• Non ci sono risultati.

Regole di Cahn-Ingold-Prelog

Nel documento Appunti di Chimica organica.pdf — Agraria (pagine 140-146)

3.5 Isomeria geometrica (o cis-trans)

3.5.1 Regole di Cahn-Ingold-Prelog

1. La priorità viene attribuita sulla base del numero atomico. Più elevato è il numero atomico più alta è la priorità del sostituente. Per esempio: 17Cl > 8O > 7N > 6C > 1H

2. A parità di numero atomico (isotopi), la priorità spetta all’isotopo con massa atomica maggiore. Così il trizio, l’isotopo dell’idrogeno con massa di 3 uma, ha priorità più alta del deuterio che ha massa atomica di 2 uma. L’idrogeno, che ha numero atomico 1 e massa atomica di 1 uma, ha la più bassa priorità non soltanto rispetto ai suoi isotopi, ma anche rispetto a tutti gli altri elementi della tavola periodica.

3. Se l’applicazione delle due regole precedenti non permette di assegnare la priorità, significa che i due atomi confrontati sono uguali ed è allora necessario esaminare e confrontare ordinatamente gli altri atomi a cui sono necessariamente legati (se non fossero legati ad altri atomi i due sostituenti sarebbero uguali e non vi sarebbe stereoisomeria). Si procede pertanto, sempre applicando le regole precedenti, al confronto degli atomi successivi in entrambe le catene fino al punto in cui si individua una differenza di priorità.

per esempio.

Quando si analizzano catene di atomi può essere utile, per facilitarne il confronto, associare a ciascun atomo della catena il suo numero atomico seguito, in parentesi, dai numeri atomici decrescenti dei 3 atomi che gli sono legati.

Ad esempio analizzando la catena –CH2-CHCl-CH2F possiamo scrivere

4. I legami multipli vengono tutti trasformati in altrettanti legami semplici, ai quali si unisce una replica dell’atomo precedentemente collegato (solitamente racchiuso in parentesi quadre).

5. Se due sostituenti hanno la stessa costituzione e si differenziano solo per la configurazione (disposizione spaziale degli atomi) si applicano le seguenti regole di priorità:

un sostituente con configurazione assoluta R è prioritario su di un sostituente con configurazione assoluta S

un sostituente con configurazione assoluta R,R è prioritario su di un sostituente con configurazione assoluta S,S

i sostituenti con configurazione assoluta (R, R) ed (S, S) sono prioritari sui sostituenti con configurazione (R, S) e (S, R)

un sostituente con configurazione Z è prioritario su di un sostituente con configurazione E.

un sostituente con configurazione cis è prioritario su di un sostituente con configurazione trans.

1° Esempio Sostituente I -CH2-CHCl-CH3 Sostituente II -CH2-CH2-CH2Br

Associamo a ciascun atomo della catena il suo numero atomico (in blu) seguito in parentesi dai numeri atomici decrescenti dei 3 atomi che gli sono legati (in rosso). Il carbonio C1 è uguale nelle due catene → 6(6,1,1) =6(6,1,1). Passiamo a confrontare l’atomo successivo. Il carbonio C2 presenta la prima differenza → 6(17,1,1) > 6(6,1,1), grazie all’atomo di Cloro di numero atomico 17. Possiamo interrompere il confronto ed assegnare la priorità al Sostituente I. Si noti come l’atomo C3 avrebbe assegnato la priorità al Sostituente II per la presenza di un atomo di Br, ma si trova oltre la posizione in cui è stata individuata la prima differenza di priorità.

2° Esempio

Il primo atomo di carbonio è uguale nei due sostituenti → 6(8,6,1) = 6(8,6,1). Passiamo a confrontare l’atomo successivo. Qui la catena si ramifica e dobbiamo così confrontare quattro gruppi. Se confrontiamo i gruppi della catena superiore troviamo una differenza → 6(1,1,1) <

