• Non ci sono risultati.

Quello modello potrebbe essere usato anche per studiare le attività dell’NGFR100W in vivo dato che c’è l’intenzione di usare questa forma di NGF in terapia sfruttando il fatto

che mantiene la stessa funzione di NGF senza causare dolore. Effettivamente per

mezzo di questo modello murino è possibile investigare in vivo quali sono le differenze

della mutazione rispetto a NGF wt. In base ai risultati ottenuti, la mutazione causa un

fenotipo in cui il topo è meno sensibile al dolore ma non sembra avere effetti

sull’attività neurotrofica di NGF nella maggior parte dei tipi cellulari, eccetto che per la

microglia. È ancora da approfondire se e come queste cellule rispondono a questa

forma mutata di NGF.

89 [1] H. Merskey et al., “Pain terms: a list with definitions and notes on usage.

Recommended by the IASP Subcommittee on Taxonomy.,” Pain, vol. 6, no. 3. pp. 249– 252, 1979.

[2] H. Breivik and P. Borchgrevink, “Assessment of pain,” … Anaesth., 2008.

[3] L. B. Ready, W. T. Edwards, and I. A. for the S. of P. T. F. on A. Pain, Management of

acute pain: a practical guide. IASP Publications, 1992.

[4] C. J. Woolf, “Pain: Moving from Symptom Control toward Mechanism-Specific

Pharmacologic Management,” Annals of Internal Medicine, vol. 140, no. 6. pp. 441–451, 2004.

[5] IASP, “IASP taxonomy,” updated from Pain Terms, A Current List with Definitions and

Notes on Usage" (pp 209-214) Classification of Chronic Pain, Second Edition, IASP Task Force on Taxonomy. pp. 209–214, 2012.

[6] P. J. Christo, “Opioid effectiveness and side effects in chronic pain,” Anesthesiology

Clinics of North America, vol. 21, no. 4. pp. 699–713, 2003.

[7] S. Omoigui, “The biochemical origin of pain: The origin of all pain is inflammation and the inflammatory response. Part 2 of 3 - Inflammatory profile of pain syndromes,” Med.

Hypotheses, vol. 69, no. 6, pp. 1169–1178, 2007.

[8] S. B. McMahon, M. Koltzenburg, I. T. MA, and D. C. Turk, Wall and Melzack’s Textbook

of Pain, vol. 48, no. 4. 2013.

[9] M. H. Jones, “Evidence for a Double Peripheral Pathway for Pain.,” Science, vol. 128, no. 3326, pp. 713–4, 1958.

[10] A. I. Basbaum, D. M. Bautista, G. Scherrer, and D. Julius, “Cellular and Molecular Mechanisms of Pain,” Cell, vol. 139, no. 2. pp. 267–284, 2009.

[11] R. E. Burke, “Sir Charles Sherrington’s the integrative action of the nervous system: A centenary appreciation,” Brain, vol. 130, no. 4. pp. 887–894, 2007.

[12] E. R. Kandel et al., “Principles of Neural Science,” 2000.

[13] D. Purves, G. . Augustine, and D. Fitzpatrick, “Central Pain Pathways: The Spinothalamic Tract.,” in Neuroscience., 2001, pp. 8–10.

[14] A. K. E. Horn, “The reticular formation.,” Prog. Brain Res., vol. 151, no. 5, pp. 127–55, 2006.

[15] B. R. Noga, D. J. Kriellaars, and L. M. Jordan, “The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions.,” J. Neurosci., vol. 11, no. 6, pp. 1691–1700, 1991. [16] M. Rios, R. Treede, J. Lee, and F. A. Lenz, “Direct Evidence of Nociceptive Input to

Human Anterior Cingulate Gyrus and Parasylvian Cortex,” Curr. Rev. Pain, vol. 3, no. 4, pp. 256–264, 1999.

[17] a Schnitzler and M. Ploner, “Neurophysiology and functional neuroanatomy of pain perception.,” J. Clin. Neurophysiol., vol. 17, no. 6, pp. 592–603, 2000.

[18] D. R. Kenshalo, F. Anton, and R. Dubner, “The detection and perceived intensity of noxious thermal stimuli in monkey and in human.,” J. Neurophysiol., vol. 62, no. 2, pp. 429–36, 1989.

