• Non ci sono risultati.

Xenopus laevis oocyte as a model for the study of the cytoskeleton

N/A
N/A
Protected

Academic year: 2021

Condividi "Xenopus laevis oocyte as a model for the study of the cytoskeleton"

Copied!
9
0
0

Testo completo

(1)

Review

Xenopus

laevis

oocyte

as

a

model

for

the

study

of

the

cytoskeleton

Rosa

Carotenuto

*,

Margherita

Tussellino

DepartmentofBiology,UniversityofNaplesFedericoII,Napoli,Italy

1. Introduction

Xenopus oocyte was first demonstrated to have the capacitytotranslateexogenousmRNAs,thenitwasshown thatthiscellisparticularlysuitableforotherstudiessuch aselectrophysiology, Ca2+signalling,thedevelopmental andcellularmechanismsofRNAlocalization,axis specifi-cation and establishment of the cytoskeleton changes duringoogenesis.Thelatteraspectconstitutesthetopicof this review. Indeed, the stage-dependent cytoskeletal organizationoftheXenopusoocyteisuniquewithrespect totheoocyte ofotherAmphibian genders (Discoglossus,

Bufo,Ranaetc.);this peculiarityconstitutesa rewarding model for the study of the cytoskeleton in relation to functionalstagesofoogenesis.IntheXenopusoocyte,the cytoskeletondistributionisdynamicallyregulatedduring oogenesis.During diplotene, oocytes undergoimportant functional and molecular changes related to oogenesis itself ortothedevelopmentof theprospective embryo. Indeed,theoccurrenceofspatialdistributionoforganelles andmolecules,whichisoffundamentalimportanceforthe organization of the oocyte, strictly depends upon the cytoskeletonandviscoelasticconditionsofthecytoplasm. An actin-based cytoskeleton is present in the cortex startingfromearlystage1[1–3],whentheoocytedoes not display clearsigns of polarizationin the cytoplasm (Fig.1a,b).Attheendofoogenesis,stages4–6,acomplex and polarized cytoskeleton network is present in the ARTICLE INFO

Articlehistory: Received7March2018

Acceptedafterrevision6April2018 Availableonline26April2018 Keywords: Oocyte Xenopus Mitochondrialcloud Polarization Spectrin Cytokeratin p4.1R ABSTRACT

Atthebeginningofdiplotene,theoocyteofXenopuslaevisisacellofabout10–20microns destinedtoincrease10,000-folditssizewhentheoocytebecomesfilledwithyolkplatelets andhasaccumulatedagreatnumberofpigmentgranulesinahalfofitsperiphery.Its internalarchitectureisgraduallyaccomplishedduringgrowthbecauseofseveralfactors, especiallybecauseofcytoskeletalchanges.Inthefully-grownoocyte,thecytoskeleton appearstosustaintheeccentricallylocatedgerminalvesiclethrougharmsradiatingfrom thecortex to the germinal vesicle, aunique organization not to be found in other Amphibians.Inthisreport,wesummarizedandanalysedstepsofcytoskeletalproteins andrelatedmRNAsorganizationandfunctionthroughoutdiplotenestage,highlighting ourstudiesinthisanimalmodel.Thecytoskeletalproteinsappeartoexploittheiractivity with respect to ribosomal 60S subunit maturation and during translation. Most importantly,thepolarityoftheoocyteisachievedthroughasophisticatedandhighly organizedlocalizationofmRNAsandcytoskeletalproteinsinonesideofthecell.This asymmetrywillstarttheconstruction oftheoocytepolaritythatis instrumentalfor determiningthecharacteristicofthiscell,whichwillbecomeanembryo.Moreover,inthe same time membrane composition, conditioned by the underlying cytoskeletal organization,willacquiretheprerequisitesforspermbindingandfusion.

C 2018Acade´miedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved.

* Correspondingauthor.

E-mailaddress:rosa.carotenuto@unina.it(R.Carotenuto).

ContentslistsavailableatScienceDirect

Comptes

Rendus

Biologies

w ww . sc i e nce d i re ct . co m

https://doi.org/10.1016/j.crvi.2018.04.001

(2)

cytoplasm.Asa result,aradialdistributionof filaments extends from the cortex to the Germinal Vesicle (GV) periphery (Fig. 1a, b). In addition to actin, several cytoskeletalproteinshavebeendetectedin thegrowing oocyte,includingtubulin[4–12],vinculin[13],vimentin

[14–20],talin[1],cytocheratin[21–26],spectrin[26–29]

and myosin [2,30–32]. When the oocyte reaches final stages of growth (stages 4–6)1, it acquires a defined

polarizationwithrespecttoitsvirtualanimal/vegetalaxis (A/V axis). The eccentrically located germinal vesicle marks the animal side, and several cytoplasmic consti-tuents, suchas yolk platelets and ribosomes,distribute along the A/V axis (Fig. 1a, b). Immunocytochemistry coupledwithdisruptivedrugsshowedthatactin,

interme-diatefilaments,andmicrotubuleshaveafundamentalrole in the establishment and maintenance of this animal/ vegetal polarity. In particular, in fully grown oocytes, cortical and perinuclear actin is linked tomicrotubules throughtheirminusend,displayingthemechanicaland functionalscaffoldingoftheoocyte[33,34].

