• Non ci sono risultati.

Ad una soluzione del composto 17b-d (10.28 mmol) in CHCl3 a 0°C si aggiunge goccia a goccia SOCl2 (1.223 g; 10.28 mmol; 0.74 ml). La miscela è stata lasciata sotto agitazione per 12 h a t.a., e trascorso tale periodo, è stata lavata con H2O. La fase organica è stata essiccata e concentrata per evaporazione a p.r. ed il prodotto è stato utilizzato per la reazione successiva senza ulteriore purificazione.

2,3-Dimetossibenzilcloruro (10b)

OCH3 OCH3 Cl 10b RESA: 85% 1 H NMR (CDCl3): δ 3.87 (s, 3H, OCH3); 3.96 (s, 3H, OCH3); 4.57 (s, 2H, CH2); 6.85-7.07 (m, 3H, Ar) ppm.

61

3,4-Dimetossibenzilcloruro (10c)

OCH3 OCH3 Cl 10c RESA: 70% 1 H NMR (CDCl3): δ 3.88 (s, 3H, OCH3); 3.90 (s, 3H, OCH3); 4.57 (s, 2H, CH2); 6.79-6.88 (m, 1H, Ar); 6.92-6.98 (m, 2H, Ar) ppm.

3,4,5-Trimetossibenzilcloruro (10d)

OCH3 OCH3 Cl H3CO 10d RESA: 84% 1 H NMR (CDCl3): δ 3.88 (s, 3H, OCH3); 3.90 (s, 3H, OCH3); 4.57 (s, 2H, CH2); 6.80-6.84 (m, 1H, Ar); 6.91-6.96 (m, 2H, Ar) ppm.

63

1-Ross, D. D.; Doyle, L. A. Mining our ABCs: pharmacogenomic approach for evaluating transporter function in cancer drug resistance. Cancer Cell 2004, 6, 105– 107.

2-Pharm, A.-N.; Penchala, S.; Graf, R. A.; Wang, J.; Huang, Y. Pharmacogenomic Characterization of ABC Transporters Involved in Multidrug Resistance. In Multidrug Resistance: Biological and Pharmaceutical Advance in the Antitumour Treatment; Colabufo, N. A., Ed.; Research Signpost: Kerala, India, 2008; pp

19-62.

3-Stephens, R. H.; O Neill, C. A.; Warhurst, A.; Carlson, G. L.; Rowland, M. and Warhurs, G.; J. Pharmacol. Exp. Ther.; 2001, 296, 584-591.

4-Sparreboom, A.; Van Asperen, J.; Mayer, U.; Schinkel, A. H.; Smit, J. W.; Me, D. K.; Borst, P.; Nooijen, W. J.; Bejinen, J. H. and van Tellingen, O.; Proc. Natl. Acad. Sci. USA, 1997, 94, 2031- 2035.

5-Muller, M. and Jansen, P. L.; J. Hepatol.; 1998, 28, 344-354.

6-Schinkel, A. H.; Cancer Biol.; 1997, 8, 161-170.

7-Krishna, R. and Mayer, L. D.; Eur. J. Pharm. Sci.; 2000, 11, 265- 283.

8-Germann, U. A. P-glycoproteinsa mediator of multidrug resi stance in tumour cells. Eur. J. Cancer 1996, 32A (6), 927-944.

9-Chen, C. J.; Chin, J. E.; Ueda, K.; Clark, D. P.; Pastan, I.; Gottesman, M. M.; Roninson, I. B. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 1986, 47 (3), 381-389.

10-Higgins, C. F. (1992). ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8, 67−113.

64

11-Gottesman, M. M.; Fojo, T. and Bates, S. E.; Nat. Rev. Cancer.; 2002, 2, 48-58.

12-Campbell, J. D.; Koike, K.; Moreau, C.; Sansom, M. S. P.; Deeley, R. G. and Cole, S. P. C.; J. Biol. Chem.; 2004, 279, 463-468.

13-Klopman, G.; Shi, L. M. and Ramu, A.; Mol. Pharmacol.; 1997, 52, 323-334.

14-Loo, T. W. and Clarke, D. M.; J. Biol. Chem.; 2001, 276, 36877- 36880.

15-Yu, E. W.; McDermott, G.; Zgurskaya, H. I.; Nikaido, H. and Koshland, D. E.; Science, 2003, 300, 976-980.