[19] D. R. Kenshalo and O. Isensee, “Responses of primate SI cortical neurons to noxious stimuli.,” J. Neurophysiol., vol. 50, no. 6, pp. 1479–96, 1983.

[20] S. A. Overduin and P. Servos, “Distributed digit somatotopy in primary somatosensory cortex,” Neuroimage, vol. 23, no. 2, pp. 462–472, 2004.

90 [21] W. G. Whitsel BL, Petrucelli LM, “Symmetry and connectivity in the map of the body

surface in somatosensory area II of primates.,” J Neurophysiol., 1969.

[22] W. K. Dong, E. H. Chudler, K. Sugiyama, V. J. Roberts, and T. Hayashi, “Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys.,” J. Neurophysiol., vol. 72, no. 2, pp. 542–564, 1994.

[23] C. J. Robinson and H. Burton, “Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas ofM. fascicularis,” J. Comp. Neurol., vol. 192, no. 1, pp. 93–108, 1980.

[24] F. A. Lenz, R. H. Gracely, A. T. Zirh, A. J. Romanoski, and P. M. Dougherty, “The sensory- limbic model of pain memory - Connections from thalamus to the limbic system

mediate the learned component of the affective dimension of pain,” Pain Forum, vol. 6, no. 1, pp. 22–31, 1997.

[25] L. J. Vogt, B. A. Vogt, and R. W. Sikes, “Limbic thalamus in rabbit: Architecture, projections to cingulate cortex and distribution of muscarinic acetylcholine, GABA(A), and opioid receptors,” J. Comp. Neurol., vol. 319, no. 2, pp. 205–217, 1992.

[26] D. D. Price, “Psychological and neural mechanisms of the affective dimension of pain,”

Science (80-. )., vol. 288, no. 5472, pp. 1769–1772, 2000.

[27] B. A. Vogt, “Pain and emotion interactions in subregions of the cingulate gyrus.,” Nat.

Rev. Neurosci., vol. 6, no. 7, pp. 533–44, 2005.

[28] G. Bush, P. Luu, and M. Posner, “Cognitive and emotional influences in anterior cingulate cortex,” Trends Cogn. Sci., vol. 4, no. 6, pp. 215–222, 2000.

[29] B. A. Vogt, D. M. Finch, and C. R. Olson, “Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions,” Cereb. Cortex, vol. 2, no. 6, pp. 435–443, 1992.

[30] P. M. Tow and C. W. Whitty, “Personality changes after operations on the cingulate gyrus in man.,” J. Neurol. Neurosurg. Psychiatry, vol. 16, pp. 186–193, 1953.

[31] Y. J. Gao, W. H. Ren, Y. Q. Zhang, and Z. Q. Zhao, “Contributions of the anterior cingulate cortex and amygdala to pain- and fear-conditioned place avoidance in rats,”

Pain, vol. 110, no. 1–2, pp. 343–353, 2004.

[32] D. Jeon et al., “Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC.,” Nat. Neurosci., vol. 13, no. 4, pp. 482–8, 2010.

[33] A. J. McDonald, “Is There an Amygdala and How Far Does It Extend?,” Ann. N. Y. Acad.

Sci., vol. 985, no. 1, pp. 1–21, 2006.

[34] P. Sah, E. S. Faber, M. Lopez De Armentia, and J. Power, “The amygdaloid complex: anatomy and physiology,” Physiol Rev, vol. 83, no. 3, pp. 803–834, 2003.

[35] J. S. De Olmos, C. A. Beltramino, and G. Alheid, “Amygdala and Extended Amygdala of the Rat: A Cytoarchitectonical, Fibroarchitectonical, and Chemoarchitectonical Survey,” in The Rat Nervous System, 2004, pp. 509–603.

[36] J. L. Fudge, M. A. Breitbart, and C. McClain, “Amygdaloid inputs define a caudal component of the ventral striatum in primates,” J. Comp. Neurol., vol. 476, no. 4, pp. 330–347, 2004.

[37] M. D. Cassell, L. J. Freedman, and C. Shi, “The intrinsic organization of the central extended amygdala,” in Annals of the New York Academy of Sciences, 1999, vol. 877, pp. 217–241.

91 Ramírez M, Fuxe K, “The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala.,” Brain Res, 2012.

[39] J. E. LeDoux, “Emotion Circuits in the Brain,” Annu. Rev. Neurosci., vol. 23, no. 1, pp. 155–184, 2000.

