• Non ci sono risultati.

Quindi sono necessari ulteriori studi a confermare gli effetti del pemafibrato sul metabolismo glucidico.

Però c’è da dire che, l’aumento dei livelli di FGF21 e la riduzione di ApoCIII dati dal trattamento,

potrebbero avere un impatto positivo sulla riduzione dell’insulinoresistenza: infatti, si è visto che la

somministrazione di un analogo di FGF21 migliorava l’insulinoresistenza e il metabolismo

glucidico

256

e che ridurre ApoCIII per contro aumentava la sensibilità insulinica

257

Per quanto riguarda invece il profilo lipoproteico, il pemafibrato e gli agonisti del PPAR α, sono ritenuti in grado di aumentare l’uptake epatico di NEFA e la loro betaossidazione, e di ridurre l’aumentata lipogenesi e la produzione di VLDL225.

È stato dimostrato anche che il pemafibrato aumenta, in epatociti umani, murini e in fegati di ratto258,259,

l’espressione di geni per la betaossidazione ed il contenuto epatico di Tg259, e che esso è in grado di inibire

l’espressione del mRNA di NPC1L1, di pari passo con un aumento dell’escrezione fecale di colesterolo in topi knock-out per il recettore delle LDL260.

I fibrati, sembrano anche ridurre l’assorbimento intestinale del colesterolo probabilmente tramite una riduzione di NPC1L1, Microsomal Transfer Protein e dell’mRNA di ApoB261,262.

I livelli di ApoB48, principale componente dei chilomicroni, ridotti dal trattamento con pemafibrato, presumibilmente riflettono la riduzione nella produzione di chilomicroni da parte dell’intestino e/o un aumentato catabolismo.

Inoltre, gli agonisti del PPAR α hanno mostrato di incrementare l’espressione di LPL e di inibire quella di ApoCIII, la quale sopprime l’attività lipolitica225. Il pemafibrato riduce in maniera marcata i livelli di ApoCIII

ed è proprio attraverso questi meccanismi, cioè sopprimendo la produzione ed aumentando il catabolismo delle lipoproteine ricche in Tg, che riesce ad incrementare i livelli di HDL-c ed a ridurre i livelli di LDL piccole e dense, che hanno il massimo potere aterogenico263.

Lo studio di Araki non era finalizzato a dimostrare l’efficacia del pemafibrato nel ridurre gli eventi cardiovascolari, tuttavia, i risultati degli altri studi, le evidenze sul suo ruolo e su quello degli altri agonisti del PPAR α nel modulare l’assetto lipoproteico e migliorare la dislipidemia, lasciano ben sperare che questi farmaci possano agire in tal senso, migliorando nettamente l’outcome dei pazienti diabetici.

1. Newsholme P, Gaudel C, McClenaghan NH. Nutrient regulation of insulin secretion and beta-cell functional integrity. Advances in experimental medicine and biology 2010; 654: 91-114.

2. Prentki M. New insights into pancreatic beta-cell metabolic signaling in insulin secretion. European

journal of endocrinology 1996; 134(3): 272-86.

3. Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes/metabolism reviews 1986; 2(3-4): 163-214.

4. Newgard CB, McGarry JD. Metabolic coupling factors in pancreatic beta-cell signal transduction.

Annual review of biochemistry 1995; 64: 689-719.

5. Nolan CJ, Madiraju MS, Delghingaro-Augusto V, Peyot ML, Prentki M. Fatty acid signaling in the beta- cell and insulin secretion. Diabetes 2006; 55 Suppl 2: S16-23.

6. Newsholme P, Bender K, Kiely A, Brennan L. Amino acid metabolism, insulin secretion and diabetes.

Biochemical Society transactions 2007; 35(Pt 5): 1180-6.

7. Peyot ML, Gray JP, Lamontagne J, et al. Glucagon-like peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic beta-cells. PloS one 2009;

4(7): e6221.

8. Ishii H, Sato Y, Takei M, Nishio S, Komatsu M. Glucose-incretin interaction revisited. Endocrine journal 2011; 58(7): 519-25.

9. Tarasov A, Dusonchet J, Ashcroft F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 2004; 53 Suppl 3: S113-22.

10. Gembal M, Gilon P, Henquin JC. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. The Journal of clinical investigation 1992; 89(4): 1288-95.

