• Non ci sono risultati.

MATERIALI E METOD

N- sulfanilamido-guanidina (10) [[73 ]

1,04 g di sulfanilammide (0.006 moli) vengono solubilizzati in 1,6 ml di HCl conc., vengono quindi addizionati 2.4 ml di cianamide (50% p/p soluzione acquosa) (0.058 moli) e si scalda a 100 °C per 30 minuti. Dopo raffreddamento la soluzione ottenuta è versata in un becker contenente una soluzione satura di NaHCO3 e tenuta

in freezer tutta la notte. Si forma un precipitato che viene poi raccolto mediante filtrazione sottovuoto e che corrisponde a 0.739 g di prodotto 9 desiderato.

74

Sintesi dei derivati tetraidroindazolonici 6a-d Procedura generale

0,006 moli dell’opportuno derivato 6a-d sono solubilizzati in etanolo e addizionati

di 0,0072 moli (1,606 g) di 4-solfonammidofenilidrazina cloridrato. La reazione viene scaldata a 80° per un periodo che va dalle 5 alle 20 ore controllando mediante T.L.C. (miscela eluente: etere di petrolio 40-60/acetato di etile = 1:9). Dopo raffreddamento il solido ottenuto viene raccolto mediante filtrazione sottovuoto e successivamente purificato tramite cristallizzazione da etanolo.

4-(4-oxo-4,5,6,7-tetraidro-1H-indazol-1-il)benzenesolfonamide (6a) Resa: 30% P.f.: 248-250 °C 1H NMR (400 MHz, DMSO-d6):  (ppm) 2.07-2.09 (m, 2H, CH2CH2CH2); 2.45 (t, 2H, CH2CH2CH2); 3.07 (t, 2H, CH2CH2CH2); 7.52 (s, 2H, NH2 scamb.); 7.84 (dd, 2H, Ar-H, J = 6.8 Hz, J = 2.0 Hz); 7.99 (dd, 2H, Ar-H, J = 6.8 Hz, J = 2.0 Hz ); 8.11 (s, 1H, Ar-H) 4-(6-metil-4-oxo-4,5,6,7-tetraidro-1H-indazol-1-il)benzenesolfonamide (6b) Resa: 20% P.f.:297-300 °C 1H NMR (400 MHz, DMSO-d6):  (ppm) 1.16 (d, 3H, CHCH3); 2.07-2.09 (m, 2H, CH2CHCH2); 2.71-2.78 (m, 1H, CH2CHCH2); 2.95-2.99 (m, 2H, CH2CH2CH2);

75 7.47 (s, 2H, NH2 scamb.); 7.80 (d, 2H, Ar-H, J = 7.8 Hz); 7.97 (d, 2H, Ar-H, J =

7.8 Hz); 8.09 (s, 1H, Ar-H) 4-(6,6-dimetil-4-oxo-4,5,6,7-tetraidro-1H-indazol-1-il)benzenesolfonamide (6c) Resa: 50% P.f.:218-221°C 1H NMR (400 MHz, DMSO-d6):  (ppm) 1.05 (s, 6H, 2CH3); 2.38 (s, 2H, CH2); 3.00 (s, 2H, CH2); 7.52 (s, 2H, NH2 scamb.); 7.84 (dd, 2H, Ar-H, J = 8.8 Hz); 8.00 (dd, 2H, Ar-H, J = 8.8 Hz); 8.13 (s, 1H, Ar-H) 4-(6-fenil-4-oxo-4,5,6,7-tetraidro-1H-indazol-1-il)benzenesolfonamide (6d) Resa 30% P.f.:197-200 °C 1H NMR (400 MHz, DMSO-d6):  (ppm) 2.56 (d, 1H, CH2); 2.95-3.02 (m, 1H, CH-C6H5); 3.18 (d, 1H, CH2); 3.43-3.56 (m, 2H, CH2) 7.52 (s, 2H, NH2 scamb.);

