu Y, Swartz HM, Chen CL, Chen YR, He G (2011) Endothelial NOS activity and myocardial oxygen metabolism define the salvageable ischemic time window for ischemic postconditioning. Am J Physiol Heart Circ Physiol 300(3):H1069-77.

67

Calderone V, Testai L, Martelli A, Rapposelli S, Digiacomo M, Balsamo A, Breschi MC (2010) Anti-ischemic properties of a new spiro-cyclic benzopyran activator of the cardiac mito-KATP channel. Biochem Pharmacol 79(1):39-47.

Cameron JS, Baghdady R (1994) Role of ATP sensitive potassium channels in long term adaptation to metabolic stress. Cardiovasc Res 28(6):788-96.

Cancherini DV, Trabuco LG, Reboucas NA, Kowaltowski AJ (2003) ATP-sensitive K+ channels in renal mitochondria. Am J Physiol Renal Physiol 285: F1291-6. Carroll R, Yellon DM (2000) Delayed cardioprotection in a human cardiomyocyte- derived cell line: the role of adenosine, p38MAP kinase and mitochondrial KATP.

Basic Res Cardiol 95(3):243-9.

Cao CM, Xia Q, Gao Q, Chen M, Wong TM (2005) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp

Ther 312(2):644-50.

Cave AC, Hearse DJ (1992) Ischaemic preconditioning and contractile function: studies with normothermic and hypothermic global ischaemia. J Mol Cell Cardiol 24(10):1113-23.

Challoner DR (1968) Respiration in myocardium. Nature. 217(5123):78-9.

Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25(5):280-9.

Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D (2008) Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem 22(1- 4):127-36.

Cheng Y, Gulbins E, Siemen D (2011) Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel. Cell Physiol Biochem 27(3-4):191-200.

Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD (2006) The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem 281(30):20801-8.

Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271(12):6746-51.

68

Cribier A, Korsatz L, Koning R, Rath P, Gamra H, Stix G, Merchant S, Chan C, Letac B (1992) Improved myocardial ischemic response and enhanced collateral circulation with long repetitive coronary occlusion during angioplasty: a prospective study. J Am Coll Cardiol 20(3):578-86.

Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 ( Pt 2):233-49.

Cross HR, Murphy E, Bolli R, Ping P, Steenbergen C (2002) Expression of activated PKC epsilon (PKC epsilon) protects the ischemic heart, without attenuating ischemic H(+) production. J Mol Cell Cardiol 34(3):361-7.

Dahlem YA, Horn TF, Buntinas L, Gonoi T, Wolf G, Siemen D (2004) The human mitochondrial KATP channel is modulated by calcium and nitric oxide: a patch-

clamp approach. Biochim Biophys Acta 1656: 46-56.

Debska G, May R, Kicinska A, Szewczyk A, Elger CE, Kunz WS (2001) Potassium channels openers depolarize hippocampal mitochondria. Brain Res 892: 42-50. Debska G, Kicinska A, Skalska J, Szewczyk A, May R, Elger CE, Kunz WS (2002) Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim Biophys Acta 1556: 97-105.

De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti CM, Szabo I, Zoratti M (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell calcium 45: 509-16.

del Valle HF, Lascano EC, Negroni JA (2002) Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels. Cardiovasc Res 55(3):642-59.

Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, Messing RO (2000) Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol 279(3):L429-38.

Deutsch E, Berger M, Kussmaul WG, Hirshfeld JW Jr, Herrmann HC, Laskey WK (2044) Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 82(6):2044-51.

Dorn GW 2nd (2002) Adrenergic pathways and left ventricular remodeling. J Card

69

Downey JM, Cohen MV (2005) We think we see a pattern emerging here.

Circulation 111(2):120-1.

Facundo HT, de Paula JG, Kowaltowski AJ (2007) Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Biol Med 42(7):1039-48.

Ferranti R, da Silva MM, Kowaltowski AJ (2003) Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation. FEBS Lett 536(1- 3):51-5.

Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88(8):802-9. Fornazari M, de Paula JG, Castilho RF, Kowaltowski AJ (2008) Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria. J

Neurosci Res. 86(7):1548-56.

Fryer RM, Schultz JE, Hsu AK, Gross GJ (1999) Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts. Am J Physiol 276(4 Pt 2):H1229-35.

