• Non ci sono risultati.

Tendenze attuali e future

CAPITOLO 4: Sensitività al glutine non celiaca (NCGS)

4.9 Tendenze attuali e future

L‘accresciuto interesse verso la NCGS è testimoniato dalla diminuzione del rapporto tra pubblicazioni sulla NCGS e sulla CD, passato da 1:438 nel periodo 1950-1970 a 1:10 nel periodo 2010-13 (Tabella 6).

Tabella 6

Tenuto conto della letteratura limitata sull‘argomento, non deve sorprendere il fatto che numerose domande sulla NCGS siano tuttora aperte. Il range riportato nella letteratura è compreso tra lo 0,5% e il 6%, ma è basato su studi limitati e su definizioni della malattia ampiamente variabili da un rapporto all‘altro. Solo recenti studi, condotti a regola d‘arte, in doppio cieco e controllo con placebo, stanno fornendo dati supportati da prove sulla prevalenza della NCGS in condizioni cliniche specifiche, in particolare IBS. Vi è una forte

77

necessità di sforzi maggiormente coordinati per eseguire studi multicentrici di ampia portata sulle condizioni, inclusi autismo e schizofrenia, in cui la NCGS è stata indicata come possibile causa in un sottogruppo di pazienti. L‘assenza di biomarcatori confermati per una diagnosi che non sia basata su criteri di esclusione è ritenuta un aspetto di importanza fondamentale da molti esperti del settore. Proprio a tale scopo è attualmente in corso un ampio studio multicentrico controllato con placebo, con l‘auspicio che possa fornire gli strumenti per una diagnosi più corretta, nonché per l‘esecuzione di studi più rigorosi onde stabilire la prevalenza della NCGS in condizioni specifiche e nella popolazione generale. Recenti studi hanno sollevato l‘ipotesi che, oltre al glutine e agli inibitori dell‘amilasi/tripsina del frumento, i carboidrati a catena corta, scarsamente fermentabili e a basso assorbimento possano contribuire ai sintomi (almeno quelli legati all‘IBS) riscontrati nei pazienti colpiti da NCGS. Queste nuove scoperte necessitano di conferme tramite ulteriori studi condotti su un numero più ampio di soggetti. L‘eventuale conferma di queste nuove scoperte spingerebbe probabilmente verso un cambiamento della nomenclatura, da NCGS a “sensibilità al frumento“, riflettendo il fatto che, oltre al glutine, altri componenti del frumento possono essere responsabili dei sintomi segnalati dai pazienti colpiti da NCGS [110].

CONCLUSIONI

La TG2 ha indiscutibilmente un ruolo importante nello sviluppo della celiachia in virtù della sua attività enzimatica. Di contro l’assenza di biomarkers e in molti casi la inadeguatezza delle procedure diagnostiche rendono difficilmente stimabile la prevalenza e le caratteristiche della NCGS. Nonostante i notevoli progressi nella comprensione del ruolo patogeno di tTG nella malattia celiaca, molti problemi devono ancora essere chiariti. Questi includono il regolamento intracellulare di tTG, il meccanismo della sua esternalizzazione, il ruolo degli enterociti come siti primari di modifica di gliadina da tTG, l'effetto degli anticorpi anti-tTG sulla sua attività di transamidazione, e la connessione tra le diverse funzioni esercitate da questo enzima: primo, come bersaglio di anticorpi malattia-specifici; e in secondo luogo come un enzima di deamidazione che può potenziare l'effetto immunostimolante del glutine. Prendendo in considerazione la possibilità di terapie basate su tTG messe a disposizione dalla caratterizzazione strutturale e funzionale dell’enzima in anni recenti, è possibile predire che tTG creerà ulteriore notizia nel prossimo futuro.