11. Sato Y, Aizawa T, Komatsu M, Okada N, Yamada T. Dual functional role of membrane depolarization/Ca2+ influx in rat pancreatic B-cell. Diabetes 1992; 41(4): 438-43.

12. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose.

Diabetes 2000; 49(11): 1751-60.

13. Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P. Hierarchy of the beta-cell signals controlling insulin secretion. European journal of clinical investigation 2003; 33(9): 742-50.

14. Ahren B. Glucagon-like peptide-1 (GLP-1): a gut hormone of potential interest in the treatment of diabetes. BioEssays : news and reviews in molecular, cellular and developmental biology 1998; 20(8): 642-51. 15. Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3(3): 153-65.

16. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacology

& therapeutics 2007; 113(3): 546-93.

17. Ahren B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes.

Nature reviews Drug discovery 2009; 8(5): 369-85.

18. Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. The Journal of biological chemistry 2003; 278(13): 11303-11.

19. Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003; 422(6928): 173-6.

20. Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochemical and biophysical research communications 2003; 301(2): 406-10.

21. Feng DD, Luo Z, Roh SG, et al. Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta-cells by linoleic acids. Endocrinology 2006; 147(2): 674-82.

22. Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocrine reviews 2001; 22(5): 565-604.

23. Gautam D, Han SJ, Hamdan FF, et al. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 2006; 3(6): 449-61.

24. Best L, Yates AP, Tomlinson S. Stimulation of insulin secretion by glucose in the absence of diminished potassium (86Rb+) permeability. Biochemical pharmacology 1992; 43(11): 2483-5.

25. Komatsu M, Schermerhorn T, Aizawa T, Sharp GW. Glucose stimulation of insulin release in the absence of extracellular Ca2+ and in the absence of any increase in intracellular Ca2+ in rat pancreatic islets.

Proc Natl Acad Sci U S A 1995; 92(23): 10728-32.

26. Komatsu M, Schermerhorn T, Noda M, Straub SG, Aizawa T, Sharp GW. Augmentation of insulin release by glucose in the absence of extracellular Ca2+: new insights into stimulus-secretion coupling.

Diabetes 1997; 46(12): 1928-38.

27. Curry DL, Bennett LL, Grodsky GM. Dynamics of insulin secretion by the perfused rat pancreas.

Endocrinology 1968; 83(3): 572-84.

28. Cerasi E, Luft R. The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta endocrinologica 1967; 55(2): 278-304.

29. Van Schravendijk CF, Kiekens R, Pipeleers DG. Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. The Journal of biological chemistry 1992; 267(30): 21344-8.

30. Cerasi E, Fick G, Rudemo M. A mathematical model for the glucose induced insulin release in man.

European journal of clinical investigation 1974; 4(4): 267-78.

31. O'Connor MD, Landahl H, Grodsky GM. Comparison of storage- and signal-limited models of pancreatic insulin secretion. The American journal of physiology 1980; 238(5): R378-89.

32. Henquin JC, Ishiyama N, Nenquin M, Ravier MA, Jonas JC. Signals and pools underlying biphasic insulin secretion. Diabetes 2002; 51 Suppl 1: S60-7.

33. Barg S, Eliasson L, Renstrom E, Rorsman P. A subset of 50 secretory granules in close contact with L- type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells. Diabetes 2002; 51 Suppl 1: S74-82.

34. Straub SG, Shanmugam G, Sharp GW. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes 2004; 53(12): 3179-83.

35. Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 2003; 46(8): 1029-45.

36. Malaisse-Lagae F, Brisson GR, Malaisse WJ. The stimulus-secretion coupling of glucose-induced insulin release. VI. Analogy between the insulinotropic mechanisms of sugars and amino acids. Hormone and

metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 1971; 3(6): 374-8.

37. Orci L, Gabbay KH, Malaisse WJ. Pancreatic beta-cell web: its possible role in insulin secretion. Science 1972; 175(4026): 1128-30.

38. Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. Journal of cell science 2009; 122(Pt 7): 893-903.

39. Meissner HP, Atwater IJ. The kinetics of electrical activity of beta cells in response to a "square wave" stimulation with glucose or glibenclamide. Hormone and metabolic research = Hormon- und

Stoffwechselforschung = Hormones et metabolisme 1976; 8(1): 11-6.