7.84 (dd, 2H, Ar-H, J = 8.8 Hz); 8.00 (dd, 2H, Ar-H, J = 8.8 Hz); 8.13 (s, 1H, Ar- H)

76

Sintesi dei derivati tetraidrochinazolonici 7a-d Procedura generale

0.0010 moli dell’opportuno derivato 6a-d sono solubilizzati nell’opportuna

quantità di n-BuOH e addizionati di 0.300 g (0.0010 moli) di composto 10 e di 0.080 g (0.0020 moli) di NaOH. La miscela di reazione viene scaldata a 120 °C per 16 ore controllando l’andamento mediante TLC (miscela eluente: etere di petrolio

40-60/acetato di etile = 1:9). Dopo raffreddamento il solido ottenuto viene raccolto mediante filtrazione sottovuoto e purificato tramite cristallizzazione da etanolo.

4-[(5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino]benzenesolfonamide (7a)

Resa: 45 % P. f.: 294-296 C°

1H NMR (400 MHz, DMSO-d6):  (ppm) 2.04-2.10 (m, 2H, CH2CH2CH2); 2.58 (t,

2H, CH2CH2CH2); 2.94 (t, 2H, CH2CH2CH2); 7.27 (s, 2H, NH2 scamb.); 7.77 (d,

2H, Ar-H, J = 8.8 Hz); 7.97 (d, 2H, Ar-H, J = 8.8 Hz); 8.86 (s, 1H, Ar-H); 10.65 (s, 1H, NH scamb.)

4-[(7-metil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino]benzenesolfonamide (7b)

Resa 30% P.f.:264-266 C°

77 1H NMR (400 MHz, DMSO-d6):  (ppm) 1.07 (d, 3H, CHCH3); 2.29-2.38 (m, 2H,

CH2CHCH2); 2.56 (d, 1H, CH2CHCH2); 2.97 (d, 1H, CH2CH2CH2);2H,

CH2CH2CH2); 7.27 (s, 2H, NH2 scamb.); 7.76 (d, 2H, Ar-H, J = 8.8 Hz); 7.97 (d,

2H, Ar-H, J = 8.8 Hz); 8.85 (s, 1H, Ar-H); 10.65 (s, 1H, NH scamb.)

4-[(7,7-dimetil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino] benzenesolfonamide (7c) Resa: 40% P.f.:257-260°C 1H NMR (400 MHz, DMSO-d6):  (ppm) 1.03 (s, 6H, 2CH3); 2.48 (s, 2H, CH2); 2.86 (s, 2H, CH2); 7.52 (s, 2H, NH2 scamb.); 7.76 (d, 2H, Ar-H, J = 8.8 Hz); 7.96 (d, 2H, Ar-H, J = 8.8 Hz); 8.84 (s, 1H, Ar-H) 4-[(7-fenil-5-oxo-5,6,7,8-tetraidrochinazolin-2-il)amino]benzenesolfonamide (7d) Resa: 30% P.f.: 214-215 °C 1H NMR (400 MHz, DMSO-d6):  (ppm) 2.72 (d, 1H, CH2); 2.97-3.11 (m, 1H, CH-C6H5, 1H, CH2); 3.29-3.45 (m, 1H, CH2); 3.54-3.60 (m, 1H, CH2);7.16-7.28 (m,

3H, Ar-H); 7.34-7.41 (m, 2H, Ar-H); 7.39 (s, 2H, NH2 scamb.); 8.92 (s, 1H, Ar-

78

Bibliografia

79 [1] Supuran, C. T., Scozzafava, A. & Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23, 146–189.

[2] Hilvo, M.; Tolvanen, M.; Clark, A.; Shen, B.; Shah, G. N.; Waheed, A.; Halmi, P.; Hanninen, M.; Hamalainen, J. M.; Vihinen, M.; Sly, W. S.; Parkkila, S. Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase. Biochem. J., 2005, 392, 83-92.

