• Non ci sono risultati.

Redox signaling and oxidative stress: Cross talk with TNF-related apoptosis inducing ligand activity

N/A
N/A
Protected

Academic year: 2021

Condividi "Redox signaling and oxidative stress: Cross talk with TNF-related apoptosis inducing ligand activity"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

The

International

Journal

of

Biochemistry

&

Cell

Biology

j ourna l h o m e pa ge :w w w . e l s e v i e r . c o m / l o c a t e / b i o c e l

Redox

signaling

and

oxidative

stress:

Cross

talk

with

TNF-related

apoptosis

inducing

ligand

activity

Rebecca

Voltan

1

,

Paola

Secchiero

1

,

Fabio

Casciano,

Daniela

Milani,

Giorgio

Zauli,

Veronica

Tisato

DepartmentofMorphology,SurgeryandExperimentalMedicineandLTTACentre,UniversityofFerrara,ViaFossatodiMortara70,44121Ferrara,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received29June2016 Receivedinrevisedform 21September2016 Accepted24September2016 Availableonline26September2016 Keywords: TRAILpathway Redoxpathway Inflammation Endothelialdysfunction Cancer

a

b

s

t

r

a

c

t

Redoxregulationplaysakeyroleinseveralphysiopathologicalcontextsandfreeradicals,fromnitric oxideandsuperoxideanionuptootherformsofreactiveoxygenspecies(ROS),havebeendemonstrated tobeinvolvedindifferentbiologicalandregulatoryprocesses.Thedatareportedinthecurrentliterature describealinkbetweenROS,inflammationandprogrammedcelldeaththatisattractinginterestas newpathwaystobeexploredandtargetedfortherapeuticpurposes.Inthislight,thereisalsogrowing attentiontotheinvolvementofthislinkintheactivityoftheTNF-relatedapoptosisinducingligand (TRAIL).TRAILisamemberoftheTNFligandssuperfamilyabletomediatemultipleintracellularsignals, withthepotentialtoleadtoarangeofbiologicaleffectsindifferentcelltypes.Inparticular,thehallmark ofTRAIListheabilitytoinduceselectiveapoptosisintransformedcellsleavingnormalcellsalmost unaffectedandthisfeaturehasalreadyopenedthedoortoseveralclinicalstudiesforcancertreatment. Moreover,TRAILplaysaroleinseveralphysiologicalandpathologicalprocessesofbothinnateand adaptiveimmunesystemsandofthecardiovascularcontext,withastrongclinicalpotential.Nonetheless, severalissuesstillneedtobeclarifiedaboutthesignalingmediatedbyTRAILtogaindeeperinsightintoits therapeuticpotential.Inthislight,theaimofthisreviewistosummarizethemainpreclinicalevidences abouttheinterplaybetweenTRAILandredoxsignaling,withparticularemphasistotheimplicationsin vascularphysiopathologyandcancer.

©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The “redox signaling” is a complex regulatory process in

whichthesignalis deliveredthroughredox chemistryin order

togenerate protective responsesagainst oxidative damage and

restorethecorrectredox-balancebetweenreactiveoxygenspecies

(ROS)productionandtheirclearancebyanti-oxidative/scavenging

mechanisms(Droge, 2002).In this light, theoriginal definition

of oxidative stressrefers to an unbalanced condition,resulting

fromexcessiveproductionofROS andreactivenitrogenspecies

(RNS)thatantioxidantdefensesystemsarenotableto

counter-act,leadingtoaccumulationofreactivespeciesthatplay a role

inseveralpathologicalcontextsincludinginflammation,

cardio-vascular pathologies, atherosclerosis, metabolic alterations and

cancer(MontezanoandTouyz,2012a;PanieriandSantoro,2016).

Nonetheless,theconceptofoxidativestressisfarmorecomplex

∗ Correspondingauthor.

E-mailaddress:[email protected](V.Tisato).