78

Bibliografia

1. Troncone R, Jabri B. Coeliac disease and gluten sensitivity. J Intern Med. 2011; 269:582–590.

2. Rostom A, Murray JA, Kagnoff MF. American Gastroenterological Association (AGA) Institute technical review on the diagnosis and management of celiac disease. Gastroenterology. 2006; 131:1981–2002.

3. Green PH, Cellier C. Celiac disease. N Engl J Med. 2007; 357:1731–43.

4. Losowsky MS. A history of coeliac disease. Dig Dis. 2008; 26:112–120.

5. DICKE WK, WEIJERS HA, VAN DE KAMER JH. Coeliac disease. II. The presence in wheat of a factor having a deleterious effect in cases of coeliac disease. Acta Paediatr. 1953; 42:34–42.

6. http://www.celiachiamo.com/celiachia-tipica-atipica-silente-latente-potenziale.

7. Lohi S, Mustalahti K, Kaukinen K, et al. Increasing prevalence of coeliac disease over time. Aliment Pharmacol Ther. 2007; 26:1217–25.

8. Zipser RD, Patel S, Yahya KZ, et al. Presentations of adult celiac disease in a nationwide patient support group. Dig Dis Sci. 2003; 48:761–4.

9. Norsa L, Shamir R, Zevit N, et al. Cardiovascular disease risk factor profiles in children with celiac disease on gluten-free diets. World J Gastroenterol. 2013; 19:5658–64.

10. Leeds JS, Hopper AD, Hadjivassiliou M, et al. High prevalence of microvascular complications in adults with type 1 diabetes and newly diagnosed celiac disease. Diabetes Care. 2011; 34:2158–63.

11. Dhalwani NN, West J, Sultan AA, et al. Women with Celiac Disease Present with Fertility Problems No More often than Women in the General Population. 2014; Gastroenterology.

12. Lionetti E, Francavilla R, Pavone P, et al. The neurology of coeliac disease in childhood: what is the evidence? A systematic review and meta-analysis. Dev Med Child Neurol. 2010; 52:700–7.

13. Shen TC, Lebwohl B, Verma H, et al. Peripheral neuropathic symptoms in celiac disease and inflammatory bowel disease. J Clin Neuromuscul Dis. 2012; 13:137–45.

14. Freeman HJ. Neurological disorders in adult celiac disease. Can J Gastroenterol. 2008; 22:909–11.

15. Burk K, Farecki ML, Lamprecht G, et al. Neurological symptoms in patients with biopsy proven celiac disease. Mov Disord. 2009; 24:2358–62.

16. Hadjivassiliou M, Sanders DS, Grunewald RA, et al. Gluten sensitivity: from gut to brain. Lancet Neurol. 2010; 9:318–30.

17. Wierdsma NJ, van Bokhorst-de van der Schueren MA, Berkenpas M, et al. Vitamin and mineral deficiencies are highly prevalent in newly diagnosed celiac disease patients. Nutrients. 2013; 5:3975–92.

18. Harper JW, Holleran SF, Ramakrishnan R, et al. Anemia in celiac disease is multifactorial in etiology. Am J Hematol. 2007; 82:996–1000.

79

19. Annibale B, Severi C, Chistolini A, et al. Efficacy of gluten-free diet alone on recovery from iron deficiency anemia in adult celiac patients. Am J Gastroenterol. 2001; 96:132–7.

20. Rawal P, Thapa BR, Prasad R, et al. Zinc supplementation to patients with celiac disease. J Trop Pediatr. 2010; 56:391–7.

21. McKeon A, Lennon VA, Pittock SJ, et al. The neurologic significance of celiac disease biomarkers. 2014; Neurology.

22. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007; 449:804–810.

23. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474:327–336.

24. Muegge BD, Kuczynski J, Knights D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011; 332:970–974.

25. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009; 106:3698–3703.

26. Murphy SF, Kwon JH, Boone DL. Novel players in inflammatory bowel disease pathogenesis. Curr Gastroenterol Rep. 2012; 14:146–152.

