• Non ci sono risultati.

Rectangular and circular cells for field-model scale experiments in EK processes with Cr(VI)

N/A
N/A
Protected

Academic year: 2021

Condividi "Rectangular and circular cells for field-model scale experiments in EK processes with Cr(VI)"

Copied!
5
0
0

Testo completo

(1)

3, dotted lines). The Fig. 3 also shows that the sinusoidal signal is more effective within the first 48 h and that with the ramp up signal, starting from a non homogeneous distribution of the pollutant, we obtain the same result as with the sinusoidal signal, starting from a non-polluted sand.

Acknowledgements. Many thanks to the SGL Carbon Group staff for their knowledge, their technical support and their availability.

References

Acar Y.B., Alshawabkeh A.N.; 1993: Principles of electrokinetic remediation. Environmental Technology, 27, 2638 – 2647. Chang J-H., Liao Y-C.; 2006: The effect of critical operational parameters on the circulation-enhanced electrokinetics. Journal of

Hazardous Materials, B129, 186-193.

Cherubini F., Losito G., Trova A., Angelini R.; 2002: Signal optimization for electrokinetic metal decontamination: sample and field scale model experiments. 8th meeting EEGS-ES, Aveiro (Portugal), 8–12 September, 211 – 214.

Kim D-H., Ryu B-GPark., S-W., Seo C-I., Baek K; 2009: Electrokinetic remediation of Zn and Ni-contaminated soil. Journal of Hazardous Materials, 165, 501 – 505.

Losito G., Muschietti M., Trova A.; 1995: Electrical effects of pollutants in earth soils and sedimentary rocks. 1st meeting of Environmental and Engineering Geophysics, Torino (Italy), 25 – 27 September 1995, 57 – 60.

Losito G., Pazzi V., Trova A., Mazzarelli R.; 2009: Elettrodi lineari per tecnica depurativa da metalli pesanti tramite elettrocinesi (DEK): problema in via di risoluzione. Atti del 28° Convegno Nazionale Gruppo Nazionale di Geofisica della Terra Solida – GNGTS, Trieste (Italy), 16-19 Novembre 2009, 581-585.

Mascia M., Palmas S., Polcaro A.M., Vacca A., Muntoni A.; 2007: Experimental study and mathematical model on rem--ediation of Cd spiked kaolinite by electrokinetics. Electrochimical Acta, 52, 3360-3365.

Reddy K.R., Chinthamreddy S.; 2003: Effects of initial form of chromium on electrokinetic remediation in clays. Advances in environmental research, 7, 353-365.

Zhou D.M., Zorn R., Kurt C.; 2003: Electrochemical remediation of copper contamionated kaolinite by conditioning anolyte and catholyte pH simultaneously. Journal of Environmental Sciences, 15 (3), 396-400.

RECTANGULAR AND CIRCULAR CELLS FOR FIELD-MODEL SCALE EXPERIMENTS IN EK PROCESSES WITH CR(VI)

G.M.S. Losito1, V. Pazzi1, R. Mazzarelli1, A. Trova1, V. Lapenna2, E. Rizzo2

1 DICEA, Florence University, Italy

2 IMAA-CNR Hydrogeosite laboratori, Potenza, Italy

Actually, the heavy metal contamination is a problem of international dimensions both for envi-ronment and human health. Consequently, the remediation of polluted soils by heavy metals

con-GNGTS 2010 SESSIONE3.1

Fig. 4 - Comparison between sample resistivity [Ωm] and sample phase displacement [rad] versus frequency (0.0011-1000 Hz) and voltage amplitude (1.5Vp, 3Vpand 5Vp).

(2)

cerns wide areas of the planet. The electrokinetic (EK) remediation is an alternative method (Hamed et al., 1991; Reddy et al., 2001; Kim et al., 2009) to the traditional ones (soil washing, solidifica-tion/stabilization): it can be applied “in situ” and is one of the promising separation technologies and the most effective technique for fine-grained and/or clayey soil (Acar and Alshawabkeh, 1993). In the current technologies the EK remediation request high power levels (some MW), with conse-quent security and cost problems (US Army Environmental Center, 2000). Starting from 1998 at the Applied Geophysics Laboratory of the University of Florence many experiments have been carried out to find an experimental procedure for the EK remediation that requests lower voltage levels (Losito et al., 1998; Cherubini et al., 2002). In this work we present the results of the last experi-ments carried out to study the electrical mobilization of a selected heavy metal [Cr(VI)] at different local content. The Cr(VI) has been selected because it is widely used and is one of the most toxic elements.