1 Equallycontributed.

anditsdelineationhasimprovedintherecenttimeswiththeaimof

includingtheroleofredoxsignalingandreactivespecies/molecular

redox mediators, defining a research field connecting multiple

disciplinesincludingchemistry,cellbiologyandphysiopathology

(Sies,2015).Thisnewdeclinationoftheconceptofoxidativestress

accountsfortheincreasingevidencesoftheinvolvementof

reac-tivespeciesinkeyregulatorynetworksofphysiologicalfunctions

suchasregulationof vasculartone,insulinsynthesis,activation

ofhypoxia-induciblefactor,cellproliferation,differentiationand

migration (Weidingerand Kozlov, 2015), suggestingthat redox

biologymightunderlieandincludebothphysiologicaland

patho-logicalcontexts(SchieberandChandel,2014).Intheabsenceof

awidelyacceptedsystemforclassificationofoxidativestress,a

“intensity-based”classificationhasbeenproposed,highlightingthe

roleofthedose/concentrationofthe“stress-inducer”inrelation

tomolecular/biologicalendpointparametersevaluatedthatreflect

themodificationsinducedbyROS(Sies,2015;Lushchak,2014).

Inthiscontext,theendotheliumrepresentsabiologicalmilieu

that in normal conditions maintains its integrity and

function-ality through a tight balance between opposite signals and

http://dx.doi.org/10.1016/j.biocel.2016.09.019

1357-2725/©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(2)

pathways including anti/pro-oxidative, anti/pro-vasodilators,

anti/pro-inflammatory, anti/pro-thrombotic,

anti/pro-proliferative signaling (Vanhoutte et al., 2009). In the recent

years, several in vitro and in vivo reports have demonstrated

that the tumor necrosis factor-related apoptosis inducing

lig-and (TRAIL) plays an important role in vascular physiology by

triggering different pathways, with a protective effect on the

vascularwallsandonendothelialbarrierfunction.However,

con-flictingresultsemergesinceTRAILisamoleculeabletoactivate

pro-apoptotic/pro-inflammatorypathwaysbut also pro-survival

andanti-inflammatorycellsignals. Thisduality isa hallmarkof

theTRAILactivityandthedatareportedabouttheroleofTRAIL

on atherogenesis represent a paradigm of this feature (Cheng

etal., 2014).In fact,while a possibleprotectiveeffect ofTRAIL

has emerged from preclinical and clinical studies (Di Bartolo

etal.,2011;SecchieroandZauli,2012),highTRAILlevelsmight

result in a detrimental effect on vascular integrity leading to

a pro-atherogenic condition, perhaps by enhancing leukocytes

adhesionandlocalinflammatoryprocessesinapathogenicloop

supporting plaques formation (Michowitz et al., 2005), leaving

still partially unclearthe mechanisms underlyingthese effects.

On thecontrary, in thecontext of cancer, recombinant soluble

TRAILalreadyrepresentsanappealingtherapeuticoptionthatis

underevaluationattheclinicallevelforthetreatmentofdifferent

typesoftumor(StuckeyandShah,2013;Gasparinietal.,2013;

Lemkeetal.,2014).However,eventhoughencouragingresultsare

comingfromtheassessmentofitstherapeuticpotential,several

issues still need to be addressed suchas the needto enhance

TRAILantitumoractivityinordertoovercometheheterogeneous

sensitivityoftumorsandtorestorethecellsensitivitytoTRAILin

thepresenceofTRAIL-resistancemechanisms.

Intracellularreactivespeciesandcomponentsoftheredox

sig-naling couldbe critical in regulating the response to TRAIL in

differentphysiopathologicalcontexts.Inthislight,itisofinterest

thatROScaninfluenceinductionofapoptosismediatedbyCD95

andTRAILbyaffectingexpressionanddistributionofcell

recep-tors,makingtheconnectionbetweenredoxsignalingand death

receptorsanimportantmechanismofcellregulationwith

signif-icantimplications.In thiscontext,inorder toshedlight onthe

interplaybetweenTRAILandoxidativepathway,wesetoutthis

reviewtosummarizethemainpreclinicalevidencesofthis

inter-actionfocusingontwoofthemainphysiopathologicalcontextsof

theTRAILactivity:thevascular/endothelialcompartmentandthe

tumorsetting.Moreover,wewillreviewanddiscussthekey

sug-gestionscomingfromtheassessment ofthecrosstalkbetween

TRAILandredoxsignalinginordertounderstandthe“TRAIL

biol-ogy”intermsofmolecularmechanismsofactionandstrategiesto

exploitthepotentialofTRAILastherapeuticmolecule.

