• Non ci sono risultati.

Molte delle fonti d’acqua facilmente accessibili alle comunità rurali nei paesi in via di sviluppo sono contaminate da microorganismi patogeni che causano una varietà di malattie legate all’inquinamento dell’acqua. Nei paesi in via di sviluppo le persone hanno difficoltà ad avere accesso ad acqua pulita e potabile (Adeniran et al., 2017).

Il solfato di alluminio è una delle sostanze chimiche più utilizzate per la purificazione dell’acqua, in quanto agisce come flocculante per catturare le impurità, regola il pH e rimuove fosfati e batteri (Tshabalala et al., 2019). Per le piccole comunità dei paesi in via di sviluppo tuttavia i prodotti convenzionali di purificazione dell’acqua come solfato di alluminio, calcio carbonato, sali ferrici sono insostenibili a causa degli alti costi e della difficoltà di reperimento. Inoltre i residui della purificazione dell’acqua con i prodotti convenzionali presentano delle problematiche a livello di inquinamento ambientale (Vunain et al., 2019).

I semi di Moringa hanno proprietà coagulanti e flocculanti e possono quindi essere utilizzati per purificare e potabilizzare acque molto torbide (Ndabigengesere et al, 1995). I composti ad azione coagulante contenuti negli estratti acquosi di semi di Moringa sono proteine cationiche dimeriche di peso molecolare da 6,5 a 14 kDa e valore di pH isoelettrico di 10-11, che agiscono con un meccanismo che combina l'adsorbimento (a causa della struttura porosa) e la neutralizzazione della carica (Camacho et al., 2017). In termini di abbattimento della torbidità, sono stati ottenuti rispettivamente 94,4%, 99,8% e 99,7% per polvere di semi di Moringa (15 g/l), solfato di alluminio e cloruro ferrico (Vunain et al., 2019).

I semi secchi vengono sbucciati, macinati e aggiunti all’acqua e agiscono come coagulanti- flocculanti legando le microscopiche particelle colloidali e i batteri. Questi aggregati si depositano sul fondo e il surnatante può venire utilizzato per usi alimentari (Tshabalala et al., 2019).

Il trattamento di purificazione dell’acqua con semi di Moringa rimuove, grazie all’attività antimicrobica e flocculante, circa il 90-99% dei batteri presenti nell'acqua contaminata (Adeniran et al., 2017). Dallo studio di Vunain et al. (2019) emerge che la riduzione delle popolazioni microbiche nelle acque reflue è stata ottimale alla dose di 15 g/l. A tali concentrazione hanno potuto osservare una riduzione della carica microbica da 209 a 7 unità formanti colonia (cfu), dei microrganismi fungini da 280 a 41 cfu, di Salmonella spp. e Shigella spp. da 77 a 2 cfu e di batteri coliformi da 238 a 94 cfu (Vunain et al., 2019).

L’utilizzo dei semi di Moringa nel trattamento delle acque in ambito domestico è comprovato ed efficace, mentre su larga scala viene solitamente utilizzato come coagulante il solfato di alluminio in quanto ha un’efficacia maggiore (Tshabalala et al., 2019).

BIBLIOGRAFIA

Abd Rani, N. Z., Husain, K., & Kumolosasi, E. (2018). Moringa Genus: A Review of Phytochemistry and Pharmacology. Frontiers in Pharmacology, 9, 108. https://doi.org/10.3389/fphar.2018.00108

Adeniran, K. A., Akpenpuun, T. D., Akinyemi, B. A., & Wasiu, R. A. (2017). Effectiveness of

Moringa oleifera seed as a coagulant in domestic wastewater treatment. African Journal of Science, Technology, Innovation and Development, 9(3), 323–328.

https://doi.org/10.1080/20421338.2017.1327475

Alegbeleye, O. O. (2018). How Functional Is Moringa oleifera ? A Review of Its Nutritive, Medicinal, and Socioeconomic Potential. Food and Nutrition Bulletin, 39(1), 149–170. https://doi.org/10.1177/0379572117749814

Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research, 21(1), 17–25.

https://doi.org/10.1002/ptr.2023

Bao, Y., Xiao, J., Weng, Z., Lu, X., Shen, X., & Wang, F. (2020). A phenolic glycoside from Moringa oleifera Lam. improves the carbohydrate and lipid metabolisms through AMPK in db/db mice. Food Chemistry, 311, 125948. https://doi.org/10.1016/j.foodchem.2019.125948 Barichella, M., Pezzoli, G., Faierman, S. A., Raspini, B., Rimoldi, M., Cassani, E., Bertoli, S.,