[3] Guerri, A.; Briganti, F.; Scozzafava, A.; Supuran, C. T.; Mangani, S. Mechanism of cyanamide hydration catalyzed by carbonic anhydrase II suggested by cryogenic X-ray diffraction. Biochemistry, 2000, 39, 12391-12397.

[4] Whittington, D. A.; Grubb, J. H.; Waheed, A.; Shah, G. N.; Sly, W. S.; Christianson, D. W. Expression, assay, and structure of the extracellular domain of murine carbonic anhydrase XIV: implications for selective inhibition of membrane- associated isozymes. J. Biol. Chem., 2004, 279, 7223-7228.

[5] Supuran C. T., Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Disc., 2008, 7, 168-181.

[6] Khalifa, R. J. The carbon dioxide hydration activity of carbonic anydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem.

80 [7] (a) Clare, B. W.; Supuran, C. T. Carbonic anydrase activators. Part3. Structure- activity correlations for a series of isozyme II activators. J. Pharm: Sci. 1994, 83, 768-773; (b) Temperini, C. ; Vullo, D. ; Scozzafava, A. ; Supuran C. T., Carbonic anydrase activators. Activation of isoforms I, II, IV, VA, VII, and XIV with L – and D- phenylalanine and crystallographic analysis of their adducts with isozyme II: stereospecific recognition within the active site of an enzyme and its consequences for the drug design. J. Med. Chem. , 2006, 49, 3019-3027.

[8] (a) Briganti, F.; Mangani, S.; Orioli, P.; Scozzafava, A.; Vernaglione, G.; Supuran C. T., Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Biochemistry, 1997, 36, 10384-10392; (b) Temperini, C.; Scozzafava, A.; Puccetti, L.; Supuran C. T., Carbonic anhydrase activators: X-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators. Bioorg. Med. Chem. Lett., 2005, 15, 5136-5141; (c) Temperini, C.; Scozzafava, A.; Vullo, D.; Supuran C. T., Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with l- and d-histidine and crystallographic analysis of their adducts with isoform II: engineering proton- transfer processes within the active site of an enzyme. Chemistry, 2006, 12, 7057- 7066; (d) Temperini, C.; Innocenti, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran C.T., Carbonic anhydrase activators: L-Adrenaline plugs the active site entrance of isozyme II, activating better isoforms I, IV, VA, VII, and XIV. Bioorg. Med. Chem. Lett., 2007, 17, 628-635;

81 (e) Temperini, C.; Innocenti, A.; Scozzafava, A.; Supuran C. T., Carbonic anhydrase activators: kinetic and X-.ray crystallographic study for the interaction of D- and L-tryptophan with the mammalian isoforms I-XIV. Bioorg. Med. Chem.,

2008, 16, 8373-8378.

[9] Briganti, F.; Mangani, S.; Orioli, P.; Scozzafava, A.; Vernaglione, G.; Supuran, C. T. Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with istamine. Biochemistry,

1997, 36, 10384-10392.

[10] Claudiu T. Supuran How many carbonic anhydrase inhibition mechanisms exist?, Journal of Enzyme Inhibithion and Medicinal Chemistry, 2016, 31:3, 345- 360.

[11] Pastorekova S, Parkkila S, Pastorek J, Supuran CT. Carbonic anhydrase: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 2004; 19:199-229.

[12] Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol 2011; 2:34.

[13] Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of

inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68.

[14] Scozzafava A, Menabuoni L, Mincione F, Supuran CT. Carbonic anhydrase inhibitors. A general approach for the preparation of water-soluble sulfonamides incorporating polyamino-polycarboxy- late tails and of their metal complexes possessing long-lasting, topical intraocular pressure-lowering properties. J MedChem 2002; 45:1466–76.

82 [15] Scozzafava A, Menabuoni L, Mincione F, et al. Carbonic anhydrase inhibitors. Synthesis of water-soluble, topically effective, intraocular pressure-lowering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: is the tail more important than the ring? J Med Chem 1999;42:2641–50.