2. Theearlyoocyte

2.1. Cytoskeletonorganization

In stage-I oocytes, in which the yolk has not yet been deposited, the CSK forms a supple network that gradually spreads throughout the cell and is primarily composedofactin microfilaments,microtubules, vimen-tin, cytokeratin and spectrin [3,21,34,36]. Actin-binding spectrins of 239 and 100kDa associate with the cell membrane,thenuclearenvelopeandthegrowing mito-chondrialcloud(MC)[26,29],similarlytotheorganization achievedbytheintermediatefilaments(Fig.1andFig.2) Fig.1. Xenopuslaevisoogenesis;a:photographofoocytesstagesaccordingto[35];b:schematicdrawingofstepsofcytoskeletonorganizationduring Xenopuslaevisoogenesis.InearlystageI,theCSKproteins,inparticularactinandspectrin,aresparselypresentinthecortex.Whentheoocytereachesabout 130mmindiameter,theCSKisorganizedalsoaroundtheGV.At250mm,theCSKiswidelypresentinthecortexandinthecytoplasm,whereinparticular tubulin,spectrin,andcytokeratinarefound.Inthecortex,p4.1Risalsopresent.TheCSKfilamentspermeatetheMC.Inthisstageofgrowth,atransient asymmetricallocalizationofa-spectrin(RNAandprotein)bisectstheoocytecytoplasmintwohalves.AtstageII,whentheCSKisabundantlypresentinall oocytedistricts,theMCdisaggregates,anditscontent,includingCSKcomponents,istransportedtothefrontingcortex,thevegetalpole.AtstagesII–III,yolk depositionoccursattheoocyteperiphery.Themicrotubulearraysustainingthe‘‘latepathway’’,radiatesfromthenuclearenvelopetothesitewheretheMC hasdisaggregated.AtstageIV,thecrownofmicrotubule,cytokeratin,actin,spectrinhasextendedinallthecytoplasm,fromthecortextothenuclear envelope.Thepigmentgranulesareinalmostalltheperipheralcytoplasm,whereaslater,atstagesV–VI,theyarefoundonlyintheanimalhalf.ThestageVI fullygrownoocytedisplaysapolarizedorganizationofallitsconstituents,includingthecortexandaroundtheGV.

1

StagingoftheXenopusoocytes.ThegrowthstagesoftheX.laevis oocyteare:stageI(50–300mm),stageII(300–450mm),stageIII(450– 600mm),stageIV(600–1000mm),stageV(1000–1200mm),andstage VI(1200–1300mm)accordingto[35].

(3)

[34,37].Antibodiesto

b-spectrin

identifyafurtherisoform ofabout230kDasurroundingthenucleoliintheoocyte germinal vesicle(GV) [29]. Itis known thatprotein 4.1 (4.1R),an80-kDapolypeptide,stabilizesthespectrin–actin network and anchors it to the plasma membrane

[38,39]. Immunoprecipitationexperiments with antibo-dies directedagainst thisproteinindicated that atleast twoisoformsofthe4.1RproteinarepresentinX.laevis oocytes: a 56-kDaformin thecytoplasmand a 37-kDa formintheGV,bothisoformsassociatewiththe100-kDa isoformof

b-spectrin.

Moreover,the56-kDaform coim-munoprecipitates with a cytokeratin of the same Mr. Doubleimmunolocalizationindicatethatp4.1Rcolocalizes withactininthecortexofoocytesasfluorescentdots[36], and forms withcytokeratintwo separatenetworksthat overlapthroughoutthewholecytoplasm(Fig.3a,b).Itwas

hypothesizedthatprotein4.1Rcouldfunctionasalinker protein between cytokeratin and the actin-based cyto-skeleton[36].

Therefore,in this earlyoocytestage, theCSKis well present and in the process of gaining a more complex organization(Fig.1b).

2.2. CytoskeletonandRNA

It has been postulated that the CSK ensures that a critical mass of translation factors and RNAscomes in contactwitheachothertofacilitate efficienttranslation

[40–43].

In the early-stage oocyte, RNA transcription and translationareactive,ensuringthesynthesisofproteins essentialfortheoocyteitselfandforthefutureembryo.In particular,proteinsinvolvedinstepsofRNAmaturation andintranslationprocesseswerefoundassociatedwith spectrins,keratins,and tubulin[44].Ribosomalsubunits form in the nucleolus and are then exported to the cytoplasm,where theyassociatewitha vast numberof essentialfactors,aprocessparticularlyrelevantintheX. laevisoocyte,whichcontainsmorethan1000nucleoli[45]

andassociatewithcytoskeletalproteins.

Information is available on proteins involved in 60S ribosomalmaturationand/ortranslationinXenopusstage I,suchasrpl10,theeukaryoticinitiationfactor6 (Eif6), thesaurinsA/BandP0.rpl10isnecessaryfortheformation ofanactiveribosome,asitparticipatesinthematuration of60S[44].ThesaurinsarehomologoftheeEF1-elongation factorinX. laevisoocytes [46].P0is theribosomalstalk proteinthatbindstotheGTPasecentreandeEF1during translation [47] by organizing the architecture of the aminoacyl-tRNAbinding siteon the ribosome[48]. Eif6 binds to the 60S ribosomal subunits in the nucleolus

[49]. The transport of 60S from the nucleus to the cytoplasm has already been described in animal cells including Xenopus oocytes [50]. In preparation for 60S nuclearexport, several proteins includingEif6 associate withpre-60S[47,51,52].AlargepoolofEif6thenlocalizes into thecytoplasm. Eif6 may bind tomature 60S,thus regulating 60S availability [53]; if protein kinase C phosphorylatesEif6atserine235,theaffinityofEif6for 60Sisreduced,andtheavailabilityof60Sfortranslation andtheformationoftheactive80Sribosomeisincreased

[54].Botheif6andrpl10associatewithspectrin(Fig.4), cytokeratin and tubulin, while thesaurins interact only with spectrin and cytokeratin [44]. Given that, upon ribosomalmaturation,rpl10insertsintothe60Ssubunit simultaneously with the release of eif6 [48]; it was hypothesized that actin-based CSK and microtubules provide the necessary scaffold for the insertion/release of these two molecules and, subsequently, for eif6 transport and binding to the mature 60S subunit. Thesaurinsaggregateattheoocyteperiphery,makingthis afavourablesiteforproteinsynthesis.Infact,theCSKmay supporttheinteractionbetweenthesaurinsandsitesofthe translating ribosome.Moreover, as the assembly of the ribosomestalk(whereP0islocated)tothe60Ssubunitis essentialforthereleaseofeif6,itcanbeassumedthatthe CSKfacilitatesthebindingofthestalktothe60S[44].These Fig.2. CytokeratindistributioninearlystageIIoocyteofX.laevis;a:the

CKformsanetworkintheoocytecytoplasm(arrows);infollicularcells thatsurroundtheoocyte,theCKisdistributedinformofsubtle,parallel filaments(aandb,asterisks).Fordetailssee[36].

(4)

data support the hypothesis that cytoskeletal proteins haveaspecificfunctionalroleduringribosomematuration andtranslation.