40. Nesher R, Cerasi E. Biphasic insulin release as the expression of combined inhibitory and potentiating effects of glucose. Endocrinology 1987; 121(3): 1017-24.

41. Cerasi E. Mechanisms of glucose stimulated insulin secretion in health and in diabetes: some re- evaluations and proposals. Diabetologia 1975; 11(1): 1-13.

42. Ravier MA, Guldenagel M, Charollais A, et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 2005; 54(6): 1798-807.

43. Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation.

Diabetologia 2009; 52(5): 739-51.

44. Davis SN, Piatti PM, Monti L, et al. Proinsulin and insulin concentrations following intravenous glucose challenges in normal, obese, and non-insulin-dependent diabetic subjects. Metabolism: clinical and

experimental 1993; 42(1): 30-5.

45. Hedeskov CJ. Mechanism of glucose-induced insulin secretion. Physiol Rev 1980; 60(2): 442-509. 46. Rasmussen H, Zawalich KC, Ganesan S, Calle R, Zawalich WS. Physiology and pathophysiology of insulin secretion. Diabetes care 1990; 13(6): 655-66.

47. Smith PA, Sakura H, Coles B, Gummerson N, Proks P, Ashcroft FM. Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells. The Journal of physiology 1997; 499 (

Pt 3): 625-35.

48. Ishiyama N, Ravier MA, Henquin JC. Dual mechanism of the potentiation by glucose of insulin secretion induced by arginine and tolbutamide in mouse islets. American journal of physiology Endocrinology

and metabolism 2006; 290(3): E540-9.

49. Cerasi E. Potentiation of insulin release by glucose in man. Acta endocrinologica 1975; 79(3): 511-34. 50. Dimitriadis GD, Pehling GB, Gerich JE. Abnormal glucose modulation of islet A- and B-cell responses to arginine in non-insulin-dependent diabetes mellitus. Diabetes 1985; 34(6): 541-7.

51. Efendic S, Cerasi E, Luft R. Quantitative study on the potentiating effect of arginine on glucose- induced insulin response in healthy, prediabetic, and diabetic subjects. Diabetes 1974; 23(3): 161-71. 52. Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clinical chemistry and

laboratory medicine 2014; 52(12): 1695-727.

53. Mattson FH, Volpenhein RA. Hydrolysis of primary and secondary esters of glycerol by pancreatic juice. Journal of lipid research 1968; 9(1): 79-84.

54. Drover VA, Ajmal M, Nassir F, et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. The Journal of clinical investigation 2005; 115(5): 1290-7.

55. Schaffer JE, Lodish HF. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 1994; 79(3): 427-36.

56. Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290(5497): 1771-5.

57. Lee MH, Lu K, Hazard S, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nature genetics 2001; 27(1): 79-83.

58. Iqbal J, Hussain MM. Intestinal lipid absorption. American journal of physiology Endocrinology and

metabolism 2009; 296(6): E1183-94.

59. Agellon LB, Toth MJ, Thomson AB. Intracellular lipid binding proteins of the small intestine. Mol Cell

Biochem 2002; 239(1-2): 79-82.

60. Hussain MM, Iqbal J, Anwar K, Rava P, Dai K. Microsomal triglyceride transfer protein: a multifunctional protein. Frontiers in bioscience : a journal and virtual library 2003; 8: s500-6.

61. Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arteriosclerosis, thrombosis, and vascular biology 2008; 28(7): 1225-36.

62. Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A. Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochimica et biophysica acta 1996; 1300(3): 151-70. 63. Olofsson SO, Stillemark-Billton P, Asp L. Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends in cardiovascular medicine 2000; 10(8): 338-45.

64. Tiwari S, Siddiqi SA. Intracellular trafficking and secretion of VLDL. Arteriosclerosis, thrombosis, and

vascular biology 2012; 32(5): 1079-86.

65. Ginsberg HN. New perspectives on atherogenesis: role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 2002; 106(16): 2137-42.

66. Minehira K, Young SG, Villanueva CJ, et al. Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. Journal of lipid research 2008; 49(9): 2038-44.

67. Fisher EA, Pan M, Chen X, et al. The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct degradative pathways. The Journal of biological chemistry 2001; 276(30): 27855-63.

68. Olofsson SO, Boren J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. Journal of internal medicine 2005; 258(5): 395-410.