[40] D. Pare and S. Duvarci, “Amygdala microcircuits mediating fear expression and extinction,” Current Opinion in Neurobiology, vol. 22, no. 4. pp. 717–723, 2012. [41] P. Veinante, I. Yalcin, and M. Barrot, “The amygdala between sensation and affect: a

role in pain.,” J. Mol. psychiatry, vol. 1, no. 1, p. 9, 2013.

[42] M. Davis, “The role of the amygdala in fear and anxiety,” Annu. Rev. Neurosci., vol. 15, pp. 353–375, 1992.

[43] R. Melzack and P. Wall, “Pain Mechanism: A new Theory,” Science, vol. 150. pp. 971– 979, 1965.

[44] D. D. P. David J. Mayer, “The Physiological Mechanisms of Motivation,” vol. 1982. [45] D. J. Mayer and J. C. Liebeskind, “Pain reduction by focal electrical stimulation of the

brain: An anatomical and behavioral analysis,” Brain Res., vol. 68, no. 1, pp. 73–93, 1974.

[46] H. L. Fields, “State-dependent opioid control of pain.,” Nat. Rev. Neurosci., vol. 5, no. 7, pp. 565–75, 2004.

[47] J. M. J. Dacher Keltner, Keith Oatley, “Understanding Emotions,” vol. 3a ed., 2013. [48] K. N. Westlund, R. M. Bowker, M. G. Ziegler, and J. D. Coulter, “Noradrenergic

projections to the spinal cord of the rat,” Brain Res., vol. 263, no. 1, pp. 15–31, 1983. [49] R. Levi-Montalcini, “The nerve growth factor 35 years later.,” Sci. 237 1154–1162.,

1987.

[50] R. Levi-montalcini, “Years Later,” vol. 237, no. May 1987, 1991.

[51] R. Levi-Montalcini, H. Meyer, and V. Hamburger, “In Vitro Experiments on the Effects of Mouse Sarcomas 180 and 37 on the Spinal and Sympathetic Ganglia of the Chick Embryo,” Cancer Res., vol. 14, no. 1, pp. 49–57, 1954.

[52] C. S. Levi-Montalcini R1, “In vitro and in vivo effects of a nerve growth-stimulating agent isolated from snake venom,” Proc Natl Acad Sci U S A, 1956.

[53] Cohen S, “Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum.,” Biochemestry, 1960.

[54] E. M. Shooter, “Early days of the nerve growth factor proteins.,” Annu. Rev. Neurosci., vol. 24, pp. 601–29, 2001.

[55] B. Seidah, N.G., Benjannet, S., Pareek, S., Savaria, D., Hamelin, J., Goulet and R. A. Laliberte, J., Lazure, C., Chretien, M. & Murphy, “Cellular processing of the nerve growth factor precursor by the mammalian proprotein convertases.,” Biochem. J.,

314(Pt 3), 951–960., 1996.

[56] A. Mouri, H. Nomoto, and S. Furukawa, “Processing of nerve growth factor: The role of basic amino acid clusters in the pro-region,” Biochem. Biophys. Res. Commun., vol. 353, no. 4, pp. 1056–1062, 2007.

[57] H. Nomoto, M. Takaiwa, A. Mouri, and S. Furukawa, “Pro-region of neurotrophins determines the processing efficiency,” Biochem. Biophys. Res. Commun., vol. 356, no. 4, pp. 919–924, 2007.

[58] M. a Bruno and a C. Cuello, “Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease

92 cascade.,” Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 17, pp. 6735–40, 2006.

[59] J. Boutilier, C. Ceni, P. C. Pagdala, A. Forgie, K. E. Neet, and P. A. Barker,

“Proneurotrophins require endocytosis and intracellular proteolysis to induce TrkA activation,” J. Biol. Chem., vol. 283, no. 19, pp. 12709–12716, 2008.

[60] L. F. Reichardt, “Neurotrophin-regulated signalling pathways.,” Philosophical

transactions of the Royal Society of London. Series B, Biological sciences, vol. 361, no.

1473. pp. 1545–64, 2006.

[61] G. R. Lewin and A. Nykjaer, “Pro-neurotrophins, sortilin, and nociception,” Eur. J.

Neurosci., vol. 39, no. 3, pp. 363–374, 2014.