Battezzati, A., Leone, A., Iorio, L., Ferri, V., Pinelli, G., Pusani, C., Bolliri, C., Cilia, R., Caronni, S., De Marco, P., & Cereda, E. (2019). Nutritional characterisation of Zambian

Moringa oleifera: Acceptability and safety of short-term daily supplementation in a group of

malnourished girls. International Journal of Food Sciences and Nutrition, 70(1), 107–115. https://doi.org/10.1080/09637486.2018.1475550

1865(5), 721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010

Bennett, R. N., Mellon, F. A., Foidl, N., Pratt, J. H., Dupont, M. S., Perkins, L., & Kroon, P. A. (2003). Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L.

Journal of Agricultural and Food Chemistry, 51(12), 3546–3553.

https://doi.org/10.1021/jf0211480

Borggrefe, T., & Oswald, F. (2009). The Notch signaling pathway: Transcriptional regulation at Notch target genes. Cellular and Molecular Life Sciences: CMLS, 66(10), 1631–1646. https://doi.org/10.1007/s00018-009-8668-7

Brunelli, D., Tavecchio, M., Falcioni, C., Frapolli, R., Erba, E., Iori, R., Rollin, P., Barillari, J., Manzotti, C., Morazzoni, P., & D’Incalci, M. (2010). The isothiocyanate produced from glucomoringin inhibits NF-kB and reduces myeloma growth in nude mice in vivo.

Biochemical Pharmacology, 79(8), 1141–1148. https://doi.org/10.1016/j.bcp.2009.12.008

Bukar, A., Uba, A., & Oyeyi, T. (2010). Antimicrobial profile of Moringa oleifera Lam. extracts against some food–borne microorganisms. Bayero Journal of Pure and Applied Sciences,

3(1), 43–48. https://doi.org/10.4314/bajopas.v3i1.58706

Burmeister, W. P., Cottaz, S., Rollin, P., Vasella, A., & Henrissat, B. (2000). High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. The Journal of Biological Chemistry, 275(50), 39385–39393. https://doi.org/10.1074/jbc.M006796200

Busani, M., Patrick, J. M., Arnold, H., & Voster, M. (2011). Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology, 10(60), 12925–12933. https://doi.org/10.5897/AJB10.1599

Camacho, F. P., Sousa, V. S., Bergamasco, R., & Ribau Teixeira, M. (2017). The use of Moringa oleifera as a natural coagulant in surface water treatment. Chemical Engineering Journal,

313, 226–237. https://doi.org/10.1016/j.cej.2016.12.031

Cavallini, R. (2001). La Moringa oleifera. Acra.

https://www.yumpu.com/it/document/read/6198752/la-moringa-oleifera-agrobiodiversita- culture-e-sviluppo-locale

Chanas, S. A., Jiang, Q., McMahon, M., McWalter, G. K., McLellan, L. I., Elcombe, C. R.,

Henderson, C. J., Wolf, C. R., Moffat, G. J., Itoh, K., Yamamoto, M., & Hayes, J. D. (2002). Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. The Biochemical Journal, 365(Pt 2), 405–416. https://doi.org/10.1042/BJ20020320

Cheng, D., Gao, L., Su, S., Sargsyan, D., Wu, R., Raskin, I., & Kong, A.-N. (2019). Moringa Isothiocyanate Activates Nrf2: Potential Role in Diabetic Nephropathy. The AAPS Journal,

21(2), 31. https://doi.org/10.1208/s12248-019-0301-6

Citi, V., Martelli, A., Testai, L., Marino, A., Breschi, M., & Calderone, V. (2014). Hydrogen Sulfide Releasing Capacity of Natural Isothiocyanates: Is It a Reliable Explanation for the Multiple Biological Effects of Brassicaceae? Planta Medica, 80(08/09), 610–613.

https://doi.org/10.1055/s-0034-1368591

Coppin, J. P., Juliani, H. R., Wu, Q., & Simon, J. E. (2015). Variations in Polyphenols and Lipid Soluble Vitamins in Moringa oleifera. In Processing and Impact on Active Components in

Food (pagg. 655–663). Elsevier. https://doi.org/10.1016/B978-0-12-404699-3.00079-2

Cuadrado, A., Martín-Moldes, Z., Ye, J., & Lastres-Becker, I. (2014). Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. The Journal of Biological Chemistry, 289(22), 15244–15258.

https://doi.org/10.1074/jbc.M113.540633

Function, 4(6), 889–898. https://doi.org/10.1039/c3fo30241e

Das, N., Sikder, K., Ghosh, S., Fromenty, B., & Dey, S. (2012). Moringa oleifera Lam. Leaf extract prevents early liver injury and restores antioxidant status in mice fed with high-fat diet.