[16] Borras J, Scozzafava A, Menabuoni L, et al. Carbonic anhydrase inhibitors. Part 73. Synthesis of water-soluble, topically effective intraocular pressure lowering aromatic/heterocyclic sulfonamides containing 8-quinoline-sulfonyl moieties: is the tail more important than the ring? Bioorg Med Chem 1999;7:2397– 406.

[17] Masini E, Carta F, Scozzafava A, Supuran CT. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat 2013;23:705–16. [18] Bozdag M, Carta F, Vullo D, et al. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibi- tory activity and antiglaucoma action. Bioorg Med Chem 2015;23: 2368–76.

[19] Nair SK, Ludwig PA, Christianson DW. Two-site binding of phenol in the active site of human carbonic anhydrase II: structural implications for substrate association. J Am Chem Soc 1994;116: 3659–60.

[20] Carta F, Temperini C, Innocenti A, et al. Polyamines inhibit carbonic anhydrases by anchoring to the zinc-coordinated water molecule. J Med Chem

2010;53:5511–22.

[21] Innocenti A, Vullo D, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Interactions of phenols with the 12 catalyt- ically active mammalian isoforms (CA I–XIV). Bioorg Med Chem Lett 2008;18:1583–7.

83 [22] Tars K, Vullo D, Kazaks A, et al. Sulfocoumarins (1,2- benzoxathiine-2,2- dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J Med Chem 2013;56:293–300.

[23] Buchieri MV, Riafrecha LE, Rodrı ´guez OM, et al. Inhibition of the b- carbonic anhydrases from Mycobacterium tuberculosis with C-cinnamoyl glycosides: identification of the first inhibitor with anti-mycobacterial activity. Bioorg Med Chem Lett 2013;23: 740–3.

[24] Riafrecha LE, Rodrı ´guez OM, Vullo D, et al. Synthesis of C-cinnamoyl glycosides and their inhibitory activity against mammalian carbonic anhydrases. Bioorg Med Chem 2013;21: 1489–94.

[25] Ekinci D, Karagoz L, Ekinci D, et al. Carbonic anhydrase inhibitors: in vitro inhibition of a isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids. J Enzyme Inhib Med Chem 2013;28: 283–8.

[26] Sahin H, Can Z, Yildiz O, et al. Inhibition of carbonic anhydrase isozymes I and II with natural products extracted from plants, mushrooms and honey. J Enzyme Inhib Med Chem 2012;27: 395–402.

[27] Supuran CT. Carbonic anhydrase inhibition with natural products: novel chemotypes and inhibition mechanisms. Mol Divers 2011;15: 305–16.

[28] Karioti A, Ceruso M, Carta F, et al. New natural product carbonic anhydrase inhibitors incorporating phenol moieties. Bioorg Med Chem 2015;23:7219–25. [29] Maresca A, Akyuz G, Osman SM, et al. Inhibition of mammalian carbonic anhydrase isoforms I-XIV with a series of phenolic acid esters. Bioorg Med Chem

84 [30] Maresca A, Temperini C, Vu H, et al. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc

2009;131:3057–62.

[31] Maresca A, Temperini C, Pochet L, et al. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem

2010;53:335–44.

[32] D’Ambrosio K, Carradori S, Monti SM, et al. Out of the active site binding pocket for carbonic anhydrase inhibitors. Chem Commun 2015;51:302–5.

[33] Alp C, Ozsoy S, Alp NA, et al. Sulfapyridine-like benzenesulfo- namide derivatives as inhibitors of carbonic anhydrase isoenzymes I, II and VI. J Enzyme Inhib Med Chem 2012; 27:818–24.