3. Towardsoocytepolarization:themitochondrialcloud Atst.1,thedefinitivemitochondrialcloud(MC),richin activemitochondria[55],growsanchoredtothenuclear envelope,making up a clear sign of asymmetry in the oocyte.Infact,thevirtualanimal/vegetalaxisoftheoocyte canbetracedbecauseofthepositionoftheMC(Fig.5c)

[56].TheMCcanbeconsideredasapackageofRNAsheld togetherbyanetworkofcytoskeletalproteins, endoplas-micreticulum (ER)andmitochondria, usedtotransport genetic information to the oocyte cortex. Indeed, it containsgermplasmmRNAs(Xcat2,Xdaz1,Xpat, DEAD-South,etc.)inaregionfacingtheplasmamembranecalled METRO(Fig.5b)[57]andothermoleculessuchasXlsirts, Xwnt-11,Xotx1mRNAs[58,59],cytokeratin[5,26,60,61], spectrin [26,57],

g-tubulin

[12] and p4.1 [36]. The conspicuous network of cytoskeleton components sur-roundspermeatesandsustainstheMC[36,60,61].TheMC graduallymigratestowardsthevegetalcortexthroughan unknown mechanism. Indeed, the CSK cannot exert contractileactivity becausethis abilityis acquiredlater

inoogenesis,afteroocytematuration[62].Moreover,MC migrationdoesnotappeartobegovernedbyaviscoelastic changeintheregionwhereit moves[63].AtstageIIof oocyte growth, the MC releases its content into the proximal cortex,thereby markingit as thevegetal pole

[58].ThemRNAsremaintightlyanchoredtothevegetal cortex, thankstocytoskeletal proteins, until theend of oogenesis[64](Fig.1bandFig.5a,b).

InXenopus,

a-and

b-spectrins

(mRNAandproteins)are segregatedinacaplocatedattheoocytecortex.Thiscapis detectableduringthetranslocationoftheMCtothecortex andconstitutesanearlyeventofcytoskeletonpolarization

[65]. Indeed,

a-spectrin

mRNA marks this transient asymmetry already in stage-I oocytes and co-localizes withthemRNAofXNOA36,homologoustomammalian NOA36RNA.ThelatterispresentinthenucleolusinG1/G2 or associated with centromeres during metaphase in mammaliancells[66].InX.laevisoogenesis,both XNOA 36and

a-spectrin

mRNAsundergoagradualsegregationin the oocyte, parallel to the A/V axis, thereby virtually cuttingtheMCandtheoocyteintwohalves(Fig.5c,d1–4). Moreover,XNOA36mRNAco-localiseswiththe

a-spectrin

protein in thin filamentous structures and co-immuno-precipitates with this protein. Therefore, the spectrin-containingcytoskeleton,i.e.theactin-basedcytoskeleton

[67–69]mayaccountforthenetworkdecoratedbyXNOA 36 mRNA. These findings suggest the existence of a cytoskeletal-dependent process of RNA localisation/an-choringinstage-IoocytesofXenopuslaevis.Inaddition,the cytoskeletal network where XNOA 36 mRNA is located appearstoholdtheMCduringitsmigrationtothecortex.It washypothesizedthattheasymmetricwithdrawalofthe cytoskeletoncontainingXNOA36mRNAmightsupplythe force needed to drag the MC towards the cortex

[70]. Importantly, the described localization pattern of thespectrin mRNAandproteinis transientandit is no longer detected in that pattern in oocytes after growth stage I. Moreover, the MC region METRO rich in mitochondria appears to contain the XNOA 36 protein (Fig. 5d4) that is alsonoticeably presentin the vegetal cortex in frontof theMC [70]. Theprediction of XNOA 36subcellularlocalization,confirmsthatitisatleast4.3% cytoskeletaland4.3%mitochondrial[26].Asthecortexis notoriously rich in cytoskeletal proteins [64] including spectrin [26],it washypothesizedthat the centromeric XNOA36proteininteractswiththecytoskeleton, partici-patingintheanchorageoftheMCanditsmRNAsinthe futurevegetalpole[70].

4. StagesII–III

Inthesestages,pigmentgranulesaccumulateandyolk synthesisproceedsfromtheoocyteperiphery.Following thereleaseoftheMCcontentintothevegetalcortex,at stages II–III, a second pathway (‘‘the late pathway’’) transportstotheregionmarkedbytheMCcontentmRNAs suchasVg1andVegTmRNAs,responsibleforendoderm andmesodermspecification[45].Notoriously,theoocyte doesnothavecentrosomes.Interestingstudiessustainthat

[57] the MC contains and releases residual centriole proteins suchas

g-tubulin,

which couldbeused inthe Fig.3.Confocal colocalizationofp4.1Rwithcytokeratininpolarized

X.laevisoocytes.p4.1RandCKwerestainedwithpolyclonalanti-p4.1R8/ 10 and monoclonal anti-CK antibodies, respectively. The secondary antibodieswereBODIPY-conjugatedanti-rabbitIgG(green)andTexas Red-conjugated anti-mouse IgG (red). Projection of ten sections perpendicularto theA/Vaxisofa polarizedoocyte;a:animalhalf. Largeareasofcolocalizationintheformofyellowdotsaredetectedalong CKfilamentscrossingp4.1R8/10filaments(arrows);b:vegetalhalf.The networksofp4.1R8/10andCKintersectandcolocalizeinlargeareas composedofspots(arrow).Fordetails,see[36].

(5)

latemRNAspathwayasamicrotubule-organizingcentre (MTOC).Indeed,theMCcontentappearstobethecentreof organizationforamicrotubulearraythatisinvolvedinthe transportofVg1andVegTmRNAstothefuturevegetalhalf oftheoocyte[56,71–73].Thispathwayoccurswhenthe Vg1andVegTmRNAsarefoundinabell-shapedstructure richinERvesicleslocatedinthestreamofMCmigration. The mRNAs probably associate with the vesicles that migratealongtheMTorientatedtowardthevegetalpole. Thus,themRNAsarriveintheterritorymarkedbytheMC content[74].Gradually,theMTsreorganizeinthewhole vegetalhemisphereoftheoocyteandlaterassociatingCSK organizationspread inthewholecytoplasm.Itwasalso

hypothesized that, as in mammals XNOA 36 associates withcentromeres[66],inXenopusoocytethisproteinmay associatewiththeresidualcentrioleproteinsof theMC participating in early microtubules reorganization. The process starting at the MC disaggregation site in the vegetalcortex,spreadstotherestoftheoocyte[61]cortex, where XNOA 36 is also located (Fig. 5d) [26]. In this transitionalphaseofoogenesis,