6(9,1,1) che assegnerebbe la priorità al Sostituente II. Ma se confrontiamo i gruppi della catena inferiore troviamo una differenza nella stessa posizione → 8(6,0,0) > 8(1,1,1) che assegnerebbe la priorità al Sostituente I. In questo caso si considera prevalente la differenza tra i due gruppi della catena inferiore, infatti la ramificazione inferiore inizia con un atomo di Ossigeno (numero atomico 8) che è prioritario rispetto all’atomo di carbonio (numero atomico 6) con cui inizia la ramificazione superiore. La priorità si assegna dunque al Sostituente I. Nel caso invece i due sostituenti da confrontare fossero stati i seguenti

la catena inferiore, pur essendo prioritaria in quanto inizia con un atomo a maggior numero atomico, non avrebbe avuto effetto sull’assegnazione della priorità, poichè il primo atomo con cui inizia la ramificazione non presenta differenze → 8(6,0,0) = 8(6,0,0). Prevale invece la differenza trovata sul primo atomo della ramificazione superiore → 6(1,1,1) < 6(9,1,1) che assegna la priorità al Sostituente II. Si noti come il secondo gruppo della ramificazione inferiore avrebbe assegnato la priorità al sostituente I → 6(17,1,1) > 6(6,1,1), ma si trova oltre la posizione in cui è stata individuata la prima differenza di priorità.

Si noti infine che tutti gli elementi, ad eccezione dell’Idrogeno, vengono considerati tetravalenti. Quando il numero di legami effettivi è minore di 4 vengono introdotti dei legami virtuali con atomi fantasma (phantom atoms) di numero atomico zero. Si veda nell’esempio precedente il valore 8(6,0,0)assegnato all’atomo di ossigeno.

3° Esempio

I due sostituenti contengono doppi e tripli legami. Prima di confrontarli è necessario sostituire tutti i legami multipli con altrettanti legami semplici. Vengono introdotti, racchiusi in parentesi quadre, atomi fittizi per saturare i legami semplici che sostituiscono i legami doppi e tripli. La prima differenza viene trovata sul secondo atomo di carbonio della catena e permette di assegnare la priorità al Sostituente I

Applicando le regole CIP (Cahn Ingold Prelog) all’1-bromo-1-cloro-1-propene, troviamo che il Bromo, avendo più elevato numero atomico, ha priorità sul Cloro, ed il Carbonio ha priorità sull’Idrogeno (per lo stesso motivo). Per cui

etile ha priorità sul metile. Poiché infine il Bromo ha priorità sul Cloro e si trova dalla stessa parte del gruppo etile, il composto prenderà il prefisso (Z)

Il fenomeno della isomeria geometrica si ritrova in tutte le classi di composti che contengono un doppio legame. Esistono tuttavia esempi di isomeria geometrica anche in composti privi di doppi legami. È il caso ad esempio dei cicloalcani disostituiti, in cui i due gruppi sostituenti possono trovarsi dalla stessa parte (cis) o da parti opposte (trans) rispetto al piano dell’anello. Ad esempio il cicloesano, nella sua conformazione più stabile (a sedia), può legare 2 sostituenti entrambi in posizione assiale (o equatoriale) formando un isomero cis, oppure uno in posizione assiale ed uno in posizione equatoriale, formando un isomero trans

Esistono due possibili conformazioni a sedia del trans-1,4-dimetilcicloesano: diassiale e

La conformazione diequatoriale è ovviamente più stabile poiché non produce tensioni steriche connesse alle interazioni 1,3 diassiali. Circa il 99% delle molecole all’equilibrio si trovano in conformazione diequatoriale.

Ovviamente anche il cis-1,4-dimetilcicloesano presenta due conformeri, ma essi presentano sempre un metile equatoriale ed uno assiale e quindi risultano perfettamente equivalenti dal punto di vista energetico

Nel caso di cicloesani disostituiti con gruppi diversi, il conformero trans più stabile risulta quello con il gruppo sostituente più ingombrante in posizione equatoriale (i due conformeri cis sono ovviamente sempre equivalenti). Ad esempio il trans-1,3-isobutil-metil-cicloesano si presenta con due conformeri di cui il più stabile porta il gruppo isobutilico (più ingombrante) in posizione equatoriale.

Esistono esempi di isomeria cis-trans anche nei composti policiclici. La decalina, ad esempio è costituita da due anelli di cicloesano in conformazione a sedia unite tramite due atomi di carbonio, che condividono, chiamati atomi di carbonio testa di ponte (bridgehead carbons, C1 e C6).

Se un anello presenta più di due sostituenti uguali, la disposizione spaziale relativa può essere espressa identificando il primo sostituente con la lettera r seguita dalla sua posizione

sull’anello. La configurazione relativa degli altri rispetto al primo sarà c (cis) o t (trans). Quando due sostituenti diversi sono sono legati ad una medesima posizione, allora si sceglie come gruppo di riferimento quello che presenta la numerazione più bassa

Nel documento Appunti di Chimica organica.pdf — Agraria (pagine 140-146)