2. OverviewonTRAILsignalingandbiology

TRAILis a member of theTNF ligandsuper family that can

bedescribed asapleiotropicmoleculeabletomediatemultiple

intracellularsignalswiththepotentialtoleadtodifferent(quite

oftencontradictory)biologicaleffects.ThisfeatureofTRAILclearly

emergesfrombothpreclinicalresultsandclinicalstudies

highlight-ingthe“dual-role”ofthisproteininseveralpathologicalconditions,

spanningfromimmunological/cardiovasculardisorderstocancer.

Discoveredindependentlybytwogroupsmorethan20yearsago

(Wileyetal.,1995;Pittietal.,1996),severalsubsequentinvitro

andinvivofunctionalstudiesshowedthatTRAIL(alsoreferredas

Apo2,CD253andTNFSF10)wasabletotriggercellapoptosisin

tumorcells orinfected/transformedcellswhileleaving

substan-tiallyunaffectednormalcells(Ashkenazietal.,1999;Walczaketal.,

1999).Althoughthis concept ofselective pro-apoptoticactivity

hasbeenrevised duringtime asit hasbeen reportedthat also

somenormalcellscanbeaffectedbyTRAIL(Vanhoutteetal.,2009;

Ursini-Siegeletal.,2002;Nesterovetal.,2002;Hayakawaetal., 2004;Janssenetal.,2005;Zaulietal.,2009).TRAILisexpressedin

awiderangeoftissuesinbothhealthyanddiseaseconditionsand,

incommonwithothermembersoftheTNFfamily,canbedetected

astrans-membranetypeproteinandassolubleprotein(Liabakk

etal.,2002).Onceexpressed,theproteincanbecleavedandact

assolublemoleculethroughthegenerationofcirculatingtrimers

thatrepresentthebiologicallyactiveformofTRAILviainteraction

withasystemoffivereceptorswhichcanbeboundwithdifferent

affinities(OrlinickandChao,1998;Yerbesetal.,2011).In

partic-ular,theTRAIL-receptorsystemcomprises:twotransmembrane

pro-apoptoticdeathreceptors(DRs)named TRAIL-R1(DR4)and

TRAIL-R2(DR5)displayingfull-lengthintracellulardeathdomain,

twotransmembranedecoyreceptorsnamedTRAIL-R3(DcR1)and

TRAIL-R4(DcR2)lackinganintactdeathdomainandthesoluble

decoy receptor osteoprotegerin (OPG) lacking both

transmem-braneandcytoplasmicdomains(OrlinickandChao,1998;Yerbes

etal.,2011;Falschlehneretal.,2009).ItisofinterestthatmRNA

of alltransmembranereceptors canbe detectedin virtually all

tissues,whilecellsurfaceTRAILproteinexpressionismore

cell-dependent. Asmentioned before, themostintriguingfeatureof

TRAILis itsability toinduceapoptosismainlyin cancerand in

transformed/infectedcellsbyinteractingwithDR4andDR5.The

TRAIL-mediatedapoptosispathwayshavebeenalreadyreviewed

indetails(Falschlehneretal.,2007),brieflyafterbindingtoDRs,

inductionofapoptosisrequirestheassemblyofadeath-inducing

signalingcomplex(DISC)atmembranelevelcharacterizedbythe

clusteringandoligomerizationofintracellulardeathdomainswith

therecruitmentoftheFas-AssociatedDeathDomain(FADD)and

caspases-8and-10thatarerecruitedandundergoautocatalytic

processingfollowedbycaspasescascadeactivation(Sessleretal.,

2013)(Fig.1A).Inadditiontocaspases-mediatedextrinsic

apop-toticprocess,thereisalsoanintrinsicapoptoticsignalingtriggered

bythecleavageoftheBH3-only proteintotruncatedBid(tBid)

thatmediatestheactivationofBaxandBakatthemitochondrial

level with release of Cytochrome-C and pro-apoptotic proteins

(Falschlehneretal.,2007;Sessleretal.,2013)(Fig.1A).