Indian Journal of Experimental Biology, 50(6), 404–412.

Dhakar, R., Pooniya, B., Gupta, M., Maurya, S., Bairwa, N., & Sanwarmal. (2011). Moringa: The herbal gold to combat malnutrition. Chronicles of Young Scientists, 2(3), 119.

https://doi.org/10.4103/2229-5186.90887

Elfoul, L., Rabot, S., Khelifa, N., Quinsac, A., Duguay, A., & Rimbault, A. (2001). Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiology Letters, 197(1), 99–103. https://doi.org/10.1111/j.1574-6968.2001.tb10589.x

Fahey, J. W., Wehage, S. L., Holtzclaw, W. D., Kensler, T. W., Egner, P. A., Shapiro, T. A., & Talalay, P. (2012). Protection of Humans by Plant Glucosinolates: Efficiency of Conversion of Glucosinolates to Isothiocyanates by the Gastrointestinal Microflora. Cancer Prevention

Research, 5(4), 603–611. https://doi.org/10.1158/1940-6207.CAPR-11-0538

Fahey, J. W., Wade, K. L., Stephenson, K. K., Shi, Y., Liu, H., Panjwani, A. A., Warrick, C. R., & Olson, M. E. (2019). A Strategy to Deliver Precise Oral Doses of the Glucosinolates or Isothiocyanates from Moringa oleifera Leaves for Use in Clinical Studies. Nutrients, 11(7), 1547. https://doi.org/10.3390/nu11071547

Falowo, A. B., Mukumbo, F. E., Idamokoro, E. M., Lorenzo, J. M., Afolayan, A. J., & Muchenje, V. (2018). Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Research International, 106, 317–334.

https://doi.org/10.1016/j.foodres.2017.12.079

Förster, N., Ulrichs, C., Schreiner, M., Müller, C. T., & Mewis, I. (2015). Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food

Chemistry, 166, 456–464. https://doi.org/10.1016/j.foodchem.2014.06.043

Fuglie, L. J. (2001). The Miracle Tree: Moringa Oleifera: Natural nutrition for the tropics. Church

World Service, 45–76.

Godino, M., Arias, C., & Izquierdo, M. I. (2017). Moringa oleifera: Potential areas of cultivation on the Iberian Peninsula. Acta Horticulturae, 1158, 405–412.

https://doi.org/10.17660/ActaHortic.2017.1158.46

Goubern, M., Andriamihaja, M., Nübel, T., Blachier, F., & Bouillaud, F. (2007). Sulfide, the first inorganic substrate for human cells. FASEB Journal: Official Publication of the Federation

of American Societies for Experimental Biology, 21(8), 1699–1706.

https://doi.org/10.1096/fj.06-7407com

Guevara, A. P., Vargas, C., Sakurai, H., Fujiwara, Y., Hashimoto, K., Maoka, T., Kozuka, M., Ito, Y., Tokuda, H., & Nishino, H. (1999). An antitumor promoter from Moringa oleifera Lam.

Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 440(2), 181–188.

https://doi.org/10.1016/S1383-5718(99)00025-X

Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, K. N., Ritchard, N. T., Hartzfeld, P. W., & Riechel, T. L. (1998). High Molecular Weight Plant Polyphenolics (Tannins) as Biological Antioxidants. Journal of Agricultural and Food Chemistry, 46(5), 1887–1892.

https://doi.org/10.1021/jf970975b

Halkier, B. A., & Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annual

Review of Plant Biology, 57(1), 303–333.

https://doi.org/10.1146/annurev.arplant.57.032905.105228

Harvey, C. J., Thimmulappa, R. K., Singh, A., Blake, D. J., Ling, G., Wakabayashi, N., Fujii, J., Myers, A., & Biswal, S. (2009). Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology &

Hsu, H. W., Vavak, D. L., Satterlee, L. D., & Miller, G. A. (1977). A Multienzyme Technique for Estimating Protein Digestibility. Journal of Food Science, 42(5), 1269–1273.

https://doi.org/10.1111/j.1365-2621.1977.tb14476.x

Jaiswal, D., Kumar Rai, P., Kumar, A., Mehta, S., & Watal, G. (2009). Effect of Moringa oleifera Lam. Leaves aqueous extract therapy on hyperglycemic rats. Journal of

Ethnopharmacology, 123(3), 392–396. https://doi.org/10.1016/j.jep.2009.03.036

Jaja-Chimedza, A., Graf, B. L., Simmler, C., Kim, Y., Kuhn, P., Pauli, G. F., & Raskin, I. (2017). Biochemical characterization and anti-inflammatory properties of an isothiocyanate- enriched moringa (Moringa oleifera) seed extract. PLOS ONE, 12(8), 1–21.

https://doi.org/10.1371/journal.pone.0182658

Karim, N. A. A., & Ibrahim, M. D. (2016). Moringa oleifera Lam: Targeting Chemoprevention.

Asian Pacific Journal of Cancer Prevention, 17, 8.

https://doi.org/10.14456/APJCP.2016.155

Khan, F., Pandey, P., Jha, N. K., Jafri, A., & Khan, I. (2020). Antiproliferative effect of Moringa oleifera methanolic leaf extract by down-regulation of Notch signaling in DU145 prostate cancer cells. Gene Reports, 19, 100619. https://doi.org/10.1016/j.genrep.2020.100619 Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., Tanaka, N.,

Moriguchi, T., Motohashi, H., Nakayama, K., & Yamamoto, M. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription.

Nature Communications, 7, 11624. https://doi.org/10.1038/ncomms11624

Kooltheat, N., Sranujit, R. P., Chumark, P., Potup, P., Laytragoon-Lewin, N., & Usuwanthim, K. (2014). An ethyl acetate fraction of Moringa oleifera Lam. inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients, 6(2), 697–710.

https://doi.org/10.3390/nu6020697

Potential of Moringa oleifera Lam. Nutrients, 10(3), 343. https://doi.org/10.3390/nu10030343

Kuchernig, J. C., Burow, M., & Wittstock, U. (2012). Evolution of specifier proteins in glucosinolate-containing plants. BMC Evolutionary Biology, 12(1), 127.

https://doi.org/10.1186/1471-2148-12-127

Kumari, J. (2010). Hypoglycemic effect of Moringa oleifera and Azadirachta indica in type-2 diabetes. The Bioscan, 5(2), 211–214.

Lahjie A. M., Siebert B., (1987). Kelor or horse radish tree (Moringa oleifera Lam.). A report from east Kalimantan. German forestry group, Mulawarman univ., gfg report 6: 41–43.

Lee, J.-H., Kim, Y.-G., Park, J. G., & Lee, J. (2017). Supercritical fluid extracts of Moringa oleifera and their unsaturated fatty acid components inhibit biofilm formation by Staphylococcus aureus. Food Control, 80, 74–82. https://doi.org/10.1016/j.foodcont.2017.04.035

Leone, A., Fiorillo, G., Criscuoli, F., Ravasenghi, S., Santagostini, L., Fico, G., Spadafranca, A., Battezzati, A., Schiraldi, A., Pozzi, F., di Lello, S., Filippini, S., & Bertoli, S. (2015). Nutritional Characterization and Phenolic Profiling of Moringa oleifera Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti. International Journal of Molecular Sciences,

16(8), 18923–18937. https://doi.org/10.3390/ijms160818923

Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., & Bertoli, S. (2015). Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. International Journal of Molecular Sciences, 16(12), 12791–12835. https://doi.org/10.3390/ijms160612791

Lin, M., Zhang, J., & Chen, X. (2018). Bioactive flavonoids in Moringa oleifera and their health- promoting properties. Journal of Functional Foods, 47, 469–479.

https://doi.org/10.1016/j.jff.2018.06.011

Support the Antioxidant Response. In A Master Regulator of Oxidative Stress—The

Transcription Factor Nrf2 (pagg. 21–48). IntechOpen.

https://www.intechopen.com/books/a-master-regulator-of-oxidative-stress-the-transcription- factor-nrf2/nrf2-rewires-cellular-metabolism-to-support-the-antioxidant-response