[34] Supuran, C. T., Scozzafava, A., Conway, J., Eds.; Carbonic Anhydrase. Its Inhibitors and Activators; CRC Press: Boca Raton (FL), USA, 2004; 1–363. [35] (a) Supuran, C. T. Carbonic Anhydrases as Drug Targets—General Presentation. In Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken (NJ), 2009; 15–38; (b) Winum, J. Y.; Rami, M.; Scozzafava, A.; Montero, J. L.; Supuran C., Carbonic anhydrase IX: a new druggable target for the design of antitumor agents. Med. Res. Rev., 2008, 28, 445-463; (c) Domsic, J. F.; Avvaru, B. S.; Kim, C. U.; Gruner, S. M.; Agbandje-McKenna, M.; Silverman, D. N.; McKenna, R., Entrapment of carbon dioxide in the active site of carbonic anhydrase II. J. Biol. Chem., 2008, 283, 30766-30771.

85 [36] (a) Supuran C. T., Diuretics: from classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Curr. Pharm. Des. 2008, 14, 641-648; (b) Supuran, C. T.; Di Fiore, A.; De Simone G., Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity. Expert Opin. Emerg. Drugs 2008, 13, 383-392; (c) De Simone, G.; Di Fiore, A.; Supuran C. T., Are carbonic anydrase inhibitors suitable for obtaining antiobesity drugs?. Curr. Pharm. Des. 2008, 14, 655–660; (d) Mincione, F.; Scozzafava, A.; Supuran, C. T. Antiglaucoma Carbonic Anhydrase Inhibitors as Ophthalomologic Drugs. In Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken (NJ), 2009; 139–154; (e) Krungkrai, J.; Supuran C. T., The alpha-carbonic anhydrase from the malaria parasite and its inhibition. Curr.Pharm. Des. 2008, 14, 631-640.

[37] Mincione, F. et al. The development of topically acting carbonic anhydrase inhibitors as antiglaucoma agents. Curr. Top. Med. Chem., 2007, 7, 849–854. [38] Temperini, C.; Innocenti, A.; Mastrolorenzo, A.; Scozzafava, A.; Supuran C. T., Carbonic anhydrase inhibitors. Interaction of the antiepileptic drug sulthiame with twelve mammalian isoforms: kinetic and X-ray crystallographic studies. Bioorg. Med. Chem. Lett. 2007, 17, 4866-4872.

[39] Steele, R. M.; Batugo, M. R.; Benedini, F.; Biondi, S.; Borghi, V.; Carzaniga, L.; Impagnietello, F.; Miglietta, D.; Chong, W. K. M.; Rajapakse, R.; Cecchi, A.; Temperini, C.; Supuran C. T., Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma. Bioorg. Med. Chem. Lett. 2009, 19, 6565-6570.

86 [40] Sugrue, M. F. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog. Retin. Eye Res., 2000, 19, 87–112. Effective, intraocular pressure-lowering aromatic/ eterocyclic sulfonamides containing cationic or anionic moieties : is the tail more important than the ring . J. Med. Chem.,

1999,42,2641-2650.

[41] Gao, B. B. et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nature Med.,

2007, 13, 181–188.

[42] Maren, T. H. The development of topical carbonic anhydrase inhibitors. J. Glaucoma, 1995, 4, 49–62.

[43] Innocenti, A. et al. Carbonic anhydrase inhibitors. Inhibition of the membrane- bound human and bovine isozymes IV with sulfonamides. Bioorg. Med. Chem. Lett., 2005, 15, 1149–1154.

[44] Liao, S. Y. et al. Expression of cell surface transmembrane carbonic anhydrase genes CA9 and CA12 in the human eye: overexpression of CA12 (CA XII) in glaucoma. J. Med. Genet., 2003, 40, 257–261.

[45] Ahlskog, J. K.; Schliemann, C.; Mårlind, J.; Qureshi, U.; Ammar, A.; Pedleym, R. B.; Neri, D. Br., Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. J. Cancer 2009, 101, 645-657.

[46] Supuran, C. T. Carbonic anhydrase inhibitors in the treatment and prophylaxis of obesity. Expert Opin. Ther. Pat., 2003, 13, 1545–1550.