Fujita A, Kurachi Y (2000) Molecular aspects of ATP-sensitive K+ channels in the cardiovascular system and K+ channel openers. Pharmacol. Ther. 85(1):39-53. Galagudza M, Kurapeev D, Minasian S, Valen G, Vaage J (2004) Ischemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. Eur J Cardiothorac Surg 25(6):1006-10.

Garlid KD (1996) Cation transport in mitochondria--the potassium cycle. Biochim

Biophys Acta 1275(1-2):123-6.

Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res. 81(6):1072-82.

Garlid KD (2000) Opening mitochondrial K(ATP) in the heart--what happens, and what does not happen. Basic Res Cardiol 95(4):275-9.

Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606(1-3):1-21.

Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K(+) cycle.

70

Giangiacomo KM, Garcia-Calvo M, Knaus HG, Mullmann TJ, Garcia ML, McManus O (1995) Functional reconstitution of the large-conductance, calcium- activated potassium channel purified from bovine aortic smooth muscle.

Biochemistry 34(48):15849-62.

Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122(2):221-33. Goto M, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM (1995) Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 77(3):611-21.

Granfeldt A, Lefer DJ, Vinten-Johansen J (2009) Protective ischaemia in patients: preconditioning and postconditioning. Cardiovasc Res 83(2):234-46.

Griffiths EJ e Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307: 93-8.

Grigoriev SM, Skarga YY, Mironova GD, Marinov BS (1999) Regulation of mitochondrial KATP channel by redox agents. Biochim Biophys Acta 1410(1):91-6. Gross GJ, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70(2):223-33.

Grover GJ, D'Alonzo AJ, Parham CS, Darbenzio RB (1995a) Cardioprotection with the KATP opener cromakalim is not correlated with ischemic myocardial action potential duration. J Cardiovasc Pharmacol. 26(1):145-52.

Grover GJ, McCullough JR, D'Alonzo AJ, Sargent CA, Atwal KS (1995b) Cardioprotective profile of the cardiac-selective ATP-sensitive potassium channel opener BMS-180448. J Cardiovasc Pharmacol. 25(1):40-50.

Grover GJ, D'Alonzo AJ, Dzwonczyk S, Parham CS, Darbenzio RB (1996) Preconditioning is not abolished by the delayed rectifier K+ blocker dofetilide. Am J

Physiol. 271(3 Pt 2):H1207-14.

Grunnet M, Rasmussen HB, Hay-Schmidt A, Klaerke DA (2003) The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia. Biochim Biophys Acta 1616(1):85-94.

Gu XQ, Siemen D, Parvez S, Cheng Y, Xue J, Zhou D, Sun X, Jonas EA, Haddad GG (2007) Hypoxia increases BK channel activity in the inner mitochondrial membrane. Biochem Biophys Res Commun 358(1):311-6.

71

Gulbins E, Sassi N, Grassmè H, Zoratti M, Szabò I (2010) Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim

Biophys Acta 1797(6-7):1251-9.

Gumina RJ, Pucar D, Bast P, Hodgson DM, Kurtz CE, Dzeja PP, Miki T, Seino S, Terzic A (2003) Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics. Am J Physiol Heart Circ Physiol 284(6):H2106-13.

Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258(5 Pt 1):C755-86.

Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage- gated potassium channels. Pharmacol Rev 57(4):473-508.

Halestrap AP (1994) Regulation of mitochondrial metabolism through changes in matrix volume. Biochem Soc Trans 22: 522-9.

Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection.

Cardiovasc Res 61(3):372-85.

Hassouna A, Matata BM, Galiñanes M (2004) PKC-epsilon is upstream and PKC- alpha is downstream of mitoKATP channels in the signal transduction pathway of

ischemic preconditioning of human myocardium. Am J Physiol Cell Physiol 287(5):C1418-25.

Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55(3):534-43.

Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection.

Circulation 109(14):1714-7.

Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning.

Trends Cardiovasc Med 15(2):69-75.

Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70(2):240-53.

72

Hausenloy DJ (2009) Signalling pathways in ischaemic postconditioning. Thromb

Haemost 101(4):626-34.