Lu, W., Wang, J., Zhang, H. J., Wu, S. G., & Qi, G. H. (2016). Evaluation of Moringa oleifera leaf in laying hens: Effects on laying performance, egg quality, plasma biochemistry and organ histopathological indices. Italian Journal of Animal Science, 15(4), 658–665.

https://doi.org/10.1080/1828051X.2016.1249967

Lucarini, E., Micheli, L., Martelli, A., Testai, L., Calderone, V., Ghelardini, C., & Di Cesare Mannelli, L. (2018). Efficacy of isothiocyanate-based compounds on different forms of persistent pain. Journal of Pain Research, 11, 2905–2913.

https://doi.org/10.2147/JPR.S161882

Lunn, J., & Theobald, H. E. (2006). The health effects of dietary unsaturated fatty acids. Nutrition

Bulletin, 31(3), 178–224. https://doi.org/10.1111/j.1467-3010.2006.00571.x

Ma, Z. F., Ahmad, J., Zhang, H., Khan, I., & Muhammad, S. (2020). Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. South

African Journal of Botany, 129, 40–46. https://doi.org/10.1016/j.sajb.2018.12.002

Makita, C., Chimuka, L., Cukrowska, E., Steenkamp, P. A., Kandawa-Schutz, M., Ndhlala, A. R., & Madala, N. E. (2017). UPLC-qTOF-MS profiling of pharmacologically important

chlorogenic acids and associated glycosides in Moringa ovalifolia leaf extracts. South

African Journal of Botany, 108, 193–199. https://doi.org/10.1016/j.sajb.2016.10.016

Makita, Charlene, Chimuka, L., Steenkamp, P., Cukrowska, E., & Madala, E. (2016). Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. South African Journal of Botany, 105, 116–122. https://doi.org/10.1016/j.sajb.2015.12.007

Makkar, H. P. S., & Becker, K. (1996). Nutrional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Animal Feed Science and Technology, 63(1– 4), 211–228. https://doi.org/10.1016/S0377-8401(96)01023-1

Martelli, A., Testai, L., Marino, A., C. Breschi, M., Da Settimo, F., & Calderone, V. (2012). Hydrogen Sulphide: Biopharmacological Roles in the Cardiovascular System and Pharmaceutical Perspectives. Current Medicinal Chemistry, 19(20), 3325–3336. https://doi.org/10.2174/092986712801215928

Martelli, A., Testai, L., Citi, V., Marino, A., Bellagambi, F. G., Ghimenti, S., Breschi, M. C., & Calderone, V. (2014). Pharmacological characterization of the vascular effects of aryl isothiocyanates: Is hydrogen sulfide the real player? Vascular Pharmacology, 60(1), 32–41. https://doi.org/10.1016/j.vph.2013.11.003

Narbad, A., & Rossiter, J. T. (2018). Gut Glucosinolate Metabolism and Isothiocyanate Production.

Molecular Nutrition & Food Research, 62(18), 1700991.

https://doi.org/10.1002/mnfr.201700991

Ndabigengesere, A., Narasiah, K. S., & Talbot, B. G. (1995). Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research, 29(2), 703–710. https://doi.org/10.1016/0043-1354(94)00161-Y

Nguyen, T., Sherratt, P. J., Huang, H.-C., Yang, C. S., & Pickett, C. B. (2003). Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. The Journal of

Biological Chemistry, 278(7), 4536–4541. https://doi.org/10.1074/jbc.M207293200

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience,

51(11), 933. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Orino, K., Lehman, L., Tsuji, Y., Ayaki, H., Torti, S. V., & Torti, F. M. (2001). Ferritin and the response to oxidative stress. The Biochemical Journal, 357(Pt 1), 241–247.

https://doi.org/10.1042/0264-6021:3570241

Palanisamy V., Kumaresan, K. (1985). Studies on seed development and maturation in annual moringa. Vegetable sci. 12, 2, 74–78.

Palermo, R., Checquolo, S., Bellavia, D., Talora, C., & Screpanti, I. (2014).