16-Murray, D. S.; Schumacher, M. A. and Brennan, R. G.; J. iol. Chem.; 2004, 279, 14365- 14371.

17-Senior, A. E., Al-Shawi, M. K., & Urbatsch, I. L. (1995). The catalytic cycle of P- glycoprotein. FEBS Lett 377, 285−289.

18-Higgins, C. F., & Linton, K. J. (2004). The ATP switch model for ABC transporters. Nat Struct Mol Biol 11, 918−926.

19-Callaghan, R., Ford, R. C., & Kerr, I. D. (2006). The translocation mechanism of P-glycoprotein. FEBS Lett 580, 1056−1063.

20-Chan, L. M.; Lowes, S.; Hirst, B. H. The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur. J. Pharm. Sci. 2004, 21, 25–51.

21-Colabufo, N. A.; Berardi, F.; Contino, M.; Niso, M.; Perrone, R. ABC pumps and their role in active drug transport. Curr. Top. Med. Chem. 2009, 9, 119–129.

22-Ohtsuki, S.; Terasaki, T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 2007, 24, 1745–

65

1758.

23-Brightman, M. W.; Basic Science Aspects, New York Plenum, 1998, 1, 53–83.

24-Pardridge, W. M.; Endocr. Rev.; 1981, 2,103–123.

25-Rapport, S. I.; Raven Press, 1976, 17–42.

26-Chikhale, E. G., Ng, K.-Y., Burton, P. S., Borchardt, R. T.; Pharm. Res.; 1994 11, 412–419.

27-Levin, V. A.; J. Med. Chem.; 1980, 23, 682–684.

28-Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., Willingham, M. C.; J. Histochem. Cytochem.; 1989, 37, 159–164.

29-Cordon-Cardo, C., O’Brien, J. P., Casals, D., Rittman-Grauer, L., Biedler, J. L., Melamed, M. R., Bertino, J. R.; Proc. Natl. Acad. Sci. USA, 1989, 86, 695–698.

30-Tamai, I., Kido, Y., Yamashita, J., Sai, Y., Tsuji, A.,; J. Drug Target, 2000b, 8, 383–393.

31-Chishty, M., Reichel, A., Siva, J., Abbott, N.J., Begley, D.J.; J. Drug. Target, 2001, 9, 223–228.

32-Pendse, S., Sayegh, M.H., Frank, M.H.,; Curr. Drug Targets, 2003, 4, 469–476.

33-Johnstone, R.W., Ruefli, A.A., Smyth, M.J.;Trends Biochem. Sci.; 2000a, 25, 1– 6.

34-Johnstone, R.W., Ruefli, A.A., Tainton, K.M., Smyth, M.J.; Leuk. Lymphoma, 2000b, 38, 1–11.

66

35-Pallis, M., Turzanski, J., Higashi, Y., Russell, N.; Leuk. Lymphoma, 2002, 43, 1221– 1228.

36-Pallis, M., Turzanski, J., Grundy, M., Seedhouse, C., Russell, N.; Br. J. Haematol.; 2003, 120, 1009–1016.

37-Marroni, M., Agrawal, M.L., Kight, K., Hallene, K.L., Hossain, M., Cucullo, L., Signorelli, K., Namura, S., Bingaman, W., Janigro, D.; Neuroscience, 2003b, 121, 605–617.

38-Marchi, N., Cucullo, L., Moddel, G., Vezzani, A., Baumgartner, C., Pirker, S., Czech, T., Novak, K., Lo Russo, G.T.L., Galli, C., Hallene, K., Kight, K., Rizzi, M., Caccia, S., Guiso, G., Janigro, D.; Epilepsia, 2003, 44 (Suppl. 9), 98.

39-Audus KL.; Eur J Pharm Sci, 1999, 8 (3),161–5.

40-Pacifici GM, Nottoli R.; Clin Pharmacokinet.; 1995, 28 (3), 235–69.

41-Ganapathy V, Prasad PD, Ganapathy ME, Leibach FH.; J Pharmacol Exp. Ther. 2000, 294 (2), 413–20.

42-van der Aa EM, Peereboom-Stegeman JH, Noordhoek J, Gribnau FW, Russel FG.; Pharm World Sci, 1998, 20 (4), 139–48.