[62] S. Skeldal, D. Matusica, A. Nykjaer, and E. J. Coulson, “Proteolytic processing of the p75 neurotrophin receptor: A prerequisite for signalling?: Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75NTR,” BioEssays, vol. 33, no. 8. pp. 614–625, 2011.

[63] A. Nykjaer and T. E. Willnow, “Sortilin: A receptor to regulate neuronal viability and function,” Trends in Neurosciences, vol. 35, no. 4. pp. 261–270, 2012.

[64] I. A. Hendry, K. Stöckel, H. Thoenen, and L. L. Iversen, “The retrograde axonal transport of nerve growth factor,” Brain Res., vol. 68, no. 1, pp. 103–121, 1974.

[65] K. Hendry, IA Stach, R Herrup, “Characteristics of the retrograde axonal transport system of nerve growth factor in the sympathetic nervous system.,” Brain Res ;82117–

128.

[66] K. Stoeckel, M. Schwab, and H. Thoenen, “Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons: A biochemical and morphological study,” Brain

Res., vol. 89, no. 1, pp. 1–14, 1975.

[67] R. Levi-Montalcini, “Effects of mouse tumor transplantation on the nervous system.,”

Ann N Y Acad Sci 55 330–344., 1952.

[68] J. C. Conover and G. D. Yancopoulos, “Neurotrophin regulation of the developing nervous system: analyses of knockout mice.,” Rev. Neurosci., vol. 8, no. 1, pp. 13–27, 1997.

[69] D. Johnson et al., “Expression and structure of the human NGF receptor,” Cell, vol. 47, no. 4, pp. 545–554, 1986.

[70] A. Patapoutian and L. F. Reichardt, “Trk receptors: Mediators of neurotrophin action,”

Current Opinion in Neurobiology, vol. 11, no. 3. pp. 272–280, 2001.

[71] C. N. Svendsen, J. N. Kew, K. Staley, and M. V Sofroniew, “Death of developing septal cholinergic neurons following NGF withdrawal in vitro: protection by protein synthesis inhibition.,” J. Neurosci., vol. 14, no. 1, pp. 75–87, 1994.

[72] C. Crowley et al., “Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons,” Cell, vol. 76, no. 6, pp. 1001–1011, 1994.

[73] K. S. Chen, M. C. Nishimura, M. P. Armanini, C. Crowley, S. D. Spencer, and H. S. Phillips, “Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits.,” J. Neurosci., vol. 17, no. 19, pp. 7288–7296, 1997.

[74] E. Sanchez-Ortiz et al., “TrkA gene ablation in basal forebrain results in dysfunction of the cholinergic circuitry.,” J. Neurosci., vol. 32, no. 12, pp. 4065–79, 2012.

93 TrkA during maturation of striatal and basal forebrain cholinergic neurons in vivo.,” J.

Neurosci., vol. 17, no. 20, pp. 7644–54, 1997.

[76] K. F. Lee et al., “Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system,” Cell, vol. 69, no. 5, pp. 737–749, 1992.

[77] A. M. Davies, K. F. Lee, and R. Jaenisch, “p75-Deficient trigeminal sensory neurons have an altered response to NGF but not to other neurotrophins,” Neuron, vol. 11, no. 4, pp. 565–574, 1993.

[78] A. Nykjaer, R. Lee, K. K. Teng, and P. Jansen, “Sortilin is essential for proNGF- induced neuronal cell death,” Nature, vol. 427, no. February, pp. 15–20, 2004.

[79] S. Skeldal, D. Matusica, A. Nykjaer, and E. J. Coulson, “Proteolytic processing of the p75 neurotrophin receptor: A prerequisite for signalling?,” BioEssays, vol. 34, no. 6. pp. 521–521, 2012.

[80] G. L. Barrett and A. Georgiou, “The low-affinity nerve growth factor receptor p75(NGFR) mediates death of PC12 cells after nerve growth factor withdrawal,” J. Neurosci. Res., vol. 45, no. 2, pp. 117–128, 1996.

[81] T. L. Deckwerth and E. M. Johnson, “Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor.,” J. Cell Biol., vol. 123, no. 5, pp. 1207–1222, 1993.

[82] M. V Sofroniew, N. P. Galletly, O. Isacson, and C. N. Svendsen, “Survival of adult basal forebrain cholinergic neurons after loss of target neurons.,” Science, vol. 247, no. 4940, pp. 338–42, 1990.