The molecular basis of notch signaling regulation: A complex simplicity. Current Molecular

Medicine, 14(1), 34–44. https://doi.org/10.2174/1566524013666131118105216

Park, E.-J., Cheenpracha, S., Chang, L. C., Kondratyuk, T. P., & Pezzuto, J. M. (2011). Inhibition of Lipopolysaccharide-Induced Cyclooxygenase-2 and Inducible Nitric Oxide Synthase

Expression by 4-[(2′-O-acetyl-α-L-Rhamnosyloxy)Benzyl]Isothiocyanate from Moringa oleifera. Nutrition and Cancer, 63(6), 971–982.

https://doi.org/10.1080/01635581.2011.589960

Parrotta, J. A. (1993). Moringa oleifera Lam. Reseda, horseradish tree. U.S. Government printing

office. https://doi.org/10.13140/RG.2.1.2125.0647

Prabakaran, M., Kim, S.-H., Sasireka, A., Chandrasekaran, M., & Chung, I.-M. (2018). Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Bioscience, 26, 23–29. https://doi.org/10.1016/j.fbio.2018.09.003 Raguindin, P. F. N., Dans, L. F., & King, J. F. (2014). Moringa oleifera as a Galactagogue.

Breastfeeding Medicine: The Official Journal of the Academy of Breastfeeding Medicine, 9(6), 323–324. https://doi.org/10.1089/bfm.2014.0002

Ramabulana, T., Mavunda, R. D., Steenkamp, P. A., Piater, L. A., Dubery, I. A., & Madala, N. E. (2016). Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation. Journal of

Photochemistry and Photobiology. B, Biology, 156, 79–86.

https://doi.org/10.1016/j.jphotobiol.2016.01.013

Ramachandran, C., Peter, K. V., & Gopalakrishnan, P. K. (1980). Drumstick (Moringa oleifera): A multipurpose Indian vegetable. Economic Botany, 34(3), 276–283.

https://doi.org/10.1007/BF02858648

Roloff, A., Korn, S., & Gillner, S. (2009). The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban Forestry & Urban Greening, 8(4), 295– 308. https://doi.org/10.1016/j.ufug.2009.08.002

Rushworth, S. A., Zaitseva, L., Murray, M. Y., Shah, N. M., Bowles, K. M., & MacEwan, D. J. (2012). The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood, 120(26), 5188–5198. https://doi.org/10.1182/blood- 2012-04-422121

Sasaki, H., Sato, H., Kuriyama-Matsumura, K., Sato, K., Maebara, K., Wang, H., Tamba, M., Itoh, K., Yamamoto, M., & Bannai, S. (2002). Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. The Journal of Biological

Chemistry, 277(47), 44765–44771. https://doi.org/10.1074/jbc.M208704200

Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K., & Talalay, P. (1998). Human

metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiology, Biomarkers & Prevention: A Publication of

the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 7(12), 1091–1100.

Shapiro, Theresa A., Fahey, J. W., Dinkova-Kostova, A. T., Holtzclaw, W. D., Stephenson, K. K., Wade, K. L., Ye, L., & Talalay, P. (2006). Safety, Tolerance, and Metabolism of Broccoli Sprout Glucosinolates and Isothiocyanates: A Clinical Phase I Study. Nutrition and Cancer,

Shen, Y., Shen, Z., Luo, S., Guo, W., & Zhu, Y. Z. (2015). The Cardioprotective Effects of

Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential.

Oxidative Medicine and Cellular Longevity, 2015, 1–13.

https://doi.org/10.1155/2015/925167

Shibuya, N., Tanaka, M., Yoshida, M., Ogasawara, Y., Togawa, T., Ishii, K., & Kimura, H. (2009). 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxidants & Redox Signaling, 11(4), 703–714.

https://doi.org/10.1089/ars.2008.2253

Siasos, G., Tousoulis, D., Tsigkou, V., Kokkou, E., Oikonomou, E., Vavuranakis, M., Basdra, E. K., Papavassiliou, A. G., & Stefanadis, C. (2013). Flavonoids in atherosclerosis: An overview of their mechanisms of action. Current Medicinal Chemistry, 20(21), 2641–2660.

https://doi.org/10.2174/0929867311320210003

Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144–2155. https://doi.org/10.1021/jf020444+

Singh, N., Phillips, R. A., Iscove, N. N., & Egan, S. E. (2000). Expression of notch receptors, notch ligands, and fringe genes in hematopoiesis. Experimental Hematology, 28(5), 527–534. https://doi.org/10.1016/s0301-472x(00)00146-6

