• Non ci sono risultati.

SUPERFICIE SCALDATA

UNITA’ DI MISURA DESCRIZIONE

α W·m-2·K-1 coefficiente di scambio termico

β K-1 dT dρ ρ 1 −

= coefficiente di dilatazione cubica

βτ K-1 dT dε ε 1 −

= coefficiente di temperatura della permettività elettrica

γ V·m-1 rigidità dielettrica

δt m altezza dello strato limite termico

ε F·m-1 permettività del mezzo

εbulk - errore percentuale sulla temperatura del bagno

εd/Lc - errore percentuale sulla distanza tra gli elettrodo εI - errore percentuale sulla stima della corrente del

circuito di bassa tensione

εL - errore percentuale sulla stima dell’area di misura εM - errore percentuale del modulo di acquisizione εNu - errore percentuale sul numero di Nusselt

εq - errore percentuale sul flusso termico della lastra εR - errore percentuale sulla resistenza della lastra εRC - errore percentuale della resistenza campione εRTD - errore percentuale della termoresisteza εS - errore percentuale dello strumento εT K errore assoluto sulla temperatura εT% - errore percentuale sulla temperatura

εV - errore percentuale sulla tensione ai capi della

lastra

εVC - errore percentuale sulla lettura del potenziale ai

capi della resistenza campione.

ε∆T - errore percentuale sul salto di temperatura tra

fluido e parete

ζMAX m raggio dei siti attivi di nucleazione della bolla λD m lunghezza d’onda di Taylor

λH m lunghezza d’onda del getto instabile µ Kg⋅ m-1⋅ s-1 viscosità dinamica

ν m2·s-1 viscosità cinematica

ρ kg·m-3 densità di massa

E

ρ C·m-3 densità di carica caratteristica

L kg·m-3 densità del liquido ρV kg·m-3 densità del vapore σ N⋅ m-1 tensione superficiale

σE S·m-1 conducibilità elettrica

σST Ω deviazione standard (resistenza)

τ Pa tensore degli sforzi viscosi

χ parametro definito nell’equazione (1.12)

144

NUMERO ADIMENSIONALE DESCRIZIONE

Bo numero di Bond E* γ ⋅         ⋅ ⋅ = r z r HV 2 ln Ja numero di Jacob Ja* fg bulk P h T T Cp⋅( − ) = Ja** fg SAT P h T T Cp⋅( − ) = K numero di Kutateladze M parametro di mobilità Nu numero di Nusselt Pr numero di Prandtl Re numero di reynolds

145

BIBLIOGRAFIA

[1] P. Di Marco and W. Grassi Satured Pool Boiling Enhancement by Means of an

Electric Field, Journal of Enhanced Heat Transfer, vol. 1/1, pp. 99-114, 1993 [2] W. Grassi, D. Testi, and D. Della Vista, “Heat Transfer Enhancement on the

Upper Surface of a Horizontal Heated Plate in a Pool by Ion Injection from a Metallic Point” , Journal of Electrostatic, in Press

[3] G.Ludovici, “Scambio Termico Convettivo da una Lastra Scaldante

Orizzontalmente Immersa in un Fluido Polare, in Presenza di Campo Elettrico”, Tesi di Laurea 2005

[4] Pool boiling in the presence of an electric field and in variable gravity field: GABRIEL (W.Grassi, P. Di Marco, R. Manetti). 24th ESA Parabolic Flight Campaign 1997: “Electrostatic forces role and effect on heat transfer

enhancement on a thin wire, when a cylindrical electrostatic field is applied”

[5] W. Grassi, P. Di Marco, R. Manetti, 29th ESA Parabolic Flight Campaign 2000:

“Study of the effect of an imposed electrostatic field on pool boiling heat transfer and fluid management”

[6] High efficiency heat exchanger, M.Cardinotti, M.Gabbani, F.Giusti, A.Ruggiero),9th ESA Student Parabolic Flight Campaign 2006:

“Electrohydrodynamic heat transfer enhancement in a square duct under laminar to weakly turbulent mixed convection”

[7] W. Nakayama, A. E. Bergles, “Cooling Electronic Equipment: Past, Present,

and Future”, the International Symposium on Heat Transfer in Electronic and Microelectronic Equipment, ICHMT, Aug. 29- Sept.2, 1988 Dubrovnik

[8] D. C. Wadsworth, I. Mudawar, “Cooling of a Multichip Electronic Module by

Means of Confined Two-Dimensional Jet of Dielectric Liquid”, Boiling and Two-Phase Flow Laboratori, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47097