43-MacFarland A, Abramovich DR, Ewen SW, Pearson CK.; Histochem J.;1994, 26 (5), 417–23.

44-Sugawara I, Akiyama S, Scheper RJ, Itoyama S.; Cancer Lett.; 1997,112 (1), 23– 31.

45-Nakamura Y, Ikeda S, Furukawa T, Sumizawa T, Tani A, Akiyama S, et al.; Biochem Biophys Res Commun.; 1997, 235 (3), 849–53.

67

46-Dussault I and Forman BM (2002) The nuclear receptor PXR: a master regulator of “homeland” defense. Crit Rev Eukaryot Gene Expr 12:53–64.

47-Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterstrom RH, et al. (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92:73–82.

48-Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, and Kliewer SA (1998) The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102:1016–1023.

49-Geick A, Eichelbaum M, and Burk O (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 276:14581–14587.

50-Teng S, Jekerle V, and Piquette-Miller M (2003) Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab Dispos 31:1296–1299.

51-Bauer B, Hartz AM, Fricker G, and Miller DS (2004) Pregnane X receptor upregulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol 66:413–419.

52-Nicola Antonio Colabufo, Francesco Berardi, Mariangela Cantore, Marialessandra Contino, Carmela Inglese, Mauro Niso, and Roberto Perrone - Perspectives of P-Glycoprotein Modulating Agents in Oncology and Neurodegenerative Diseases: Pharmaceutical, Biological, and Diagnostic Potentials - J. Med. Chem. 2010, 53, 1883–1897 DOI: 10.1021/jm900743c

53-Kwan, P.; Brodie, M. J. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia 2005, 46, 224–235.

54-Löscher, W.; Klotz, U.; Zimprich, F.; Schmidt, D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009, 50, 1–23.

68

55-Giessmann, T.; May, K.; Modess, C.; Wegner, D.; Hecker, U.; Zschiesche, M.; Dazert, P.; Grube, M.; Schroeder, E.; Warzok, R.; Cascorbi, I.; Kroemer, H. K.; Siegmund, W. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance proteinMRP2 and influences disposition of talinolol in humans. Clin. Pharmacol. Ther. 2004, 76, 192–200.

56-Christians, U.; Schmitz, V.; Haschke, M. Functional interactions between P- glycoprotein and CYP3A in drug metabolism. Expert Opin. Drug Metab. Toxicol. 2005, 1, 641–654.

57-Kimchi-Sarfaty, C.; Oh, J. M.; Kim, I. W.; Sauna, Z. E.; Calcagno, A. M.; Ambudkar, S. V.; Gottesman, M. M. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007, 315, 525–528.

58-Wood-Kaczmar, A.; Gandhi, S.; Wood, N. W. Understanding the molecular causes of Parkinson’s disease. Trends Mol. Med. 2006, 12, 521–528.

59-Bain, L. J.; LeBlanc, G. A. Interaction of structurally diverse pesticides with the human MDR1 gene product P-glycoprotein. Toxicol. Appl. Pharmacol. 1996, 141, 288–298.

60-Rajput, A. H. Environmental toxins accelerate Parkinson’s disease onset. Neurology 2001, 56, 4–5.

61-Martel, F.; Calhau, C.; Soares-da-Silva, P.; Azevedo, I. Transport of [H-3]MPPþ in an immortalized rat brain microvessel endothelial cell line (RBE 4). Naunyn- Schmiedeberg’s Arch. Pharmacol. 2001, 363, 1–10.

62-Bartels, A. L.; Kortekaas, R.; Bart, J.; Willemsen, A. T. M.; de Klerk, O. L.; de Vries, J. J.; van Oostrom, J. C. H.; Leenders, K. L. Blood-brain barrier P- glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol. Aging 2009, 30, 1818–1824.

69

63-Arriagada, P. V.; Marzloff, K.; Hyman, B. T. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer0s disease. Neurology 1992, 42, 1681–1688.

64-Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, and Reiner PB (2001) _-Amyloid efflux mediated by P-glycoprotein. J Neurochem 76:1121–1128.

65-Kuhnke D, Jedlitschky G, Grube M, Krohn M, Jucker M, Mosyagin I, Cascorbi I, Walker LC, Kroemer HK, Warzok RW, et al. (2007) MDR1-P-glycoprotein (ABCB1) mediates transport of Alzheimer’s amyloid-_ peptides—implications for the mechanisms of A_ clearance at the blood-brain barrier. Brain Pathol 17:347–353.