87 [47] Casini, A.; Antel, J.; Abbate, F.; Scozzafava, A.; David, S.; Waldeck, H.; Scha¨fer, S.; Supuran, C. T., Carbonic anhydrase inhibitors: SAR and X-ray crystallographic study for the interaction of sugar sulfamates/sulfamides with isozymes I, II and IV. Bioorg. Med. Chem. Lett., 2003, 13, 841-845.

[48] Picard, F. et al. Topiramate reduces energy and fat gains in lean (Fa/?) and obese (fa/fa) Zucker rats. Obesity Res., 2000, 8, 656–663.

[49] Gadde, K. M. et al. Zonisamide for weight loss in obese adults: a randomized controlled trial. JAMA, 2003, 289, 1820–1825.

[50] Thiry, A.; Supuran, C.T.; Masereel, B.; Dogné, J.M., Recent developments of carbonic anidrase inhibitors as potential anticancer drugs. J. Med. Chem. 2008, 51, 3051-3056.

[51] Brahimi-Horn, M. C. & Pouyssegur, J. Oxygen, a source of life and stress. FEBS Lett., 2007, 581, 3582–3591.

[52] Thiry, A. et al. Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol. Sci., 2006, 27, 566–573.

[53] Nishimori, I. et al. Carbonic anhydrase inhibitors. DNA cloning, characterization and inhibition studies of the human secretory isoform VI, a new target for sulfonamide and sulfamate inhibitors. J. Med. Chem., 2007, 50, 381–388. [54] Vullo, D., et al. Carbonic anhydrase inhibitors. Inhibition of the tumor- associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorg. Med.Chem. Lett., 2003, 13, 1005–1009.

[55] Teicher, B. A.; Liu, S. D.; Liu, J. T.; Holden, S. A.; Herman, T. S. A carbonic anhydrase inhibitor as a potential modulator of cancer therapies. Anticancer Res.

88 [56] Abbate, F. et al. Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorg. Med. Chem. Lett., 2004, 14, 217–223. [57] Wilkinson, B. L.; Bornaghi, L. F.; Houston, T. A.; Innocenti, A.; Supuran, C. T.; Poulsen, S. A., A novel class of carbonic anhydrase inhibitors: glycoconjugate benzene sulfonamides prepared by “clicktailing”.J. Med. Chem. 2006, 49, 6539–

6548.

[58] De Simone, G.; Vitale, R. M.; Di Fiore, A.; Pedone, C.; Scozzafava, A.; Montero, J. L.; Winum, J. Y.; Supuran, C. T. Carbonic anhydrase inhibitors: hypoxia-activatable sulfonamides incorporating disulfide bonds that target the tumor-associated isoform IX. J. Med. Chem. 2006, 49, 5544–5551.

[59] Smith, K. S., Jakubzich, C. ; Whittam, T. S.; Ferry, J. G. Carbonic anhydrase is an ancient enzyme widespread in proxaryotes. Proc. Natal. Acid. Sci. U.S.A.

1999,96, 15184-15189.

[60] Zimmerman , S. A.; Ferry, J. G.; Supuran, C. T. Inhibition of the Archeal β- Class (Cab) and γ-Class (Cam) Carbonic Anydrases. Curr. Top. Chem. 2007,7,901- 908.

[61] Structure and metal Exchange in the cadmium carbonic anydrase of marine diatoms, .Nature 2008,452, 56-61.

[62] Alterio, V.; Langella, E.; Viparelli, F.; Vullo, D.; Ascione , G.; Dathan, N. A.; Morel, F. M. M.; Supuran , C. T. ; De Simone , G:; Monti, S. M. Structural and inhibation insights into carbonic anhydrase CdCA 1 from the marine diatom Thalassiosira Weissflogii. Biochimie 2012,94, 1232- 1241.

89 [63] Cottier, F.; Raymond, M.; Kurzai, O.; bolsa, M.; Leewattanapasuk, W.; JJimenez- Lopez, C.; Lorenz, M. C.; Sanglard, D.; Vachova, L.; Pavelka, N.; Pavolka, Z.; Muhlschlegel, F. A. The bZIP transcription factor Rcalp is a central regulator of a novel CO2 sensing pathway in yeast. PLOS Phathogens 2012, 8, e10002485.