Activation of TRAIL death receptors may also trigger

non-apoptotic and pro-survival/proliferation signals such as those

mediated by the mitogen-activated protein kinases (MAPKs),

PI3K/AktandERKpathwaysandbythetranscriptionfactornuclear

factor-␬B(NF-␬B),allinvolvedintheregulationof

developmen-talandinflammatoryprocesses(DiPietroandZauli,2004;Zauli

etal.,2005)(Fig.1A).Finally,aswellasotherpro-apoptoticsignals,

TRAILcanalsoleadtonecroptosis,aregulatedandprogrammed

formofnecrosisputinplaceasresponsetoseverestressandinthe

presenceofblockednormalapoptosis(Jouan-Lanhouetetal.,2012;

Chenetal.,2016).Acomparisonbetweenapoptoticandnecroptotic

processeshasbeenrecentlyaddressedandreviewed,highlighting

theroleofthedifferentnecroptoticregulatorsandpathways(Chen

etal.,2016;FuchsandSteller,2015).Inparticular,theformation

ofthenecroptotic-complexfollowingstimulationismediatedby

specifickinases(RIPK1andRIPK3),thatareinturninvolvedinthe

phosphorylationofthemixedlineagekinasedomainlikeprotein

(MLKL),triggeringtheinductionof downstreamprocesses

lead-ingtocelldeathsuchasalterationofosmoticpressureandplasma

membranerupture(Fig.1A).Ithasbeensuggestedthat

Caspase-8mightbeoneofthekeyfactorsinmediatingtheexecutionof

eitherapoptosisornecrosis.Caspase-8isabletoblock

necropto-sisbycleavingRIPK1andRIPK3infavoroftheapoptoticprocess

whileinthepresenceofCaspase-8inhibitorsand/orcompromised

Caspase-8activitythereisaninhibitionofapoptosisinfavorofthe

necroptoticsignaling.Althoughthemechanismsdown-streaming

(3)

Fig.1.SchematicrepresentationofTRAIL-mediatedapoptotic,pro-survivalandnecroptoticsignaling.Afterbindingtoitsreceptors,TRAILcaninitiatecellapoptosis, necrop-tosisorleadtocellsurvival.InA,themainmolecularmediatorsinvolvedinTRAIL-mediatedpathwaysleadingtocellsurvival(viaNF-␬Bandkinasesactivation),apoptosis (viacaspasesactivation)andnecroptosis(viaRIPK1-3andMLKL)areshown.InB,amodelofaggregationofTRAILreceptorsinlipidraftsleadingtoenhancedTRAIL-induced apoptosisthroughthemediationofROSandASMproductionisshown.ROSarereactiveoxygenspecies;ASMisacidsphingomyelinase;DRaredeathreceptors.

clearthatthepossibilityofpromotingnecroptosisincancercells

representsanattractivetherapeuticstrategywithastrongclinical

potentialthatdeservemoreinvestigations,inparticularinlightof

theevidencethatresistancetoapoptosisisoneofmostchallenging

hallmarksofcancer.

TRAILplaysacriticalroleinmodulatingtheimmunesystemand

thisfeaturehasbeenextensivelyexploredinthecontextofdiabetes

mellitus(DM)(Bossietal.,2015).Inparticular,bothpreclinicaland

clinicalreportsonType-1DMsuggestaprotectiveeffectofTRAIL,

probablythroughtheregulationofcentralandperipheral

toler-ancecarriedoutthroughamodulationofT-cellsactivityachieved

inducingTcellapoptosisandexpansionofregulatoryTcells(Zauli

etal.,2010;Bernardietal.,2012a;Torneseetal.,2014,2015).Inthe

samefashion,TRAILcancontrolType-2DMbycontrastingfatmass

increaseandinducinganti-inflammatoryeffects(Bernardietal.,

2012b;Bisginetal.,2012;Xiangetal.,2014).Theevidencethat

patientsaffectedbyseveraldiseasesshowalteredcirculatingTRAIL

levelshighlightstheinvolvementofTRAILintheonset/progression

ofthediseasessuggestingaclinicalpotentialofthismoleculeasa

diseasebiomarkerorastherapeuticoption.Ourgrouphas

signifi-cantlycontributedtothedemonstrationofaninversecorrelation

betweencirculatingTRAILlevelsandpathologicalconditions

char-acterizedbychronicinflammation.LowTRAILlevelsareassociated

withtotal andcardiovascularmortalityin olderadults (Volpato

etal.,2011),andwithpooroutcomeinpatientsaffectedbyother

pathological conditions suchas myocardialinfarction, coronary

syndrome,heartfailureandchronicdiseases(Secchieroetal.,2009,

2010a;Niessneretal.,2009;Liabeufetal.,2010;Osmanciketal., 2013;Bromboetal.,2013).Overall,thesestudieshavesuggested