a-spectrin

RNAandother CSK proteins gradually gain a new organization in the oocyte.Inparticular,confocalimmunolocalizationshows thatinthecytoplasmoftheoocytes,aloosenetworkof fibresstainedbyanti-4.1Rantibodiesspreadsacrossthe cytoplasm(Fig.3a,b[36].TheCSKisabundantlypresent Fig.4.ImmunofluorescenceinstageIoocytes;a1,b1,c1:immunostainingwithmonoclonalanti-rpl10revealedusinganti-mouseIgGconjugatedwith TexasRed.Theheavyfluorescentrimaroundtheoocytelabelsthesomatictissuethattypicallysurroundsoocytes.Theimmunofluorescencewaslocalized in the mitochondrial cloud (MC),around the nuclear envelope (arrowheads) and mildlyat the oocyte periphery(arrowheads), similar to the immunolocalizationofspectrinusingpolyclonalanti-spectrin;a2,b2,c2:andrevealedusinganti-rabbitIgGconjugatedwithBODIPY,ingreen;a3,b3,c3: colocalizationofthetwoproteinsintheMCandthenuclearenvelope(arrowheads).Someimmunostainingwasalsodetectedattheoocyteperiphery (arrowheads)andinthecytoplasm.ThesectionswerecounterstainedwithDAPI.Bars=21mm.

(6)

also in the folliclecells, where it forms a conspicuous cytoskeletalnetwork(Fig.2a,b;asterisks).

5. StagesIV–VI

StagesIII–IVareintermediatestagesofreorganization ofmRNAsandproteins,and,onlyduringstagesIV–VI,the oocyte acquires its final symmetry displaying a radial organization along the A/V axis. Microfilaments and

microtubules radiate from the nuclear envelope to the oocyteperiphery(Fig.1b)[60].

Stage IV–VI Xenopus oocytes contain an extensive networkofcytoplasmicmicrotubules[12]anda substan-tialpoolofthecentrosomalprotein

g-tubulin

surroundthe GV, indicating that the GV serves as a MTOC in late oogenesis.

g-Tubulin

isalsoconcentratedinthecortex,its distributionbeingpolarizedalongtheanimal-vegetalaxis.

g-Tubulin

isassociatedwithMTsinthecorticalcytoplasm. The distribution of this protein was not significantly Fig.5.mRNAlocalizationintheearlyoocyteofX.laevis;a:oocytestagesI–IIwithevidentMC(arrowhead),arrowindicatethenucleus;b:X-cat2 localizationintheMETROareaofMC(arrowhead);c:schematicviewofthelocalizationofXNOA36anda-spectrinmRNAswithrespecttothevirtualA/V axis,asdeterminedbythepositionoftheMC;d:insituhybridisationonasectionedspecimen,showingXNOA36anda-spectrinmRNAlocalisationin stage-1oocytesofabout270mm.mRNAbisecttheoocytecytoplasmintwohalves.XNOA36(1)aswellasa-spectrin(3)mRNAsarelabelledbyBMpurple staining.BothmRNAsaresegregatedinthehalfoftheoocyteoppositetothehylum(asterisk).TheMC(arrowhead)ispositionedattheboundarybetween thelabelledandunlabelledregionsoftheoocyte.Thebarin1indicates58mm,and63mmin3.(2)doublelabelinsituhybridisationshowingthe localisationofXNOA36mRNA(detectedthroughBM-purplestaining)anda-spectrinmRNA(detectedthroughVectorblack).Thetwohybridizationsignals overlap(reddish-purplestaining)andsitesofco-localisationareseen,inparticulararoundtheMC(arrowhead).Bar=52mm.(4)Detailofpanel2showing, athighermagnification,thehybridisationsignalsattheMCperiphery(arrow).Bar=10mm.Fordetails,see[26].

(7)

affectedby either coldor nocodazole,but waspartially disruptedbycytochalasinB[12],suggestingthat

g-tubulin

mayserveasalinkbetweentheoocyteMTnetworkand cortical actin. Therefore, the distribution of cortical

g-tubulintemporallycoincideswiththeformationoftheA– VaxisandthepolarizationoftheoocyteMTcytoskeleton duringstageIV/Vofoogenesis.Asimilarpolarizationofthe CKfilamentnetworkoccursinmidstageIV-stageV,and eventually the filament networks adopt the above-mentionedcharacteristicorganizationofstageVIoocytes (Fig.1)[34].

Thecytoplasmiclocalizationof

a-spectrin

indicates a differentorganizationofthecytoskeletalnetworkinthe animal and in the vegetal halves, resembling the men-tioned distribution of tubulin and cytokeratin in the oocytes atthesamestages.In fact,immunofluorescence reveals thatinthecytoplasm,

a-spectrin

isorganizedin theformofradiiintheanimalhemisphere,whileinthe vegetal half, it is apparently less orderly organized

[65].Moreover, intheoocyte periphery,spectrin mRNA showsa specificregionalizeddistribution,asit accumu-latesat theperipheryoftheoocyteanimal half. Impor-tantly, spectrin has binding sites for actin, tubulin, intermediate filament and p4.1R [36,75,76], and its presence in the cortical cytoskeleton may determine domains related to the distribution of specific plasma membrane proteins [68]. The segregation of

a-spectrin

mRNAintheanimalhalfcanbeofrelevancebecauseinthis region during oogenesis and maturation, the oocyte acquirestheabilityoffusingwithsperm[65].

a-Spectrin

may anchor plasma membrane molecules involved in spermbindingandfusion[77].

p4.1Rimmune-localizationrevealsanetwork, particu-larlyintheperipheralcytoplasm,whichismostevidentin thevegetalhalfoftheoocyte.Theunderlyingnetworkis looser, leaving open areas about 30mm wide. Confocal microscopy reveals that this network is madeof single filaments(thinfilaments)andbundlesoffilaments(thick filaments). Thin filaments form a tighter network than thickfilamentsdo.Inaddition,bothfilamentspartially co-localizewithCKintheformofspotsthataredifferently associatedaccordingtowhichhemispheretheyarelocated in(Fig.3a,b)[36].The

b-spectrin

networkisdistributedin similarregionsandistighterthanthatformedbyp4.1R. Although there is no direct evidence for an interaction between p4.1R and spectrin, co-immuno-precipitation experimentssuggestthepresenceofco-localizationsites. This presumptive interaction might contribute to the stabilizationofstructuraldomainsbothintheperipheral cytoplasmandnexttotheplasmamembrane[36]. 6. Concludingremarks