The EK metal mobilization has been applied to a field-scale model starting from the previous experiences (Cherubini et al., 2002; Losito et al., 2009).

The heavy metal can be found in natural soils in two main ways (concentrate or diffused), so we selected two different experimental cells (rectangular and circular, respectively) to study these con-ditions of initial pollutant distribution. The experiments have been carried out using Cr(VI) as a solution of Na2CrO4· 4H2O: the initial concentrations of Cr(VI) was 360 mgCr(VI)/kgdry soil. The

cur-rent electrodes in the rectangular cell were ®Sigraform HLM carbon bars by SGL Carbon Group (40 mm x 20 mm x 25 mm), instead to obtain a circular electrode for the circular cell we used a nylon-carbon robe by Pozzi – Electa s.r.l. (low voltage electrode) but a steel bar as point high volt-age electrode. We used a non-polarizable rectangular plastic tank (50 cm x 75 cm x 35 cm; pollut-ed volume: 6 l) to study the rectangular geometry (Fig. 1a-b) and a non-polarizable cylindrical plas-tic tank (r = 55 cm, h = 80 cm; polluted volume: 30 l) to study the circular geometry (Fig. 2a-b). The experiments have been carried out in two laboratories: the rectangular cell at the Applied Geo-physics Laboratory of the University of Florence and the circular one at the IMAA-CNR Hydro-geosite laboratory (Potenza – Italy). The selected sand of the two experiments was quite different to simulate natural conditions of work: for the rectangular tank we used a natural sand from Figline Valdarno (Florence – Italy) without silt and clay component (Ømean = 2 – 0.25 mm); for the circu-lar tank we used a very fine silica sand from Melfi (Potenza – Italy) with a small content of silt (Ømean = 0.125 – 0.063 mm).

GNGTS 2010 SESSIONE3.1

Fig. 1 – Layout (a) and photo (b) of the rectangular cell (dimensions in mm) (Applied Laboratory of Geophysics of Florence University, Italy).

(3)

The initial Cr(VI) distributions are shown in Figs. 1a-2a using the dark grey colour (line in Fig. 1a and filling in Fig. 2a); the small dots of the Figs. 1a-2a show the monitoring steel electrodes point; the large dots of the Fig. 1a-2a show the chemical sampling points (A-B-C); black lines in Fig. 1a show the current electrodes (E1-E2); in Fig. 2a black circle shows the low voltage electrode, while the black dot shows the high voltage one; in Fig. 2b black cylinders are the classical non-polarizable electrodes (PMS 9000: Pb-PbCl2 NaCl, Ø = 32 mm) used to compare the electrical

response (Fig. 3) of classical and “point” electrodes.

To obtain the Cr(VI) mobilization process, we applied selected signals as follow: a) the rectan-gular cell experiment (Fig. 1a): DC voltage (t = 72 h, V = 50 V, E1: high voltage electrode); posi-tive SIN voltage (t = 48 h, VMAX= 53 V, E1: high voltage electrode) and positive SIN voltage with

inverted polarity (t = 48 h, VMAX= 53 V, E2: high voltage electrode); b) the circular cell experiment

(Fig. 2a): positive SIN voltage (t = 24 h, VMAX= 53 V, black circle: low voltage electrode) using as

central point electrode (high voltage electrode) a stainless steel bar because two previous experi-ments , made using the nylon-carbon robe, failed for the mechanical cracking of graphite.

The experiments carried out to optimize the electrokinetic mobilization process show that: i) the soil-heavy metal system has a charge/discharge time peri-od of 24 h (Fig. 4) as found-ed in the previous experi-ences (Cherubini et al., 2002), even thought the clay

GNGTS 2010 SESSIONE3.1

Fig. 2 – Layout (a) and photo (b) of the circular cell (dimensions in mm)(at the IMAA-CNR Hydrogeosite laboratory, Potenza – Italy).