69. Gusarova V, Seo J, Sullivan ML, Watkins SC, Brodsky JL, Fisher EA. Golgi-associated maturation of very low density lipoproteins involves conformational changes in apolipoprotein B, but is not dependent on apolipoprotein E. The Journal of biological chemistry 2007; 282(27): 19453-62.

70. Collet X, Tall AR, Serajuddin H, et al. Remodeling of HDL by CETP in vivo and by CETP and hepatic lipase in vitro results in enhanced uptake of HDL CE by cells expressing scavenger receptor B-I. Journal of lipid

research 1999; 40(7): 1185-93.

71. Goldstein JL, Brown MS. The LDL receptor. Arteriosclerosis, thrombosis, and vascular biology 2009;

29(4): 431-8.

72. Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends in

biochemical sciences 2007; 32(2): 71-7.

73. Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial. The American journal of cardiology 2000; 86(12A): 19L-22L.

74. Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circulation research 2005; 96(12): 1221-32.

75. Negre-Salvayre A, Dousset N, Ferretti G, Bacchetti T, Curatola G, Salvayre R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free radical biology & medicine 2006;

41(7): 1031-40.

76. Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ. High-density lipoproteins enhance progenitor- mediated endothelium repair in mice. Arteriosclerosis, thrombosis, and vascular biology 2006; 26(5): 1144- 9.

77. Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circulation

research 2006; 98(11): 1352-64.

78. Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine- induced expression of endothelial cell adhesion molecules. Arteriosclerosis, thrombosis, and vascular biology 1995; 15(11): 1987-94.

79. Murphy AJ, Woollard KJ, Hoang A, et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arteriosclerosis, thrombosis, and vascular biology 2008; 28(11): 2071-7.

80. Rye KA, Bursill CA, Lambert G, Tabet F, Barter PJ. The metabolism and anti-atherogenic properties of HDL. Journal of lipid research 2009; 50 Suppl: S195-200.

81. Rezaee F, Casetta B, Levels JH, Speijer D, Meijers JC. Proteomic analysis of high-density lipoprotein.

Proteomics 2006; 6(2): 721-30.

82. Li L, Chen J, Mishra VK, et al. Double belt structure of discoidal high density lipoproteins: molecular basis for size heterogeneity. Journal of molecular biology 2004; 343(5): 1293-311.

83. Silva RA, Huang R, Morris J, et al. Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc Natl Acad Sci U S A 2008; 105(34): 12176-81.

84. Luciani MF, Denizot F, Savary S, Mattei MG, Chimini G. Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics 1994; 21(1): 150-9.

85. Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into pre-beta-migrating high- density lipoprotein. Biochemistry 1988; 27(1): 25-9.

86. Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature genetics 1999; 22(4): 347-51.

87. Jonas A. Lecithin cholesterol acyltransferase. Biochimica et biophysica acta 2000; 1529(1-3): 245-56. 88. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030.

Diabetes research and clinical practice 2010; 87(1): 4-14.

89. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. The

90. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. The New England journal of medicine 2011; 364(9): 829-41.

91. Gonzalez EL, Johansson S, Wallander MA, Rodriguez LA. Trends in the prevalence and incidence of diabetes in the UK: 1996-2005. Journal of epidemiology and community health 2009; 63(4): 332-6.

92. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. Jama 2009; 301(20): 2129-40.

93. Colagiuri S. Diabesity: therapeutic options. Diabetes, obesity & metabolism 2010; 12(6): 463-73. 94. Inzucchi SE. Clinical practice. Diagnosis of diabetes. The New England journal of medicine 2012;

367(6): 542-50.

95. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 58(4): 773-95.

96. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet (London, England) 2014; 383(9922): 1068-83.

97. Saisho Y. beta-cell dysfunction: Its critical role in prevention and management of type 2 diabetes.

World journal of diabetes 2015; 6(1): 109-24.

98. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. The Journal of clinical investigation 2006;

116(7): 1802-12.

99. Dunmore SJ, Brown JE. The role of adipokines in beta-cell failure of type 2 diabetes. The Journal of

endocrinology 2013; 216(1): T37-45.

100. Donath MY, Storling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T. Cytokines and beta-cell biology: from concept to clinical translation. Endocrine reviews 2008; 29(3): 334-50.