Abouttwentyyearsagothecytoskeletalorganization of Xenopus laevis was described in detail [9– 12,24,25,33,34,37,60,61].Theconclusionofthosestudies wasthatXenopusoocytesarecharacterizedbyacomplex filamentcytoskeletoncomposedofmicrotubules, micro-filaments madeof actin and associated proteins and of intermediate filaments [34]. Intermediate filaments are thelastofthethreemajorcytoskeletalnetworks(F-actin,

MTs,andCKfilaments)establishedinXenopusoogenesis. This observation and the use of CSK-disruptive drugs suggestedthattheorganizationoftheoocyteCSKdepends uponahierarchyofinteractionsamongF-actin,MTs,and CKfilaments.TheauthorsconcludedthatthecorticalCK network appearedtobe highlydependent upon F-actin microfilamentsandMTs. MTswereanchoredtocortical and perinuclear actin via

g-tubulin.

CK filaments were anchoredtoactininthecorticalandperinuclearcytoplasm byanunidentifiedprotein.Cytokeratinscouldbelinkedto MTs trough a MT-dependent motor protein [34]. More recently,Carotenutoetal.(2009),whilestudyingp4.1Rin Xenopusoogenesis,haveshowedthatboththe37-and 56-kDaisoformsofprotein4.1Rassociatewiththe100-kDa isoformof

b-spectrin.

Moreover, the56-kDa isoformof p4.1R coimmunoprecipitates with a cytokeratin of the samemolecularweight,leadingtosupposethatp4.1Rmay very wellconstitute a natural linker between theactin cytoskeletonandcytokeratins.Indeed,confocal immuno-localization ofprotein4.1R andcytokeratin depictstwo separate networks that overlap throughout the whole cytoplasm.

TheroleofCSKinsustainingandcollocatingtheoocyte constituents have further important functional conse-quences.Indeed,itwaspostulatedthatCSKensuresthata critical mass of translation factors and RNAscomes in contactwitheachothertofacilitate efficienttranslation

[40–43].InXenopus,earlystagesofoogenesisarescenarios offundamentalprocessesofRNAmaturationandprotein synthesis. The oocyte cytoskeleton scaffold binds to organelles and molecules,such as ribosomal 60S, poly-somes, mRNAs and other factors including translation initiationand elongationfactors.According toChierchia etal.[44],importantactorsoftheseprocesses,suchasthe eukaryotic initiation factor 6 (Eif6), ribosomal rpl10, thesaurins A/B,homologs of theeEF1-elongation factor, and P0, the ribosomal stalk protein, appear to bind specifically spectrin, cytokeratin or tubulin, strongly suggesting that cytoskeletal components may support proteinsrelatedtodiscretestepsofRNAmaturationand translationprocesses.

The cytoskeleton is also strongly involved in the determinationoftheoocytepolarity.Instudyingtherole ofthecentromericproteinXNOA36,itwasfoundthatin Xenopus oogenesis

a-spectrin/XNOA

36 mRNAs and the onset of the Animal/Vegetal axis of st. I oocyte have a potentialrole.Atthisstage,aCKnetworkcontaining

a-spectrin mRNAand protein as wellas XNOA36 mRNA transientlysegregatesinonehalfoftheoocyte,withthe MC located between the XNOA 36/a-spectrin mRNA-labelledandunlabelledregions.Thislocalizationparallel tothevirtualA/Vaxismayrepresentatransientindication of symmetry in the oocyte. Therefore, these findings suggest theexistenceofa novel cytoskeletal-dependent processofRNAlocalisation/anchoringinstageIoocytesof Xenopuslaevis.Itwasalsospeculatedthattheasymmetric withdrawalofthecytoskeletoncontainingXNOA36mRNA mightsupplytheforceneededtodragtheMCtowardsthe cortexinlatestageI.

AtstageIIofoocytegrowth,theMCreleasesitscontent intotheproximalcortex,therebymarkingitasthevegetal

(8)

pole[58].TheMCmRNAsremaintightlyanchoredtothe vegetalcortex,thankstocytoskeletal proteins including spectrin[64,70].Moreover,theMCappearstocontainthe XNOA36 proteinthat isalsoabundantly presentin the vegetalcortexinfrontoftheMC[70].Itwashypothesized thatcentromericXNOA36proteinmayinteractwiththe cytoskeleton, participatingin the anchorage of the MC mRNAsinthefuturevegetalpole[70].

AtstageIII,thearrangementofMTradiatingfromthe vegetal cortex to the GV is an impressive example of transportation of mRNAs (Vg1 and VegT) mediated by tubulin.ThemRNAslocalizeatthevegetalpoleand the followingfertilizationwillspecifythemesodermandthe endodermofthefutureembryo[45].Theradial organiza-tionoftheCKradiiinthefully-grownoocytetakesplace startingfromthissite.

Roleofthefundingsource

ThisworkwassupportedbyagrantfromtheUniversity ofNaplesFedericoII–RicercaDip.2017.

Disclosureofinterest

The authors declare that they have no competing interest.

Acknowledgements

TheauthorswishtothankDr.MariaCarmelaVaccaro andDr.NadiaDeMarcoforsuggestions.

References

[1]W.W.Franke,P.C.Rathke,E.Seib,M.F.Trendelenberg,M.Osborn,K. Weber,Distributionandmodeofarrangementofmicrofilamentous structuresandactininthecortexofamphibianoocytes,Cytobiologie14 (1976)111–130.

[2]C.Campanella,G.Gabbiani,Cytoskeletalandcontractileproteinsin coelomic, unfertilized and fertilized eggs of Discoglossus pictus (Anura),GameteRes.3(1980)99–114.

[3]A.D.Roeder,D.L.Gard,ConfocalmicroscopyofF-actindistributionin Xenopusoocytes,Zygote2(1994)111–124.

[4]J.Palecek,V.Habrova´,J.Nedvı´dek,A.Romanovsky´,Dynamicsoftubulin structuresinXenopuslaevisoogenesis,J.Embryol.Exp.Morphol87 (1985)75–86.