27. Forsberg G, Fahlgren A, Horstedt P, Hammarstrom S, Hernell O, Hammarstrom ML. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol. 2004; 99:894– 904.

28. Tjellstrom B, Stenhammar L, Hogberg L, et al. Gut microflora associated characteristics in children with celiac disease. Am J Gastroenterol. 2005; 100:2784–2788.

29. Di Cagno R, De Angelis M, De Pasquale I, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011; 11:219.

30. Tjellstrom B, Stenhammar L, Hogberg L, et al. Gut microflora associated characteristics in firstdegree relatives of children with celiac disease. Scand J Gastroenterol. 2007; 42:1204–1208.

31. Nistal E, Caminero A, Herran AR, et al. Differences of small intestinal bacteria populations in adults and children with/without celiac disease: 2011. Effect of age, gluten diet, and disease.

32. Kalliomaki M, Satokari R, Lahteenoja H, et al. Expression of Microbiota, Toll-Like Receptors And Their Regulators In The Small Intestinal Mucosa In Celiac Disease. 2011; J Pediatr Gastroenterol Nutr.

33. Sellitto M, Bai G, Serena G, et al. 2012; Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants.

34. De Palma G, Nadal I, Collado MC, Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr. 2009; 102:1154–1160.

80

35. De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal Advance: Bifidobacteria and Gram- negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol. 2010; 87:765–778.

36. D’Arienzo R, Maurano F, Lavermicocca P, Ricca E, Rossi M. Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine. 2009; 48:254–259.

37. De Angelis M, Rizzello CG, Scala E, et al. Probiotic preparation has the capacity to hydrolyze proteins responsible for wheat allergy. J Food Prot. 2007; 70:135–144.

38. Ringel Y, Ringel-Kulka T. The rationale and clinical effectiveness of probiotics in irritable bowel syndrome. J Clin Gastroenterol. 2011; 45 (Suppl):S145–8.

39. Sartor RB. Key questions to guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. Mucosal Immunol. 2011; 4:127–132.

40. Rubio-Tapia A, Murray JA. Classification and management of refractory coeliac disease. Gut. 2010; 59:547–57.

41. Pardi DS, Kelly CP. Microscopic colitis. Gastroenterology. 2011; 140:1155–65.

42. Hollon JR, Cureton PA, Martin ML, et al. Trace gluten contamination may play a role in mucosal and clinical recovery in a subgroup of diet-adherent non-responsive celiac disease patients. BMC Gastroenterol. 2013; 13:40.

43. Roshan B, Leffler DA, Jamma S, et al. The incidence and clinical spectrum of refractory celiac disease in a north american referral center. Am J Gastroenterol. 2011; 106:923–8.

44. Arguelles-Grande C, Brar P, Green PH, et al. Immunohistochemical and T-cell receptor gene rearrangement analyses as predictors of morbidity and mortality in refractory celiac disease. J Clin Gastroenterol. 2013; 47:593–601.

45. Malamut G, Afchain P, Verkarre V, et al. Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology. 2009; 136:81–90.

46. Rubio-Tapia A, Kelly DG, Lahr BD, et al. Clinical staging and survival in refractory celiac disease: a single center experience. Gastroenterology. 2009; 136:99–107. 352-3.

47. Brar P, Lee S, Lewis S, et al. Budesonide in the treatment of refractory celiac disease. Am J Gastroenterol. 2007; 102:2265–9.

48. Cellier C, Delabesse E, Helmer C, et al. Refractory sprue, coeliac disease, and enteropathy-associated T- cell lymphoma. French Coeliac Disease Study Group. Lancet. 2000; 356:203–8.

49. Malamut G, Cellier C. Refractory celiac disease. Expert Rev Gastroenterol Hepatol. 2014; 8:323–8.

50. Rosekrans, P.C., et al. Long-term morphological and immunohistochemical observations on biopsy specimens of small intestine from children with glutensensitive enteropathy. J Clin Pathol, 1981. 34(2): p. 138- 44.