Heinen A, Aldakkak M, Stowe DF, Rhodes SS, Riess ML, Varadarajan SG, Camara AK (2007a) Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels. Am J Physiol Heart Circ

Physiol 293(3):H1400-7.

Heinen A, Camara AK, Aldakkak M, Rhodes SS, Riess ML, Stowe DF (2007b) Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol 292(1):C148-56.

Holmuhamedov EL, Jovanović S, Dzeja PP, Jovanović A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function.

Am J Physiol 275(5 Pt 2):H1567-76.

Holmuhamedov EL, Wang L, Terzic A (1999) ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol 519 Pt 2:347-60.

Ikonomidis JS, Shirai T, Weisel RD, Derylo B, Rao V, Whiteside CI, Mickle DA, Li RK (1997) Preconditioning cultured human pediatric myocytes requires adenosine and protein kinase C. Am J Physiol 272(3 Pt 2):H1220-30.

Ikonomidis JS, Tumiati LC, Weisel RD, Mickle DA, Li RK (1994) Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia.

Cardiovasc Res 28(8):1285-91.

Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352: 244-7.

Ishida H, Hirota Y, Genka C, Nakazawa H, Nakaya H, Sato T (2001) Opening of mitochondrial K(ATP) channels attenuates the ouabain-induced calcium overload in mitochondria. Circ Res 89(10):856-8.

Jabůrek M, Yarov-Yarovoy V, Paucek P, Garlid KD (1998) State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5- hydroxydecanoate. J Biol Chem 273(22):13578-82.

Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549(Pt 2):513-24.

Jennings RB e Ganote CE (1976) Mitochondrial structure and function in acutemyocardial ischemic injury. Circ Res 38: 180-91.

73

Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J

Mol Cell Cardiol 40(1):16-23.

Kaul S, Anantharam V, Kanthasamy A, Kanthasamy AG (2005) Wild-type alpha- synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal cells against MPP+-induced apoptotic cell death. Brain Res

Mol Brain Res 139(1):137-52.

Kaur S, Jaggi AS, Singh N (2009) Molecular aspects of ischaemic postconditioning.

Fundam Clin Pharmacol 23(5):521-36.

Kim JM, Woldgiorgis G, Elson CE, Shargo E (1988) Age-related changes in respiration coupled to phosphorylation. I. Hepatic mitochondrial. Mech. Aging Dev. 46:263-77.

Kin H, Wang NP, Mykytenko J, Reeves J, Deneve J, Jiang R, Zatta AJ, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock 29(6):761-8.

Kloner RA, Dow J, Bhandari A (2006) Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion. J Cardiovasc Pharmacol Ther 11(1):55-63.

Knaus HG, Folander K, Garcia-Calvo M, Garcia ML, Kaczorowski GJ, Smith M, Swanson R (1994) Primary sequence and immunological characterization of beta- subunit of high conductance Ca(2+)-activated K+ channel from smooth muscle. J

Biol Chem 269(25):17274-8.

Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J

Neurosci 16(3):955-63.

Kopustinskiene DM, Pollesello P, Saris NE (2001) Levosimendan is a mitochondrial K(ATP) channel opener. Eur J Pharmacol 428(3):311-4.

Kopustinskiene DM, Toleikis A, Saris NE (2003) Adenine nucleotide translocase mediates the K(ATP) Channelopeners-induced proton and potassium flux to the mitochondrial matrix. J Bioenerg Biomembr 35: 141-8.

Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15-8.

74

Kosztka L, Rusznák Z, Nagy D, Nagy Z, Fodor J, Szucs G, Telek A, Gönczi M, Ruzsnavszky O, Szentandrássy N, Csernoch L (2011) Inhibition of TASK-3 (KCNK9) channel biosynthesis changes cell morphology and decreases both DNA content and mitochondrial function of melanoma cells maintained in cell culture.

Melanoma Res 21(4):308-22.

Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria.

Am J Physiol Heart Circ Physiol 280(2):H649-57.

Krenz M, Oldenburg O, Wimpee H, Cohen MV, Garlid KD, Critz SD, Downey JM, Benoit JN (2002) Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol 97(5):365-73. Kudo M, Wang Y, Xu M, Ayub A, Ashraf M (2002) Adenosine A(1) receptor mediates late preconditioning via activation of PKC-delta signaling pathway. Am J

Physiol Heart Circ Physiol 283(1):H296-301.