[5]C.C.Wylie,D.Brown,S.F.Godsave,J.Quarmby,J.Heasman,The cyto-skeletonofXenopusoocytesanditsroleindevelopment,J.Embryol. Exp.Morphol.(1985)1–15.

[6]C.Jessus,C.Thibier,R.Ozon,Levelsofmicrotubulesduringthemeiotic maturationoftheXenopusoocyte,J.Cell.Sci.87(5)(1987)705–712.

[7]D.Huchon,C.Jessus,C.Thibier,R.Ozon,Presenceofmicrotubulesin isolatedcorticesofprophaseIandmetaphaseIIoocytesinXenopus laevis,CellTissueRes.154(1988)415–420.

[8]J.K.Yisraeli,S.Sokol,D.A.Melton,Atwo-stepmodelforthelocalization ofmaternalmRNAinXenopusoocytes:involvementofmicrotubules andmicrofilamentsinthetranslocationandanchoringofVg1mRNA, Development108(1990)289–298.

[9]D.L.Gard,Organization,nucleation,andacetylationofmicrotubulesin Xenopuslaevisoocytes:astudybyconfocalimmunofluorescence mi-croscopy,Dev.Biol.143(2)(1991)346–362.

[10]D.L.Gard, Microtubuleorganization duringmaturationofXenopus oocytes:assembly androtation ofthe meioticspindles,Dev.Biol. 151(2)(1992)516–530.

[11]D.L.Gard, EctopicspindleassemblyduringmaturationofXenopus oocytes:evidenceforfunctionalpolarizationoftheoocyte cortex, Dev.Biol.159(1)(1993)298–310.

[12]D.L.Gard,Gamma-tubulinisasymmetricallydistributedinthecortex ofXenopusoocytes,Dev.Biol.161(1)(1994)131–140.

[13]J.P.Evans,B.D.Page,B.K.Kay,Talinandvinculinintheoocytes,eggsand earlyembryosofXenopuslaevis:adevelopmentallyregulatedchangein distribution,Dev.Biol.137(1990)403–413.

[14]E.J.Godsave,T.Dekker,M.Holling,E.Pannese,A.Boncinelli,Durston, Expression patterns of Hoxb genes in the Xenopus embryo suggestrolesinanteroposteriorspecificationofthehindbrainandin dorsoventralpatterningofthemesoderm,Dev.Biol.166(2)(1994) 465–476.

[15]T.K.Tang,T.L.Leto,V.T.Marchesi,E.J.BenzJr., Expressionofspecific isoformsofprotein4.1inerythroidandnon-erythroidtissues,Adv. Exp.Med.Biol.241(1988)81–95.

[16]N.P.Torpey,J.Heasman,C.C.Wylie,Identificationofvimentinandnovel vimentin-relatedproteininXenopusoocytesandearlyembryos, De-velopment10(1990)185–195.

[17]N.P.Torpey,J.Heasman,C.C.Wylie,Distinctdistributionofvimentin andcytokeratininXenopusoocytesandearlyembryos,J.CellSci.101 (1)(1992)151–160.

[18]N.P.Torpey,C.C.Wylie,J.Heasman,Functionofmaternalcytokeratinin Xenopusdevelopment,Nature357(6377)(1992)413–415.

[19]J.A.Dent,A.G.Polson,M.W.Klymkowsky,Awhole-mount immunocy-tochemicalanalysis oftheexpressionoftheintermediatefilament proteinvimentininXenopus,Development105(1989)61–74.

[20]J.A.Dent,R.B.Cary,J.B.Bachant,A.Domingo,M.W.Klymkowsky,Host cellfactorscontrollingvimentinorganizationintheXenopusoocyte,J. CellBiol.119(4)(1992)855–866.

[21]S.F.Godsave,B.H.Anderton,J.Heasman,C.C.Wylie,Oocytesandearly embryosofXenopuslaeviscontainintermediatefilamentswhichreact withanti-mammalianvimentinantibodies,J.Embryol.Exp.Morphol. 83(1984)169–187.

[22]B.H.Fouquet,J.K.Herrmann,W.W.Franz,Expressionofintermediate filamentproteinsduringdevelopmentofXenopuslaevis.III. Identifica-tionofmRNAsencodingcytokeratins typicalofcomplexepithelia, Development104(4)(1988)533–548.

[23]J.K.Franz,L.Gall,M.A.Williams,B.Picheral,W.W.Franke, Intermedi-ate-sizefilamentsinagermcell:Expressionofcytokeratinsinoocytes andeggsofthefrogXenopus,Proc.Natl.Acad.Sci.USA80(20)(1983) 6254–6258.

[24]M.W.Klymkowsky,L.A.Maynell,A.G.Polson,Polarasymmetryinthe organization ofthe cortical cytokeratinsysterm ofXenopuslaevis oocytesandembryos,Development100(1987)543–557.

[25]M.W.Klymkowsky,L.A.Maynell,C.Nislow,Cytokeratin phosphoryla-tion,cytokeratinfilamentssever-ingandsolubilizationofthematernal mRNAVg1,J.CellBiol.114(1991)787–797.

[26]M.C.Vaccaro,S.Gigliotti,F.Graziani,R.Carotenuto,C.De,M.Angelis, etal.,AtransientasymmetricdistributionofXNOA36mRNAandthe associatedspectrinnetworkbisectsXenopuslaevisstageIoocytesalong thefutureA/Vaxis,Eur.J.CellBiol89(2010)525–536.

[27]C.Campanella,R.Carotenuto,G.Gabbiani,Anti-spectrinantibodies staintheoocytenucleusandthesiteoffertilizationchannelsintheegg ofDiscoglossuspictus(Anura),Mol.Reprod.Dev.26(1990)134–142.

[28]L.V.Ryabova,I.Virtanen,J.Wartiovaara,S.G.Vassetzky,Contractile proteinsandnonerythroidspectrininoogenesisofXenopuslaevis,Mol. Reprod.Dev.37(1994)99–109.

[29]R. Carotenuto,G.Maturi, V.Infante,T.Capriglione, T.Petrucci,C. Campanella,Anovelproteincross-reactingwithantibodiesagainst spectrinislocalizedinthenucleoliofamphibianoocytes,J.CellSci.110 (1997)2683–2690.