[83] K. G. Ruit, P. A. Osborne, R. E. Schmidt, E. M. Johnson Jr., and W. D. Snider, “Nerve growth factor regulates sympathetic ganglion cell morphology and survival in the adult mouse,” J Neurosci, vol. 10, no. 7, pp. 2412–2419, 1990.

[84] F. Hefti, “Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections.,” J. Neurosci., vol. 6, no. 8, pp. 2155–62, 1986.

[85] W. C. Mobley, J. L. Rutkowski, G. I. Tennekoon, J. Gemski, K. Buchanan, and M. V Johnston, “Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons,” Brain Res, vol. 387, no. 1, pp. 53–62, 1986. [86] S. Pezet and S. B. McMahon, “Neurotrophins: mediators and modulators of pain.,”

Annu. Rev. Neurosci., vol. 29, pp. 507–538, 2006.

[87] S. Snider, WD. McMahon, “Tackling pain at the source: new ideas about nociceptors.,”

Neuron 20 629–632., 1998.

[88] a M. Ritter, G. R. Lewin, N. E. Kremer, and L. M. Mendell, “Requirement for nerve growth factor in the development of myelinated nociceptors in vivo.,” Nature, vol. 350, no. 6318, pp. 500–502, 1991.

[89] C. J. Woolf, “Phenotypic modification of primary sensory neurons: the role of nerve growth factor in the production of persistent pain. [Review] [34 refs],” Philos. Trans. R.

Soc. London - Ser. B Biol. Sci., vol. 351, no. 1338, pp. 441–448, 1996.

[90] F. Hefti, “Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections.,” J. Neurosci., vol. 6, no. 8, pp. 2155–2162, 1986.

[91] M. H. Tuszynski and F. H. Gage, “Bridging grafts and transient nerve growth factor infusions promote long-term central nervous system neuronal rescue and partial functional recovery.,” Proc. Natl. Acad. Sci., vol. 92, no. 10, pp. 4621–4625, 1995.

94 [92] S. W. Davies and K. Beardsall, “Nerve growth factor selectively prevents excitotoxin

induced degeneration of striatal cholinergic neurones,” Neurosci. Lett., vol. 140, no. 2, pp. 161–164, 1992.

[93] I. R. Boniece and J. A. Wagner, “Growth factors protect PC12 cells against ischemia by a mechanism that is independent of PKA, PKC, and protein synthesis,” J Neurosci, vol. 13, no. 10, pp. 4220–4228, 1993.

[94] R. Levi-Montalcini, S. D. Skaper, R. Dal Toso, L. Petrelli, and A. Leon, “Nerve growth factor: From neurotrophin to neurokine,” Trends in Neurosciences, vol. 19, no. 11. pp. 514–520, 1996.

[95] J. L. Scully and U. Otten, “NGF: not just for neurons.,” Cell Biol. Int., vol. 19, no. 5, pp. 459–69, 1995.

[96] K. Jackson, “The evolution of venom-conducting fangs: Insights from developmental biology,” Toxicon, vol. 49, no. 7, pp. 975–981, 2007.

[97] Y. Indo et al., “Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis.,” Nat. Genet., vol. 13, no. 4, pp. 485–8, 1996. [98] E. Einarsdottir et al., “A mutation in the nerve growth factor beta gene (NGFB) causes

loss of pain perception,” Hum. Mol. Genet., vol. 13, no. 8, pp. 799–805, 2004. [99] G. R. Lewin, A. M. Ritter, M. Mendell, S. Brook, N. York, and L. M. Mendell, “Nerve

growth factor-induced hyperalgesia in the neonatal and adult rat.,” J. Neurosci., vol. 13, no. 5, pp. 2136–48, 1993.

[100] G. R. Lewin, A. Rueff, and L. M. Mendell, “Peripheral and central mechanisms of NGF- induced hyperalgesia,” Eur. J. Neurosci., vol. 6, no. 12, pp. 1903–1912, 1994.

[101] P. Dyck et al., “Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered heat-pain threshold in humans,” Neurology:, vol. 48, no. 2, pp. 501–505, 1997.

[102] B. G. Petty et al., “The effect of systemically administered recombinant human nerve growth factor in healthy human subjects.,” Ann. Neurol., vol. 36, no. 2, pp. 244–6, 1994. [103] P. Svensson, B. E. Cairns, K. Wang, and L. Arendt-Nielsen, “Injection of nerve growth

factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia,” Pain, vol. 104, no. 1–2, pp. 241–247, 2003.