81

51. Pallav K, Leffler DA, Tariq S, et al. Noncoeliac enteropathy: the differential diagnosis of villous atrophy in contemporary clinical practice. Aliment Pharmacol Ther. 2012; 35:380–90.

52. Corazza GR, Villanacci V. Coeliac Disease.Some considerations on the histological classifcation. Journal of Clinical Pathol. 2005;58,573-574

53. “LINEE GUIDA CELIACHIA VALUTAZIONE MORFOLOGICA” Dr Vincenzo Villanacci 2° Servizio di Anatomia e Istologia Patologica Sezione di Diagnostica Gastroenterologica Spedali Civili.

54. Advances in Diagnosis and Management of Celiac Disease. Gastroenterology. 2015 May; 148(6): 1175– 1186. 10.1053/j. gastro.2015.01.044.

55. Rokkas T, Niv Y. The role of video capsule endoscopy in the diagnosis of celiac disease: a meta-analysis. Eur J Gastroenterol Hepatol. 2012; 24:303–8.

56. Catassi C, Fabiani E, Iacono G, et al. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr. 2007; 85:160–6.

57. Koskinen O, Villanen M, Korponay-Szabo I, et al. Oats do not induce systemic or mucosal autoantibody response in children with coeliac disease. J Pediatr Gastroenterol Nutr. 2009; 48:559–65.

58. Lebwohl B, Granath F, Ekbom A, et al. Mucosal healing and risk for lymphoproliferative malignancy in celiac disease: a population-based cohort study. Ann Intern Med. 2013; 159:169–75.

59. Kelly CP, Green PH, Murray JA, et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther. 2013; 37:252–62.

60. Bai JC, Fried M, Corazza GR, et al. World Gastroenterology Organisation global guidelines on celiac disease. J Clin Gastroenterol. 2013; 47:121–6.

61. Lebwohl B, Granath F, Ekbom A, et al. Mucosal healing and mortality in coeliac disease. Aliment Pharmacol Ther. 2013; 37:332–9.

62. van Belzen MJ, Koeleman BP, Crusius JB, et al. Defining the contribution of the HLA region to cis DQ2-positive coeliac disease patients. Genes Immun. 2004; 5:215–220.

63. Janeway, CA.; Travers, P. Anonymous Immunobiology: The Immune System in Health and Disease. 3. Vol. 1. London and New York: Current Biology Ltd/Garland Publishing Inc; 1997. p. 24-1.p. 25.

64. Ploski R, Ek J, Thorsby E, Sollid LM. On the HLA-DQ(alpha 1*0501, beta 1*0201)-associated susceptibility in celiac disease: a possible gene dosage effect of DQB1*0201. Tissue Antigens. 1993; 41:173–177.

65. Vader W, Stepniak D, Kooy Y, et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S 2003; 100:12390–12395.

82

HLA-DQB1 genetic markers and clinical presentation in celiac disease. J Pediatr GastroenterolNutr. 2002; 34:548–554.

67. Fallang LE, Bergseng E, Hotta K, Berg-Larsen A, Kim CY, Sollid LM. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2. 2 are related to sustained gluten antigen presentation. Nat Immunol. 2009; 10:1096–1101.

68. The Allele Frequency Net Database. 2012; 2012 Available at: www.allelefrequencies.net.

69. Pietzak MM, Schofield TC, McGinniss MJ, Nakamura RM. Stratifying risk for celiac disease in a large at-risk United States population by using HLA alleles. Clin Gastroenterol Hepatol. 2009; 7:966–971. [PubMed: 19500688]

70. Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A. 2004; 101:4175–4179.

71. Molberg O, Kett K, Scott H, Thorsby E, Sollid LM, Lundin KE. Gliadin specific, HLA DQ2- restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand J Immunol. 1997; 46:103–109.