66-Vogelgesang, S.; Cascorbi, I.; Schroeder, E.; Pahnke, J.; Kroemer, H. K.; Siegmund, W.; Kunert-Keil, C.; Walker, L. C.; Warzok, R. W. Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly nondemented humans. Pharmacogenetics 2002, 12, 535–541.

67-Avenda~no, C.; Men_endez, J. C. Inhibitors of multidrug resistance to antitumor agents (MDR). Curr. Med. Chem. 2002, 9, 159–193.

68-Callaghan, R.; Ford, R. C.; Kerr, I. D. The translocation mechanism of P- glycoprotein. FEBS Lett. 2006, 580, 1056–1063.

69-Constantinides, P. P.; Wasan, K. M. Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/in vivo case studies. J. Pharm. Sci. 2007, 96, 235–248.

70-Martin, C.; Berridge, G.; Mistry, P.; Higgins, C.; Charlton, P.; Callaghan, R. Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry 2000, 39, 11901–11906.

71-Aller, S. G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P. M.; Trinh, Y. T.; Zhang, Q.; Urbatsch, I. L.; Chang, G. Structure of P-glycoprotein

70

reveals a molecular basis for poly-specific drug binding. Science 2009, 323, 1718– 1722.

72-Bisi, A.; Gobbi, S.; Rampa, A.; Belluti, F.; Piazzi, L.; Valenti, P.; Gyemant, N.; Moln_ar, J. New potent P-glycoprotein inhibitors carrying a polycyclic scaffold. J. Med. Chem. 2006, 49, 3049–3051.

73-Dei, S.; Budriesi, R.; Sudwan, P.; Ferraroni, M.; Chiarini, A.; Garnier-Suillerot, A.; Manetti, D.; Martelli, C.; Scapecchi, S.; Teodori, E. Diphenylcyclohexylamine derivatives as new potent multidrug resistance (MDR) modulators. Bioorg. Med. Chem. 2005, 13, 985–998.

74-Teodori, E.; Dei, S.; Martelli, C.; Scapecchi, S.; Gualtieri, F. Multidrug Resistance (MDR) Modulators: Verapamil Offsprings and Heterocyclic Derivatives. In Multidrug Resistance: Biological and Pharmaceutical Advance in the Antitumour Treatment; Colabufo, N. A., Ed.; Research Signpost: Kerala, India, 2008; pp 141- 169.

75-Teodori, E.; Martelli, C.; Salerno, M.; Darghal, N.; Dei, S.; Garnier-Suillerot, A.; Gualtieri, F.; Manetti, D.; Scapecchi, S.; Romanelli, M. N. Isomeric N,N- bis(cyclohexanol)amine aryl esters: the discovery of a new class of highly potent P- glycoprotein (Pgp)-dependent multidrug resistance (MDR) inhibitors. J. Med.

Chem. 2007, 50, 599–602.

76-Ford, J. M.; Prozialeck, W. C.; Hait, W. N. Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol. Pharmacol. 1989, 35, 105–115.

77-Boumendjel, A.; Macalou, S.; Ahmed-Belkacem, A.; Blanc, M.; Di Pietro, A. Acridone derivatives: design, synthesis, and inhibition of breast cancer resistance protein ABCG2. Bioorg. Med. Chem. 2007, 15, 2892–2897.

78-Colabufo, N. A.; Berardi, F.; Perrone, M. G.; Cantore, M.; Niso, M.; Perrone, R. Small Molecules and Acridone Derivatives as Pgp Inhibitors. In Multidrug

71

Resistance: Biological and Pharmaceutical Advance in the Antitumour Treatment; Colabufo, N. A., Ed.; Research Signpost: Kerala, India, 2008; pp 203-222.

79-Labrie, P.; Maddaford, S. P.; Lacroix, J.; Catalano, C.; Lee, D. K.; Rakhit, S.; Gaudreault, R. C. In vitro activity of novel dual action MDR anthranilamide modulators with inhibitory activity at CYP-450. Bioorg. Med. Chem. 2006, 14, 7972–7987.

80-Labrie, P.; Maddaford, S. P.; Lacroix, J.; Catalano, C.; Lee, D. K.; Rakhit, S.; Gaudreault, R. C. In vitro activity of novel dual action MDR anthranilamide modulators with inhibitory activity on CYP-450 (Part 2). Bioorg. Med. Chem. 2007, 15, 3854–3868.