[104] M. Koltzenburg, “Neutralization of endogenous NGF prevents the sensitization of nociceptors supplying inflamed skin,” Eur. J. Neurosci., vol. 11, no. 5, pp. 1698–1704, 1999.

[105] S. B. McMahon, D. L. Bennett, J. V Priestley, and D. L. Shelton, “The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule.,” Nat. Med., vol. 1, no. 8, pp. 774–780, 1995.

[106] S. C. Apfel, “Neurotrophic factors and pain,” Clin J Pain, vol. 16, no. 2 Suppl, pp. S7-11, 2000.

[107] S. C. Apfel, “Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold?,” Int. Rev. Neurobiol., vol. 50, pp. 393–413, 2002.

[108] M. Eriksdotter Jönhagen et al., “Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease.,” Dement. Geriatr. Cogn. Disord., vol. 9, no. 5, pp. 246–57, 1998.

95 pain hypersensitivity,” Biochem. Biophys. Res. Commun., vol. 335, no. 1, pp. 132–138, 2005.

[110] M. Malik-Hall, O. A. Dina, and J. D. Levine, “Primary afferent nociceptor mechanisms mediating NGF-induced mechanical hyperalgesia,” Eur. J. Neurosci., vol. 21, no. 12, pp. 3387–3394, 2005.

[111] G. D. Nicol and M. R. Vasko, “Unraveling the story of NGF-mediated sensitization of nociceptive sensory neurons: ON or OFF the Trks?,” Mol. Interv., vol. 7, no. 1, pp. 26– 41, 2007.

[112] M. M. Moran, H. Xu, and D. E. Clapham, “TRP ion channels in the nervous system,”

Current Opinion in Neurobiology, vol. 14, no. 3. pp. 362–369, 2004.

[113] H. H. Chuang et al., “Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.,” Nature, vol. 411, no. 6840, pp. 957–962, 2001.

[114] J. Winston, H. Toma, M. Shenoy, and P. J. Pasricha, “Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons.,” Pain, vol. 89, no. 2–3, pp. 181–6, 2001.

[115] R. R. Ji, T. A. Samad, S. X. Jin, R. Schmoll, and C. J. Woolf, “p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia,” Neuron, vol. 36, no. 1, pp. 57–68, 2002.

[116] W. Zhu and G. S. Oxford, “Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1,” Mol. Cell.

Neurosci., vol. 34, no. 4, pp. 689–700, 2007.

[117] I. Bergmann, R. Reiter, K. V. Toyka, and M. Koltzenburg, “Nerve growth factor evokes hyperalgesia in mice lacking the low-affinity neurotrophin receptor p75,” Neurosci.

Lett., vol. 255, no. 2, pp. 87–90, 1998.

[118] K. Obata et al., “Suppression of the p75 neurotrophin receptor in uninjured sensory neurons reduces neuropathic pain after nerve injury.,” J. Neurosci., vol. 26, no. 46, pp. 11974–11986, 2006.

[119] M. Chao, “Neurotrophins and their receptors: a convergence point for many signalling pathways.,” Nat Rev Neurosci 4 299–309., 2003.

[120] S. Neumann, T. P. Doubell, T. Leslie, and C. J. Woolf, “Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons.,” Nature, vol. 384, no. 6607, pp. 360–364, 1996.

[121] D. Oddiah, P. Anand, S. B. McMahon, and M. Rattray, “Rapid increase of NGF, BDNF and NT-3 mRNAs in inflamed bladder.,” Neuroreport, vol. 9, no. 7, pp. 1455–1458, 1998. [122] L. Aloe, M. A. Tuveri, U. Carcassi, and R. Levi-Montalcini, “Nerve growth factor in the

synovial fluid of patients with chronic arthritis,” Arthritis Rheum, vol. 35, no. 3, pp. 351– 355, 1992.

[123] D. a Halliday, C. Zettler, R. a Rush, R. Scicchitano, and J. D. McNeil, “Elevated nerve growth factor levels in the synovial fluid of patients with inflammatory joint disease.,”

Neurochem. Res., vol. 23, no. 6, pp. 919–22, 1998.

[124] F. F. di Mola et al., “Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease.,” Gut, vol. 46, no. 5, pp. 670–9, 2000.