Fig. 3 – Electrical signals monitored in the circular cell during the SIN process. The trace number is the electrode code: see Figure 2a for the locations of each electrode.

(4)

content of the sand is very low; ii) the comparison between electrical signals monitored using stain-less steel point electrodes and non-polarizable ones (Fig. 3) shows that the signals are constantly shifted. Consequently to calculate the local resistivity we can use each electrode type in a correct way; iii) the local resistivities calculate following the Telford equation (Telford et al., 1990) indi-cate high level of metal mobilization. In particular in the rectangular cell the minimum resistivity value occurred near E1 electrode (Fig. 1a) shows that the EK mobilization moved the Cr(VI) from the starting location (near E2 electrode) to the opposite electrode. In the circular cell the same phe-nomenon occurred: the metal flow to the centre is indicate by the lower resistivity value in the cen-tral area (ρ=9 Ωm) that is about 25% of the mean resistivity value of the external area. These results are in agreement with sample results: we measured, in fact, the resistivity of five sample (Ø=4 cm; L=5 cm; three have been sampled from the circular tank near the points A, B, C (Fig. 2a) at the end of the energization process, the other two was made by no-polluted sand and 360 mgCr(VI)/kgdry sand

polluted sand) with the 2-electrodes technique. This measures have been carried out at the IMAA-CNR Hydrogeosite laboratory; they show that the no-polluted sand sample has the high resistivity value (100 Ωm), the three samples from the cell have a resistivity that decrease from the boundary of the tank to the centre (A: 48.8 Ωm; B: 23.5 Ωm; C: 16.7 Ωm) and the 360 mgCr(VI)/kgdry sand

pol-luted sand has a resistivity of 17.9 Ωm.

The chemical analysis results, carried out at the Chemical Department of Florence University, show that: a) in the rectangular the EK process moved in the B-zone (Fig. 1a) the 36% of the inject-ed Cr(VI) and in the A-zone the 56%, confirming so the observinject-ed local resistivity values; b) in the circular the EK process removed from the external area the 17% of the starting Cr(VI) content, shifting the metal in the central area (+ 34% Cr(VI) content).

Acknowledgements. Many thanks to Prof. V. Lapenna that allowed us to carried out the experiment at the IMAA-CNR of Potenza and to all the other people of the IMAA – CNR for their scientific and human support during the experiment. Many tanks to Prof. C. Benelli (DICEA – Florence University) for his chemical and scientific support and to Dr. S. Pucci (Chemical Department of Florence University) for the chemical analysis. References

Acar Y.B., Alshawabkeh A.N.; 1993: Principles of electrokinetic remediation. Environmental Technology, 27, 2638 – 2647. Cherubini F., Losito G., Trova A., Angelini R.; 2002: Signal optimization for electrokinetic metal docontamination: sample and

field scale model experiments. 8th meeting EEGS-ES, Aveiro (Portugal), 8 – 12 September 2002, 211 – 214.

Hamed J., Acary B., Galer J.; 1991: Pb(II) removal from kaohte by electrokinetics. Journal of Geotechnical Engineering, ASCE, 117(2), 241 – 271.

Kim D-H., Ryu B-G., Park S-W., Seo C-I., Baek K.; 2009: Electrokinetic remediation of Zn and Ni-contaminated soil. Journal of Hazardous Materials, 165, 501 – 505.

Losito G., Muschietti M., Trova A.; 1995: Electrical effects of pollutants in earth soils and sedimentary rocks. 1st meeting of Environmental and Engineering Geophysics, Torino (Italy), 25 – 27 September 1995, 57 – 60.

Fig. 4 – Electrical signals monitored in the rectangular cell for the DC process: trace numbers are the electrode code. See Fig. 1a for the locations of each electrode.

(5)

Losito, G., A. Trova, I. D’Urso, (1998). Frequency and DC electrical behaviour of polluted sediments in industrial areas: field and laboratory investigations, EEGS, Barcelona (Spain), 14 – 17 September 1998, Extended Abstract, 35 – 38.