81-Hou, X. L.; Takahashi, K.; Tanaka, K.; Tougou, K.; Qiu, F.; Komatsu, K.; Takahashi, K.; Azuma, J. Curcuma drugs and curcumin regulate the expression and function of P-gp in Caco- 2 cells in completely opposite ways. Int. J. Pharm. 2008, 358, 224– 229.

82-de Castro, W. V.; Mertens-Talcott, S.; Derendorf, H.; Butterweck, V. Grapefruit juice-drug interactions: grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J. Pharm. Sci. 2007, 96, 2808– 2817.

83-Middleton, E., Jr.; Kandaswami, C.; Theoharides, T. C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. ReV. 2000, 52 (4), 673-751.

84-Di Pietro, A.; Conseil, G.; Perez-Victoria, J. M.; Dayan, G.; Baubichon-Cortay, H.; Trompier, D.; Steinfels, E.; Jault, J. M.; de Wet, H.; Maitrejean, M.; Comte, G.; Boumendjel, A.; Mariotte, A. 6758 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 23 Chan et al. M.; Dumontet, C.; McIntosh, D. B.; Goffeau, A.; Castanys, S.; Gamarro, F.; Barron, D. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell. Mol. Life Sci. 2002, 59 (2), 307-322.

72

85-Boumendjel, A.; Di Pietro, A.; Dumontet, C.; Barron, D. Recent advances in the discovery of flavonoids and analogues with high affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med. Res. ReV. 2002, 22 (5), 512- 529.

86-Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem., Int. Ed. 1998, 37, 2754-2794.

87-Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981, 41 (5), 1967-1972.

88-Foxwell, B. M.; Mackie, A.; Ling, V.; Ryffel, B. Identification of the multidrug resistance-related P-glycoprotein as a cyclosporine binding protein. Mol. Pharmacol. 1989, 36, 543–546.

89-Solary, E.; Velay, I.; Chauffert, B.; Caillot, D.; Bidan, J. M.; Dumas, M.; Casasnovas, O.; Guy, H. Quinine circumvents the doxorubicin resistance of a multidrug resistant human leukemic cell-line, K562/DXR. Nouv. Rev. Fr. Hematol. 1990, 32, 361–363.

90-Hu, X. F.; Nadalin, G.; De Luise, M.; Martin, T. J.; Wakeling, A.; Huggins, R.; Zalcberg, J. R. Circumvention of doxorubicin resistance in multi-drug resistant human leukaemia and lung cancer cells by the pure antioestrogen ICI 164384. Eur. J. Cancer 1991, 27, 773–777.

91-Krishna, R.; Mayer, L. D. Multidrug resistance(MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 2000, 11, 265–283. 92-Thomas, H.; Coley, H. M. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control 2003, 10, 159– 165.

73

93-Modok, S.; Mellor, H. R.; Callaghan, R. Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr. Opin. Pharmacol. 2006, 6, 350–354.

94-Stupp, R.; Bauer, J.; Pagani, O.; Gerard, B.; Cerny, T.; Sessa, C.; Bastian, G.; Sarkany, M.; Schlapfer, J.; Giroux, B.; Leyvraz, S. Ventricular arrhythmia and torsade de pointe: dose limiting toxicities of the MDR-modulator S9788 in a phase I trial. Ann. Oncol. 1998, 9, 1233–1242.

95-Wandel, C.; Kim, R. B.; Kajiji, S.; Guengerich, P.; Wilkinson, G. R.; Wood, A. J. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. 1999, 59, 3944–3948.

Struttura Pag 3

Localizzazione Pag 5

Barriera Ematoencefalica Pag 6

Barriera Sangue-Fluido Cerebrospinale Pag 8

Placenta Pag 9

Fattori di regolazione Pag 11

P-pg e le malattie neurodegenerative Pag 13

Meccanismo d’azione Pag 15

Substrati-Modulatori-Inibitori Pag 16

Substrati e Modulatori Pag 16

Inibitori Pag 17

P-gp nella chemioterapia Pag 23

Inibitori di prima generazione Pag 23

Inibitori di seconda generazione Pag 24

Inibitori di terza generazione Pag 25

Documenti correlati