72. Arentz-Hansen H, Korner R, Molberg O, et al. The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue

transglutaminase. J Exp Med. 2000; 191:603–612.

73. Henderson KN, Tye-Din JA, Reid HH, et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity. 2007; 27:23–34.

74. Van Heel DA, Franke L, Hunt KA, et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet. 2007; 39:827–829.

75. R. Bouziat et al. Science 356 (6333). Reovirus Infection Triggers Inflammatory Responses to Dietary Antigens and Development of Celiac Disease. 44-50. 2017 Apr 07.

76. Liu S, Cerione RA, Clardy J. Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci U S A. 2002; 99:2743–2747.

77. Sollid LM, Jabri B. Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Curr Opin Immunol. 2011; 23:732–738.

78. Rostom A, Dube C, Cranney A, et al. The diagnostic accuracy of serologic tests for celiac disease: a systematic review. Gastroenterology. 2005; 128:S38–46.

79. Di Niro R, Mesin L, Zheng NY, et al. High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal

lesions. Nat Med. 2012; 18:441–445.

80. Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med. 2002; 195:747–757.

83

81. MacDonald TT, Ferguson A. Hypersensitivity reactions in the small intestine. 2. Effects of allograft rejection on mucosal architecture and lymphoid cell infiltrate. Gut. 1976; 17:81–91.

82. Salvati VM, MacDonald TT, Bajaj-Elliott M, et al. Interleukin 18 and associated markers of T helper cell type 1 activity in coeliac disease. Gut. 2002; 50:186–190.

83. Cammarota G, Cuoco L, Cianci R, Pandolfi F, Gasbarrini G. Onset of coeliac disease during treatment with interferon for chronic hepatitis C. Lancet. 2000; 356:1494–1495.

84. George EK, Mearin ML, Bouquet J, et al. High frequency of celiac disease in Down syndrome. J Pediatr. 1996; 128:555–557.

85. Cellier C, Delabesse E, Helmer C, et al. Refractory sprue, coeliac disease, and enteropathyassociated T-cell lymphoma. French Coeliac Disease Study Group. Lancet. 2000; 356:203–208.

86. Jabri B, Ebert E. Human CD8+ intraepithelial lymphocytes: a unique model to study the regulation of effector cytotoxic T lymphocytes in tissue. Immunol Rev. 2007; 215:202–214.

87. Hue S, Mention JJ, Monteiro RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004; 21:367–377.

88. Perera L, Shao L, Patel A, et al. Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm Bowel Dis. 2007; 13:298–307.

89. Malamut G, El Machhour R, Montcuquet N, et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest. 2010; 120:2131–2143.

90. Lorand L, Graham R (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140– 156

91. Upchurch HF, Conway E, Patterson Jr MK, Maxwell MD. Localization of cellular transglutaminase on the extracellular matrix after wounding: characteristics of the matrix bound enzyme. J Cell Physiol

1991;149(3):375–82.

92. Transglutaminase 2 and Transglutaminase 2 Autoantibodies in Celiac Disease: a Review. Tiina Rauhavirta1 & Minna Hietikko1 & Teea Salmi2,3 & Katri Lindfors1

93.Dieterich et al. In situ enzymatic activity of transglutaminase isoforms on brain tissue sections of rodents: A new approach to monitor differences in post-translational protein modifications during neurodegeneration. Schulze-Krebs A, Canneva F, Schnepf R, Dobner J, Dieterich W, von Hörsten S. Brain Res. 2016 Jan 15;1631:22-33. doi: 10.1016/j.brainres.2015.11.027. Epub 2015 Nov 23.

94.Orrù et al. Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease. Orrù S, Caputo I, D'Amato A, Ruoppolo M, Esposito C. J Biol Chem. 2003 Aug 22;278(34):31766-73. Epub 2003 Jun 10.