[64] Mogensen, E. G,; Janbon, G.: Chaloupka, J.; Steegborn, C,; Fu, M. S.; Moyrand, F.; Klengel, T,; Pearson, D. S.; Geeves, M. A.; Buck, J.; Levin, L. R.; Muhlschlegel, F. A. Fungal adenylyl cyclase integrates CO2 sensing cAMP signaling and virulence. Curr. Biol, 2005, 15, 2021-2026.

[65] Marini, A.M.; Maresca, A.; Aggarwal, M.; Orlandini, E.; Nencetti, S.; Da Settimo, F.; Salerno, S.; Simorini, F.; La Motta, C.; Taliani, S.; Nuti, E.; Scozzafava, A.; McKenna, R.; Rossello, A.; Supuran C.T., Tricyclic Sulfonamides Incorporatine Benzothiopyrano[4,3-c]pyrazole and Pyridothiopyrano[4,3- c]pyrazole Effectively Inhibit α- and β-Carbonic Anhydrase: X-ray Crystallography and Solution Investigations on 15 Isoforms. J. Med. Chem, 2012, 55, 9619–9629. [66] Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C. T.; Scozzafava, A.; Klebe, G. Unexpected nano molar inhibition of carbonic anhydrase by COX-2 selective celecoxib: New pharmacological opportunites due to related binding site recognition. J. Med. Chem. 2004,47, 550-557.

[67] Di Fiore, A.; Pedone, C.; D’Ambrosio, K.; Scozzafava, A.; De Simone , G.; Supuran, C. T. Carbonic anhydrases inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related, cyclooxygenase II ‘selective’ inhibitor celecoxib. Bioorg. Med. Chem. 2007, 7,885-

90 [68] Dogné, J. M.; Thiry, A.; Pratico, D.; Masereel, B.; Supuran, C.T. Dual carbonic anhydrase-cyclooxygenase-2 inhibitors. Curr. Top. Med. Chem. 2007,15, 7229- 7236.

[69] Da Settimo, A.; Primofiore, G.; Da Settimo, F.; Simorini, F. Drug Design and Discovery, 1994, 11, 307.

[70] Barresi, E.; Salerno S.; Marini A.M.; Taliani S.; La Motta C.; Simorini F.; Da Settimo F.; Vullo D.; Supuran C.T. Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II , IX and XII. Bioorganic and Med. Chem.24, 2016, 921-927.

[71] Schenone, Pietro; Mosti, Luisa; Menozzi, Giulia. Reaction of 2- dimethylaminomethylene-1,3-diones with dinucleophiles. I. Synthesis of 1,5- disubstituted 4-acylpyrazoles, Journal of Heterocyclic Chemistry, 1982, 19, 1355- 1361.

[72] Kubas, Holger; Meyer, Udo; Krueger, Bjoern; Hechenberger, Mirko; Vanejevs, Maksims; Zemribo, Ronalds; Kauss, Valerjans; Ambartsumova, Raisa; Pyatkin, Ilya; Polosukhin, Alexey I.; et al, ] Discovery, synthesis, and structure- activity relationships of 2-aminoquinazoline derivatives as a novel class of metabotropic glutamate receptor 5 negative allosteric modulators. Bioorganic & Medicinal Chemistry Letters (2013), 23(16), 4493-4500.

[73] Harris, Phillip Anthony; Jung, David Kendall; Peel, Michael Robert; Reno, Michael John; Rheault, Tara Renae; Stanford, Jennifer Badiang; Stevens, Kirk Lawrence; Veal, James Marvin; Badiang, Jennifer G.; et al. Preparation of (pyrazolo[1,5-b]pyridazinyl)pyrimidinamines and analogs as cyclin dependent

91 kinase inhibitors for treatment of cancer . PCT Int. Appl. 2003, WO 2003051886 A1 20030626.

Documenti correlati