[30]R.L. Meeusen, W.Z. Cande, N-Ethylmaleimide-modified heavy meromyosin:A probe for actomyosininteractions,J. CellBiol. 87 (1979)57–65.

[31]K. Christensen,R.Sauterer, R.W.Merriam,Roleofsolublemyosin incorticalcontractionsofXenopuseggs,Nature(Lond.)310(1984) 150–151.

[32]R.M.Ezzell,W.Z.Cande,A.J.Brothers,Ca21-ionophore-induced micro-villiandcorticalcontractioninXenopuseggs,Evidenceforinvolvement ofactomyosin,WilhelmRoux’sarch,194, 1985,pp.140–147.

[33]D.Gard,D.Affleck,B.M.Error,Microtubuleorganization,acetylation andnucleationinXenopuslavisoocytes;II.Adevelopmentaltransition inmicrotubuleorganizationduringdiplotene,Dev.Biol.168(1995) 189–201.

[34]D.L.Gard,B.J.Cha,E.King,Theorganizationandanimal-vegetal asym-metryofcytokeratinfilamentsinstageVIXenopusoocytesisdependent uponF-actinandmicrotubules,Dev.Biol.184(1997)95–114.

[35]J.N.Dumont,OogenesisinXenopuslaevis(Daudin).I.Stagesofoocyte developmentinlaboratorymaintainedanimals,J.Morphol.136(1972) 153–180.

[36]R.Carotenuto,T.C.Petrucci,I.Correas,M.C.Vaccaro,N.DeMarco,B. Dale, et al., Protein 4.1 and its interaction with other cytoskeletalproteinsinXenopuslaevisoogenesis,Eur.J.CellBiol.88 (2009)343–356.

(9)

[37]M.W.Klymkowsky,Intermediatefilamentorganization, reorganiza-tion,andfunctionintheclawedfrogXenopus,Curr.TopicsDev.Biol. 31(1995)455–486.

[38]I.Correas,T.L.Leto,D.W.Speicher,V.T.Marchesi,Identificationofthe functionalsiteoferythrocyteprotein4.1involvedinspectrin-actin association,J.Biol.Chem.261(1986)3310–3315.

[39]I.Correas,T.L.Leto,D.W.Speicher,V.T.Marchesi,Structureofthe spectrin-actinbindingsiteoferythrocyteprotein4.1,J.Biol.Chem. 261(1986)13362–13366.

[40]J.H.Heuijerjans,F.R.Pieper,F.C.Ramaekers,L.J.Timmermans,H. Kuij-pers,H.Bloemendaland,etal.,AssociationofmRNAandeIF-2alpha withthecytoskeletonincellslackingvimentin,Exp.CellRes.181 (1989)317–330.

[41]J.Hesketh,G.Campbell,M.Piechaczyk,J.M.Blanchard,Targettingof c-myc and b-globin coding sequences to the cytoskeletal-bound polysomes by c-myc 30 untranslated region, Biochem.J. 298(1)

(1994)143–148.

[42]R. Hovland, J.E.Hesketh, I.F. Pryme,The compartmentalizationof proteinsynthesis:importanceofcytoskeletonandroleinmRNA tar-getting,Int.J.Biochem.CellBiol.25(1995)1089–1105.

[43]R.P.Jansen,RNA-cytoskeletalassociations,FASEBJ.13(1999)455–466.

[44]L.Chierchia,M.Tussellino,D.Guarino,R.Carotenuto,N.DeMarco,C. Campanella,etal.,Cytoskeletalproteinsassociatewithcomponentsof theribosomalmaturationandtranslationapparatusinXenopusstageI oocytes,Zygote23(5)(2015)669–682.

[45]G.Giudice,G.AugustiTocco,C.Campanella,BiologiadelloSviluppo, PiccinNuovaLibraria,Padova,Italy,2010.

[46]A. Viel, M. Le Mair, J. Morales, H. Denis, Structural and functional properties ofthesaurin(42Sp50), the major proteinof the42SparticlespresentinXenopuslaevis,J.Biol.Chem.114(1991) 1109–1111.

[47]K.Y.Lo,Z.Li,C.Bussie`re,S.Bresson,E.M.Marcotte,A.W.Johnson, Definingthepathwayofcytoplasmicmaturationofthe60Sribosomal subunit,Mol.Cell39(2010)196–208.

[48]F.A. Dick, B.L. Trumpower, Heterologous complementation revealsthatmutantallelesofQSR1render60Sribosomalsubunits unstableand translationally inactive,NucleicAcid Res. 26 (1998) 2442–2448.

[49]F.Sanvito,S.Piatti,A.Villa,M.Bossi,G.Lucchini,P.C.Marchisio,etal., Thebeta4integrininteractorp27(BBP/elF6)isanessentialnuclear matrixproteininvolvedin60Sribosomalsubunitassembly,J.CellBiol. 144(1999)823–837.

[50]N.Bataille,T.Helsen,H.M.Fried,Cytoplasmictransportofribosomal subunits microinjectedinto Xenopuslaevis nucleus: a generalised facilitatedprocess,J.CellBiol.111(1990)1571–1582.

[51]O.D.Gadal,J.Strauß,B.Kessl,D.Trumpower,E.Tollervey,Nuclear exportof60sribosomalsubunitsdependsonXpo1pandrequiresa nuclearexportsequence-containingfactor,Nmd3p,thatassociates with the largesubunit proteinRpl10p, Mol.Cell.Biol. 21 (2001) 3405–3415.

[52]T.A.Nissan,J.Bassler,E.Petfalski,D.Tollervey,E.Hurt,60S pre-ribo-someformationviewedfromassemblyinthenucleolusuntilexportto thecytoplasm,EmboJ.21(2002)5539–5547.

[53]D.Brina,S.Grosso,A.Miluzio,S.Biffo,Translationalcontrolby80S formationand60Savailability,CellCycle10(2011)1–6.

[54]M.Ceci,C.Gaviraghi,C.Gorrini,L.A.Sala,N.Offenhauser,P.C.Marchisio, ReleaseofelF6(p27BBP)fromthe60Ssubunitallows80Sribosome assembly,Nature426(2003)579–584.

[55]M.Wilding,R.Carotenuto,V.Infante,B.Dale,M.Marino,L.DiMatteo, etal.,Confocalmicroscopyanalysisoftheactivityofmitochondria containedwithinthe‘‘mitochondrialcloud’’duringoogenesisin Xeno-puslaevis,Zygote9(4)(2001)347–352.