Losito G., Pazzi V., Trova A., Mazzarelli R.; 2009: Elettrodi lineari per tecnica depurativa da metalli pesanti tramite elettrocinesi (DEK): problema in via di risoluzione. Atti del 28° Convegno Nazionale Gruppo Nazionale di Geofisica della Terra Solida – GNGTS, Trieste (Italy), 16-19 Novembre 2009, 581-585.

Reddy K.R., Xu C.Y., Chinthamreddy S.; 2001: Assesment of electrokinetic removal of heavy metals from soils by sequential extraction analysis. Journal of Hazardous Materials, 84, 279 – 296.

Telford W.M., Geldart L.P., Sheriff R.E.; 1990: Applied Geophysics. Press Sindacateof the University of Cambridge, Cambridge 1990.

US Army Environmental Center; 2000: Final Report – In Situ Electrokinetic Remediation of Metal Contaminated Soil, Technology Status Report, Report Number SFIM – AEC – ET – CR – 99022, July 2000, 1-30.

MISURE DEI PARAMETRI ELETTRICI DELLE ROCCE IN LABORATORIO. SVILUPPO DI SOFTWARE PER LA GESTIONE DI STRUMENTAZIONE

G.M.S. Losito, M. Masi, V. Pazzi, A. Trova

1 Dipartimento di Ingegneria Civile e Ambientale (DICEA), Università di Firenze

La misura in laboratorio delle proprietà elettriche delle rocce è necessaria ogni qual volta si deb-bano valutare gli effetti della mineralogia, del contenuto d’acqua e della composizione elettrolitica sulla risposta spettrale di un campione (Vanhala e Soininen,1995). I dati di laboratorio inoltre pos-sono fornire un utile supporto per l’interpretazione dei dati di campagna. La tecnica qui adottata per le misure è quella della Spectral Induced Polarization (SIP) monocromatica, basata sull’energizza-zione del campione mediante l’applicasull’energizza-zione di una tensione in regime sinusoidale con la tipica con-figurazione del quadripolo ABMN. La risposta elettrica è dipendente sia dalle caratteristiche del mezzo che dalla frequenza e tensione di energizzazione. Test e misure di laboratorio indicano che, in presenza di polarizzazione, la risposta del campione è non lineare (Olhoeft, 1979; Losito e Ange-lini, 2002).

La strumentazione attualmente in uso presso il Laboratorio di Geofisica Applicata (Università di Firenze) per questo tipo di prove è costituita da un generatore di segnale per l’energizzazione (HP 33120A, frequenza operativa 10-4- 106Hz, ampiezza fino a 5V), un oscilloscopio per

l’acquisizio-GNGTS 2010 SESSIONE3.1

Riferimenti

Documenti correlati

Median (range) are given for five to seven measurements in each disease and treatment group. TD: transfusion-depen- dent; CH: receiving iron chelation therapy; RARS: refractory

In questo passo Fischart gioca inizialmente con il cognome stesso della persona che attacca, facendo notare in una figura etimologica come Witzel sia contenuto nel verbo witzeln,

The predicted chemical noise at the mRE is sev- eral decades lower than the measured one and has a completely different shape (with features associated with the various RC

Il trasferimento della sede del Tribunale Civile e Penale e della Procura della Repubblica nell’ex Palazzo Littorio viene stabilito nel 1953 da una deliberazione d’urgenza

In questo caso fra le proprietà del Time-Marching sequence in STAR-CCM+ bisogna selezionare Abaqus Leads. Se invece si vuole specificare uno schema di accoppiamento

BENASSI V., BUCCELLATO A., CALDARINI C., CATALANO P., DE ANGE- LIS F., EGIDI R., MINOZZI S., MUSCO S., NAVA A., PANTANO W., PARIS R., PESCUCCI L., La donna come forza lavoro nella

L’Esaminatore afferma non sia stato dimostrato un effetto sinergico esercitato dai componenti della composizione descritta ovvero i) una soluzione acquosa

Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide.. Optimization of biohydrogen production from beer lees