Kulawiak B, Bednarczyk (2005) Reconstitution of brian mitochondria inner membrane into planar lipid bilayer. Acta Neurobiol Exp 65: 271-6.

Kulawiak B, Kudin AP, Szewczyk A, Kunz WS (2008) BK channel openers inhibit ROS production of isolated rat brain mitochondria. Exp Neurol 212(2):543-7.

Kumarswamy R, Chandna S (2009) Putative partners in Bax mediated cytochrome- c release: ANT, CypD, VDAC or none of them? Mitochondrion 9(1):1-8.

Kuzmin AI, Gourine AV, Molosh AI, Lakomkin VL, Vassort G (2000) Effects of preconditioning on myocardial interstitial levels of ATP and its catabolites during regional ischemia and reperfusion in the rat. Basic Res Cardiol 95(2):127-36.

Lamping KA, Christensen CW, Pelc LR, Warltier DC, Gross GJ (1984) Effects of nicorandil and nifedipine on protection of ischemic myocardium. J Cardiovasc

Pharmacol 6(3):536-42.

Lasley RD, Konyn PJ, Hegge JO, Mentzer RM Jr. (1995) Effects of ischemic and adenosine preconditioning on interstitial fluid adenosine and myocardial infarct size. Am J Physiol 269(4 Pt 2):H1460-6.

Lawson K (2000) Potassium channel openers as potential therapeutic weapons in ion channel disease. Kidney Int 57(3):838-45.

Lehninger AL, Nelson DL, Cox MM (2006) I principi di biochimica di Lehninger. Quarta edizione, Ed. Zanichelli.

75

Lesnefsky EJ, Hoppel CL (2006) Oxidative phosphorylation and aging. Ageing Res.

Rew. 5: 402-33.

Li GC, Vasquez JA, Gallagher KP, Lucchesi BR (1990) Myocardial protection with preconditioning. Circulation 82(2):609-19.

Lingle CJ, Solaro CR, Prakriya M, Ding JP (1996) Calcium-activated potassium channels in adrenal chromaffin cells. Ion Channels 4:261-301.

Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84(1):350-6.

Liu Y, Downey JM (1992) Ischemic preconditioning protects against infarction in rat heart. Am J Physiol 263(4 Pt 2):H1107-12.

Liu Y, Ytrehus K, Downey JM (1994) Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J Mol Cell

Cardiol 26(5):661-8.

Liu Y, Tsuchida A, Cohen MV, Downey JM (1995) Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 27(3):883-92.

Liu P, Hock CE, Nagele R, Wong PY (1997) Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol 272(5 Pt 2):H2327-36.

Liu Y, Sato T, O'Rourke B, Marban E (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97(24):2463-9. Liu H, Zhang HY, Zhu X, Shao Z, Yao Z (2002) Preconditioning blocks cardiocyte apoptosis: role of K(ATP) channels and PKC-epsilon. Am J Physiol Heart Circ

Physiol 282(4):H1380-6.

Lochner A, Marais E, Genade S, Moolman JA (2000) Nitric oxide: a trigger for classic preconditioning? Am J Physiol Heart Circ Physiol 279(6):H2752-65.

Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM, Malik AB (1990) Increased endothelial albumin permeability mediated by protein kinase C activation.

J Clin Invest 85(6):1991-8.

Maklashina E, Ackrell BA (2004) Is defective electron transport at the hub of aging? Aging cell. 3(1): 21-27.

76

Maulik N, Engelman DT, Watanabe M, Engelman RM, Maulik G, Cordis GA, Das DK (1995) Nitric oxide signaling in ischemic heart. Cardiovasc Res 30(4):593-601. McCully JD, Toyoda Y, Uematsu M, Stewart RD, Levitsky S (2001) Adenosine- enhanced ischemic preconditioning: adenosine receptor involvement during ischemia and reperfusion. Am J Physiol Heart Circ Physiol 280(2):H591-602.

Meech RW (1974) The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol 237(2):259-77.

Meech RW, Standen NB (1974) Calcium-mediated potassium activation in Helix neurones. J Physiol 237(2):43P-44P.

Meera P, Wallner M, Toro L (2000) A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 97(10):5562-7.

Documenti correlati