[56]J.Heasman, J.U.Quarmby, C.C.Wylie, Themitochondrialcloudof Xenopuslaevis:thesourceofgerminalgranulematerial,Dev.Biol. 105(1984)458–469.

[57]M.Kloc,L.D.Etkin,Apparentcontinuitybetweenthemessenger trans-portorganizerandlateRNAlocalizationpathwaysduringoogenesisin Xenopus,Mech.Dev.73(1998)95–106.

[58]M.L.King,T.J.Messitt,K.L.Mowry,PuttingRNAsintherightplaceat therighttime:RNAlocalizationinthefrogoocytes,Biol.Cell97(2005) 19–33.

[59]Q.Tao,C.Yokota,H.Puck,M.Kofron,B.Birsoy,D.Yan,etal., Mater-nalWnt11activatesthecanonicalWntsignalingpathwayrequiredfor axisformationinXenopusembryos,Cell120(2005)857–871.

[60]D.L.Gard,M.W.Klymkowsky,Intermediatefilamentorganization dur-ingoogenesisandearlydevelopmentintheclawedfrog,Xenopuslaevis, Subcell.Biochem.31(1998)35–70.

[61]D.L.Gard,Confocalmicroscopyand3-Dreconstructionofthe cytoskel-etonofXenopusoocytes,Microsc.Res.Tech.44(1999)388–414.

[62]J.Johnson,D.G.Capco,ProgesteroneactsthroughproteinkinaseCto remodelthecytoplasmastheamphibianoocytebecomesthe fertili-zation-competentegg,Mech.Dev.67(1997)215–226.

[63]L.Selvaggi,M.Salemme,C.Vaccaro,G.Pesce,G.Rusciano,A.Sasso, etal.,Multiple-particle-trackingtoinvestigateviscoelasticproperties inlivingcells,Methods51(1)(2010)20–26[Review].

[64]V.B.Alarcorn,R.P.Elinson,RNAanchoringinthevegetalcortexofthe Xenopusoocyte,J.CellSci.114(2001)1731–1741.

[65]R.Carotenuto,M.C.Vaccaro,T.Capriglione,T.C.Petrucci,C.Campanella, Alpha-spectrinhasastage-specificasymmetricallocalizationduring Xenopusoogenesis,Mol.Reprod.Dev.55(2000)229–239.

[66]J.Bolivar,I.Diaz,C.Iglesias,M.Valdivia,Molecularcloningofazinc fingerautoantigentransientlyassociatedwithinterphasenucleolus andmitoticcentromeresandmidbodies, J.Biol.Chem.274(1999) 36456–36464.

[67]V.Bennett,D.M.Gilligan,Thespectrin-basedmembraneskeletonand micron-scaleorganizationoftheplasmamembrane,Annu.Rev.Cell Biol.9(1993)27–66.

[68]J.S.Morrow,C.D.Cianci,S.P.Kennedy,Polarizedassemblyofspectrin andankyrininepithelialcells,Curr.Top.Membr.38(1991)227–244.

[69]L.V.Ryabova,I.Virtanen,J.Wartiovaara,S.G.Vassetzky,Contractile proteinsandnon-erythroidspectrininoogenesisofXenopuslaevis,Mol. Reprod.Dev.37(1994)99–109.

[70]M.C.Vaccaro,M.Wilding,B.Dale,C.Campanella,R.Carotenuto, Ex-pressionofXNOA36inthemitochondrialcloudofXenopuslaevis oocytes,Zygote20(3)(2012)237–242.

[71]J.M.Slack,Thenatureofthemesoderm-inducingsignalinXenopus:a transfilterinductionstudy,Development113(2)(1991)661–669.

[72]G.H.Thomsen,D.A.Melton,ProcessedVg1proteinisanaxial meso-derminducerinXenopus,Cell74(3)(1993)433–441.

[73]M.Kloc, C.Larabell,A.P. Chan,L.D. Etkin,ContributionofMETRO pathwaylocalized moleculestotheorganization ofthegermcell lineage,Mech.Dev.75(1–2)(1998)81–93.

[74]M.Kloc,N.R.Zearfoss,L.D.Etkin,MechanismsofsubcellularmRNA localization,Cell108(2002)533–544.

[75]T.R.Coleman,D.J.Fishkind,M.S.Mooseker,J.S.Morrow,Functional diversity among spectrin isoforms, Cell Motil. Cytosk. 12 (1989) 225–247.

[76]J.C.Winkelmann,B.G.Forget,Spectrinandnon-erythroidspectrins, Blood81(1993)3173–3185.

[77]C.Tatone,R.Carotenuto,R.Colonna,C.Chaponnier,G.Gabbiani,M. Giorgi,etal.,Spectrinandankyrin-likeproteinsintheeggof Disco-glossuspictus(Anura):theiridentificationandlocalizationinthesiteof spermentranceversustherestoftheegg,Dev.GrowthDiffer.35(2) (1993)161–171.

Riferimenti

Documenti correlati

Within a TMD approach, we aim at considering in particular: the relative role of the NRQCD color-singlet and color-octet production mechanisms, both for unpolarized and

Il suo punto di vista circa la sistemazione della frontiera orientale italiana è stato espresso con dovizia di argomentazioni in uno studio, in cui giustifica le

In this paper we evaluated the suitability of different horizontal and vertical resolu- tions of the atmospheric measurements to assess whether the radio occultation technique

In this paper, we investigate, via computer simulations, the robustness of Pre and Post-combining blind adaptive LMMSE single-user detectors (PreBA-SUD, PostBA-SUD)

Dunque, noi nasciamo, entriamo nella sussistenza e pertanto nell’esistere che, nell’interazione con la moltitudine (che racchiude in sé gli altri esseri umani in

Questo elaborato si basa sull’approccio utilizzato da Kaldor che negli anni ’60 ha messo insieme la relazione di Verdoorn, tra il tasso di crescita della produttività

© The Author(s). European University Institute. Available Open Access on Cadmus, European University Institute Research Repository... mandatory requirements laid down

Questo è uno dei motivi per cui le esportazioni della Cina non sono le più alte su scala globale: buona parte del prodotto viene destinata al mercato interno (la produzione di tè