[125] K. D. Wild et al., “Antibodies to nerve growth factor reverse established tactile allodynia in rodent models of neuropathic pain without tolerance.,” J. Pharmacol. Exp. Ther., vol.

96 322, no. 1, pp. 282–287, 2007.

[126] O. P. Carvalho et al., “A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy,” J. Med. Genet., vol. 48, no. 2, pp. 131–135, 2011.

[127] J. J. Watson, S. J. Allen, and D. Dawbarn, “Targeting nerve growth factor in pain: What is the therapeutic potential?,” BioDrugs, vol. 22, no. 6. pp. 349–359, 2008.

[128] J. R. Ghilardi et al., “Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint,” Arthritis Rheum., vol. 64, no. 7, pp. 2223–2232, 2012. [129] N. J. Koewler et al., “Effects of a Monoclonal Antibody Raised Against Nerve Growth

Factor on Skeletal Pain and Bone Healing After Fracture of the C57BL/6J Mouse Femur,”

J. Bone Miner. Res., vol. 22, no. 11, pp. 1732–1742, 2007.

[130] W. G. Mantyh et al., “Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain,” Neuroscience, vol. 171, no. 2, pp. 588–598, 2010.

[131] Y. Zhu et al., “Nerve growth factor modulates TRPV1 expression and function and mediates pain in chronic pancreatitis,” Gastroenterology, vol. 141, no. 1, pp. 370–377, 2011.

[132] K. Garber, “Fate of novel painkiller mAbs hangs in balance.,” Nat. Biotechnol. 30, 466., 2012.

[133] M. Nelaton, “Affection singuliere des os du pied.,” Gaz. Hop. Civ. Milit., 4, 13., 1852. [134] K. Rotthier, A., Baets, J., Timmerman, V. & Janssens, “Mechanisms of disease in

hereditary sensory and autonomic neuropathies.,” Nat. Rev. Neurol., 8, 73–85., 2012. [135] M. Auer-Grumbach, “Hereditary sensory and autonomic neuropathies.,” Handb. Clin.

Neurol., 115, 893–906., 2013.

[136] P. J. Dyck et al., “Not ‘indifference to pain’ but varieties of hereditary sensory and autonomic neuropathy,” Brain, vol. 106, no. 2, pp. 373–390, 1983.

[137] S. Edvardson et al., “Hereditary sensory autonomic neuropathy caused by a mutation in dystonin,” Ann. Neurol., vol. 71, no. 4, pp. 569–572, 2012.

[138] N. Verpoorten, P. De Jonghe, and V. Timmerman, “Disease mechanisms in hereditary sensory and autonomic neuropathies,” Neurobiology of Disease, vol. 21, no. 2. pp. 247– 255, 2006.

[139] K. Bejaoui et al., “Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis,” J.

Clin. Invest., vol. 110, no. 9, pp. 1301–1308, 2002.

[140] M. Nicholson, GA, Dawkins, JL Blair, IP Auer-Grumbach and D. Brahmbhatt, SB Hulme, “Hereditary sensory neuropathy type I: haplotype analysis shows founders in southern England and Europe.,” Am J Hum Genet, no. 69:655– 659., 2001.

[141] J. L. Dawkins, D. J. Hulme, S. B. Brahmbhatt, M. Auer-Grumbach, and G. a Nicholson, “Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I.,” Nat. Genet., vol. 27, no. march, pp. 309– 312, 2001.

[142] A. T. Alibhoy, B. Senanayake, M. A. Fernando, U. K. Ranawaka, and J. C. Wijesekera, A

case of hereditary sensory and autonomic neuropathy (HSAN) type II., vol. 45. 2000, pp.

32–33.

97 autonomic neuropathy type II,” Neurology, vol. 66, no. 5, pp. 748–751, 2006.

[144] M. A. Fath, M. R. Hassanein, and J. I. P. James, “Congenital absence of pain,” J. Bone Jt.

Surg., vol. 65–B, pp. 186–188, 1983.

[145] S. L. Anderson et al., “Familial Dysautonomia Is Caused by Mutations of the IKAP Gene,”

Am. J. Hum. Genet., vol. 68, no. 3, pp. 753–758, 2001.

[146] G. Lee et al., “Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs,” Nature, vol. 461, no. 7262, pp. 402–406, 2009.

[147] Y. Indo, “Nerve growth factor and the physiology of??pain: Lessons from congenital

Documenti correlati