84

96. Dieterich et al. In situ enzymatic activity of transglutaminase isoforms on brain tissue sections of rodents: A new approach to monitor differences in post-translational protein modifications during neurodegeneration. Schulze-Krebs A, Canneva F, Schnepf R, Dobner J, Dieterich W, von Hörsten S. Brain Res. 2016 Jan 15;1631:22-33. doi: 10.1016/j.brainres.2015.11.027. Epub 2015 Nov 23.

97. Caputo et al. Anti-tissue transglutaminase antibodies activate intracellular tissue transglutaminase by modulating cytosolic Ca2+ homeostasis. Ivana Caputo, Marilena Lepretti, Agnese Secondo,

Stefania Martucciello, Gaetana Paolella, Daniele Sblattero, Maria Vittoria Barone, Carla Esposito.

98. The function of tissue transglutaminase in celiac disease. Antonio Di Sabatino a, Alessandro Vanoli , Paolo Giuffrida, Ombretta Luinetti ,Enrico Solcia , Gino Roberto Corazza.

99. Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM (2013) Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on thesurface of cells. J Immunol 190:5981–5991.

100. Freitag et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Popov Y1, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, Lee J, Dieterich W, Melino G,

Schuppan D.

101. Kalliokoski et al. Celiac Disease-Specific TG2-Targeted Autoantibodies Inhibit Angiogenesis Ex Vivo and In Vivo in Mice by Interfering with Endothelial Cell Dynamics. Kalliokoski S, Sulic AM, Korponay- Szabó IR, Szondy Z, Frias R, Perez MA, Martucciello S, Roivainen A, Pelliniemi LJ, Esposito C, Griffin M, Sblattero D, Mäki M, Kaukinen K, Lindfors K, Caja S.

102. Korponay-Szabo et al. Celiac disease patient IgA antibodies induce endothelial adhesion and cell polarization defects via extracellular transglutaminase 2. Nadalutti CA1, Korponay-Szabo IR, Kaukinen K,

Griffin M, Mäki M, Lindfors K. Pardini, A.W., et al., 2006. Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res. 1112, 169-178

103. Boscolo S, Lorenzon A, Sblattero D, Florian F, Stebel M, Marzari R, Not T, Aeschlimann D, Ventura A, Hadjivassiliou M (2010) Anti transglutaminase antibodies cause ataxia in mice.

104. LINEE GUIDA CELIACHIA E DIABETE a cura di Adriana Franzese Italo De Vitis Coordinatori del Gruppo di Studio Giovanni Ghirlanda Silvana Salardi Riccardo Troncone Riccardo Urgesi Rosa Nugnes.

105. LINEE GUIDA CELIACHIA E DERMATITE ERPETIFORME a cura di P. Fabbri° U.Volta* F. Bardazzi° C. Catassi* I. De Vitis* M. Caproni° Coordinatori del Gruppo di Studio: P. Fabbri°, U. Volta* °Dermatologi della task-force di specialisti a supporto del CSN-AIC. *Membri CSN-AIC.

106. Relazione al parlamento sulla celiachia – Anno DONNA E CELIACHIA sito AIC Associazione italiana celiachia. “MIGLIORIAMO LA DIAGNOSI E IL TRATTAMENTO DELLA MALATTIA”. Donna e celiachia2014.www.salute.gov.it/imgs/c_17_pubblicazioni_2306_allegato.pdf

107. A double-blind gluten-free/gluten-load controlled trial in a secure ward population. Vlissides DN, Venulet A, Jenner FA. 1986 Apr; 148:447-52.

85

109. Sapone A, Zevallos V, Schuppan D. Nonceliac gluten sensitivity. Gastroenterology. 2015 May;148(6):1195-204.

110. Carlo Catassi et al. Non-Celiac Gluten Sensitivity: The New Frontier of Gluten Related Disorders. Nutrients 2013; 5: 3839-53.

Documenti correlati