Singh, S., Vrishni, S., Singh, B. K., Rahman, I., & Kakkar, P. (2010). Nrf2-ARE stress response mechanism: A control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radical Research, 44(11), 1267–1288.

https://doi.org/10.3109/10715762.2010.507670

Sreelatha, S., Jeyachitra, A., & Padma, P. R. (2011). Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food and Chemical Toxicology: An

International Journal Published for the British Industrial Biological Research Association, 49(6), 1270–1275. https://doi.org/10.1016/j.fct.2011.03.006

Taguchi, K., & Yamamoto, M. (2017). The KEAP1–NRF2 System in Cancer. Frontiers in

Oncology, 7(85), 1–11. https://doi.org/10.3389/fonc.2017.00085

Tang, G., Wu, L., Liang, W., & Wang, R. (2005). Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Molecular

Pharmacology, 68(6), 1757–1764. https://doi.org/10.1124/mol.105.017467

Teixeira, E. M. B., Carvalho, M. R. B., Neves, V. A., Silva, M. A., & Arantes-Pereira, L. (2014). Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. Leaves.

Food Chemistry, 147, 51–54. https://doi.org/10.1016/j.foodchem.2013.09.135

Testai, L., Marino, A., Piano, I., Brancaleone, V., Tomita, K., Di Cesare Mannelli, L., Martelli, A., Citi, V., Breschi, M. C., Levi, R., Gargini, C., Bucci, M., Cirino, G., Ghelardini, C., & Calderone, V. (2016). The novel H2S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress. Pharmacological Research, 113(Pt A), 290–299. https://doi.org/10.1016/j.phrs.2016.09.006

Tetteh, O. N. A., Ulrichs, C., Huyskens-Keil, S., Mewis, I., Amaglo, N. K., Oduro, I. N., Adarkwah, C., Obeng-Ofori, D., & Förster, N. (2019). Effects of harvest techniques and drying methods on the stability of glucosinolates in Moringa oleifera leaves during post-harvest. Scientia

Horticulturae, 246, 998–1004. https://doi.org/10.1016/j.scienta.2018.11.089

Thurber, M. D., & Fahey, J. W. (2009). Adoption of Moringa oleifera to Combat Under-Nutrition Viewed Through the Lens of the “Diffusion of Innovations” Theory. Ecology of Food and

Nutrition, 48(3), 212–225. https://doi.org/10.1080/03670240902794598

Tonelli, C., Chio, I. I. C., & Tuveson, D. A. (2018). Transcriptional Regulation by Nrf2.

Tsao, R. (2010). Chemistry and Biochemistry of Dietary Polyphenols. Nutrients, 2(12), 1231–1246. https://doi.org/10.3390/nu2121231

Tshabalala, T., Ncube, B., Madala, N. E., Nyakudya, T. T., Moyo, H. P., Sibanda, M., & Ndhlala, A. R. (2019). Scribbling the Cat: A Case of the “Miracle” Plant, Moringa oleifera. Plants,

8(11), 510. https://doi.org/10.3390/plants8110510

Tuorkey, M. J. (2016). Effects of Moringa oleifera aqueous leaf extract in alloxan induced diabetic mice. Interventional Medicine and Applied Science, 8(3), 109–117.

https://doi.org/10.1556/1646.8.2016.3.7

Uma, N., Fakurazi, S., & Hairuszah, I. (2010). Moringa oleifera Enhances Liver Antioxidant Status via Elevation of Antioxidant Enzymes Activity and Counteracts Paracetamol-induced Hepatotoxicity. Malaysian Journal of Nutrition, 16(2), 293–307.

Vergara-Jimenez, M., Almatrafi, M., & Fernandez, M. (2017). Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease. Antioxidants, 6(4), 91.

https://doi.org/10.3390/antiox6040091

Verma, A. R., Vijayakumar, M., Mathela, C. S., & Rao, C. V. (2009). In vitro and in vivo

antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical

Toxicology: An International Journal Published for the British Industrial Biological Research Association, 47(9), 2196–2201. https://doi.org/10.1016/j.fct.2009.06.005

Völkel, S., & Grieshaber, M. K. (1996). Mitochondrial sulfide oxidation in Arenicola marina. Evidence for alternative electron pathways. European Journal of Biochemistry, 235(1–2), 231–237. https://doi.org/10.1111/j.1432-1033.1996.00231.x

Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and

Documenti correlati