101. Hull RL, Westermark GT, Westermark P, Kahn SE. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. The Journal of clinical endocrinology and metabolism 2004; 89(8): 3629-43.

102. Robertson RP, Harmon J, Tran PO, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004; 53 Suppl 1: S119-24.

103. Cernea S, Dobreanu M. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochemia medica 2013; 23(3): 266-80.

104. Brooks-Worrell B, Palmer JP. Is diabetes mellitus a continuous spectrum? Clinical chemistry 2011;

57(2): 158-61.

105. Sherry NA, Tsai EB, Herold KC. Natural history of beta-cell function in type 1 diabetes. Diabetes 2005;

54 Suppl 2: S32-9.

106. Fourlanos S, Harrison LC, Colman PG. The accelerator hypothesis and increasing incidence of type 1 diabetes. Current opinion in endocrinology, diabetes, and obesity 2008; 15(4): 321-5.

107. Wilkin TJ. The accelerator hypothesis: a review of the evidence for insulin resistance as the basis for type I as well as type II diabetes. International journal of obesity (2005) 2009; 33(7): 716-26.

108. Garvey WT, Kwon S, Zheng D, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 2003; 52(2): 453-62.

109. Festa A, Williams K, Hanley AJ, et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study. Circulation 2005; 111(25): 3465-72. 110. Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes care 2006; 29(5): 1130-9.

111. Abdul-Ghani MA, Muller FL, Liu Y, et al. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. American journal of

physiology Endocrinology and metabolism 2008; 295(3): E678-85.

112. Pankow JS, Kwan DK, Duncan BB, et al. Cardiometabolic risk in impaired fasting glucose and impaired glucose tolerance: the Atherosclerosis Risk in Communities Study. Diabetes care 2007; 30(2): 325-31. 113. Lorenzo C, Hartnett S, Hanley AJ, et al. Impaired fasting glucose and impaired glucose tolerance have distinct lipoprotein and apolipoprotein changes: the insulin resistance atherosclerosis study. The Journal of

clinical endocrinology and metabolism 2013; 98(4): 1622-30.

114. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595-607.

115. Doucet J, Le Floch JP, Bauduceau B, Verny C, Intergroup SS. GERODIAB: Glycaemic control and 5-year morbidity/mortality of type 2 diabetic patients aged 70 years and older: 1. Description of the population at inclusion. Diabetes & metabolism 2012; 38(6): 523-30.

116. Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 2015; 58(5): 886- 99.

117. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nature clinical practice Endocrinology &

metabolism 2009; 5(3): 150-9.

118. Bardini G, Rotella CM, Giannini S. Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro- and macrovascular complications. The review of diabetic

studies : RDS 2012; 9(2-3): 82-93.

119. von Eckardstein A, Schulte H, Assmann G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Munster. The Journal of clinical endocrinology and

metabolism 2000; 85(9): 3101-8.

120. Barter PJ. High density lipoprotein: a therapeutic target in type 2 diabetes. Endocrinology and

metabolism (Seoul, Korea) 2013; 28(3): 169-77.

121. Lillioja S, Bogardus C, Mott DM, Kennedy AL, Knowler WC, Howard BV. Relationship between insulin- mediated glucose disposal and lipid metabolism in man. The Journal of clinical investigation 1985; 75(4): 1106-15.

122. Lillioja S, Mott DM, Spraul M, et al. Insulin Resistance and Insulin Secretory Dysfunction as Precursors of Non-Insulin-Dependent Diabetes Mellitus: Prospective Studies of Pima Indians. New England Journal of

Medicine 1993; 329(27): 1988-92.

123. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: Genetic and clinical implications. Diabetes 1995; 44(8): 863-70.

124. Briaud I, Harmon JS, Kelpe CL, Segu VB, Poitout V. Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes 2001; 50(2): 315-21.

125. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism.

Lancet (London, England) 2010; 375(9733): 2267-77.

126. Charles MA, Eschwege E, Thibult N, et al. The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 1997; 40(9): 1101-6.

127. Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 1995; 38(10): 1213-7.

128. Zhou YP, Grill VE. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. The Journal of clinical investigation 1994;

93(2): 870-6.

129. Goh TT, Mason TM, Gupta N, et al. Lipid-induced beta-cell dysfunction in vivo in models of

Documenti correlati