[9] R.C. Chu, “Heat Transfer in electronic system”, Internationl Business Machines Corporation Poughkeepsie, New York 12602 USA

[10] W.Grassi, D.Testi, “Heat Tranfer Augmentation by ion Injection in annular

duct”, ASME Heat Tranfer/Fluids Engineering Summer Conference, Charlotte, North Carolina, USA, July 2004

146 [11] D.J.Tritton, 1988, “Phisical fluid dynamics” Oxford science publications

[12] W.Grassi, D.Testi, 2004, “Heat Tranfer Augmentation by ion Injection in

annular duct”, Heat Tranfer/Fluids Engineering Summer Conference

[13] B.R. Lazarenko, F. P. Grosu, and M. K. Biologa, “Convective Heat-Tranfer

Enhancement by Electric Fields ”, International Journal of Heat and Mass Transfer vol.18, pp. 1433-1441,1975

[14] N.J. Felici, “D.C. Conduction in liquid dielectrics electrohydrodynamic

phenomena”, part I”, Direct Curent, Vol.2, No3, 1971

[15] N.J.Felici, Aprile 1985, “High field conduction in dielectric liquids revisitated”, IEEE transactions on electrical insulation, Vol. EI-20 No.2

[16] P. Atten, B. Malraison, and M. Zahn, “Electrohydrodynamic Plumes in Point-

Plane Geometry”, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 4/6, pp. 710-718,1997

[17] W. Grassi, D. Testi, D. Della Vista, and G. Torelli, “Augmentation of Heat

Transfer on the Downward Surface of a Heated Plate by Ion Injection” , Proceedings of the interdisciplinary Transport Phenomena in Microgravity and Space Sciences IV, Tomar, Portugal, 2005

[18] M. Crowley, G. S. Wright, and J. C. Chato, “Selecting a Working Fluid to

Encrease the Efficiency and Flow Rate of an EHD Pump”, IEEE Transactions on Industry Applications, vol. 26/1, pp.42-49, 1990

[19] N. Felici, “Phénomènes Hydro et Aérodynamiques dans la Conduction des

Diélectriques Fluides

[20] Atten P., Eloudie L., 1995, “EHD Convection in a Dielectric Liquid Subjected

to Unipolar Injection: Coaxial Wire/Cylinder Geometry”, Journal of Electrostatics, 34, pp. 279-297

[21] Frank P. Incropera, David P. De Witt , “Fundamentals of Heat Transfer and

Mass Transfer”

[22] J. H. Lienhard, “A Heat Transfer Texbook”, Prentice-Hall, Inc, Englewood Cliffs, N.J. (1981), Ch. 10

[23] W. Grassi and D. Testi, 2006, Heat “Transfer Enhancement by Electric Fields

in Several Heat Exchange Regimes”, Annals of the New York Academy of Sciences, vol. 1077, pp. 527-569.

147

phenomenology and technological potential”, University of Pisa, Faculty of Engineering, Department of Energetics: “L.Poggi”, Dottorato di Ricerca in Electrical and Thermal Energetics

[25] H.Martin, 1977, “Heat and Mass Transfer between Impinging Gas Jets and

Solid Surfaces”, Advances in Heat Transfer, vol. 13, pp. 1-60

[26] B. W. Webb and C.-F. Ma, 1995, “Single phase Liquid Jet Impingement Heat

Transfer” Advances in Heat Transfer, vol 26, pp 105-222

[27] Y. Pan, J. Stevens, and B.W. Webb, 1992, “Effects of Nozzle Configuration on

Transport in the Stagnation Zone of Axisymmetric, Inpinging Free-Surface Liquid Jets: Part 2- Local Heat Transfer”, Journal of Heat Transfer- Transactions of the AME, vol 114, pp 880-886

[28] D.H. Wolf, F.P.Incropera, R. Viskanta, “Jet Impingement Boiling”, Heat transfer laboratory, School of Mechanical Engeneering, Purdue University, West Lafayette, Indiana

[29] W. Grassi, D. Testi, and D. Della Vista, 2007, “Optimal Working Fluid and

Electrode Configuration for EHD-Enhanced Single-Phase Heat Transfer”, Journal of Enhanced Heat Transfer, vol. 14, no. 2, pp. 161-173

[30] P.Cooper, “EHD Enhancement of Nucleate Boiling”, Department of Mechanical Engineering, University of Wollongong, Wollongong, NSW 2500, Australia

148

APPENDICE A

Documenti correlati