thatTRAILmighthavea roleinvascular protectionandcontrol

ofinflammation(Secchieroetal.,2013).Asregardtothe

regula-torymechanismsofTRAILexpression,arolehasbeenidentified

for17␤-estradiolthatcouldbeinvolveddownregulatingthe

cir-culatinglevelsofTRAIL(Zaulietal.,2014).Otherhypothesesfor

thelowTRAILlevelsdetectedinseveralpathologicalsettings,in

particularinthecontextofcardiovasculardiseases,mightbedue

tothesimultaneousincreaseofcirculatingOPGand/orto

alter-ationsofotherbiologicalparameterssuchasthebalancebetween

metalloproteinase-2andtissueinhibitorofmetalloprotease-2that

hasbeenproposedtobeinvolvedintheclearanceofcirculating

TRAIL(Secchieroetal.,2010b).Nevertheless,aspreviously

men-tionedforatherosclerosis,conflictingresultshavebeenreported

onthe role of TRAILalso for rheumatoid arthritis (Audo et al.,

2013),allergicasthma(Tisatoetal.,2014;Collisonetal.,2014)and

inflammatorydisorders oftheCNSlikelyastheresultof

differ-entinvolvement/effectsofTRAILpathwaysinlocalandperipheral

inflammatoryprocesses(Tisatoetal.,2016).Overall,theemerging

picturedescribesTRAILasamoleculeabletotriggeramultifaceted

systemofbiologicaleffectsandfunctions,asresultofacomplex

ligandreceptors’systemandofmultiplelevelsofsignal

modula-tion/controlthatareputinplaceaccordingtothespecificcelltype

andtothespecificbiological/pathologicalcontexts.Inthisline,

cur-rentdatasuggestthatDRsaredefinitelymorethansimplyreceptors

involvedintriggeringanapoptoticsignal,sincetheiractivationcan

leadtoawidepanelofcellularresponses.TheabilityofDRsto

mediateconflictingcellsignalsmightbealsotheresultofthe

redis-tributionofDRsthemselvesatthecellmembranesurfaceoftarget

cells,withimportantbiologicalandtherapeuticimplications.The

distributionofthedifferentreceptorscouldaccountforthe

selec-tiveactivityofTRAIL,whichmightbecontrolledbythetemporal

andlocalredistributionofitsreceptors.Infact,thefunctionality

ofligandreceptors,suchasthoseforTRAIL,involvestheir

phys-icalassociationatthemembranelevelthroughthegenerationof

membranedomainsdefined“rafts”.Thesemembranedomainsplay

akeyroleinthetransductionoftheextracellularsignalsinsidethe

targetcellandhaveastrongpotentialasatargetfornewstrategies

tocontrolcelldeathandovercomeTRAIL-resistance(Delmasetal.,

2004).

2.1. TRAILandredoxpathwaysinterplay:roleinvascularcells

biology

2.1.1. TRAIL/TRAIL-receptorsandendothelium

TheselectivemechanismsmediatedbyTRAILleadingto

apo-ptosis almost exclusively of cancer cells and to activation of

non-apoptoticpathwaysarestillunclear(BakerandReddy,1996;

Zhang etal., 2000;Pritzker et al.,2004; Ashkenaziand Herbst,

2008).Inthisline,theongoingliteratureclearlydocumentsthat

alsointhecontextofvascularphysiopathologytheroleofTRAIL

remainscontroversial,withanoverallmessagecoherentwiththe

“dual-face”nature ofthis protein. TRAILis expressedin

vascu-larsmoothmusclecells(Gochuicoetal.,2000),andalthoughthe

expressionofTRAILproteinattheendotheliallevelisstilla

(4)

presenceofallTRAILreceptorsinthesecellsis abletomediate

a broad range of reactionsupon stimulation by TRAIL,

includ-inginflammation,apoptosis,cellproliferationanddifferentiation

(ZauliandSecchiero,2006;Cantarellaetal.,2014).Ontheother

hand,theclinicalevidencethatcirculatingTRAILlevelscorrelate

withseveralpathologicalconditionswitha vascularcomponent

supportstheinvolvementofTRAILintheonset/progressionofthese

diseases,withdifferentvisionsaboutitsrole(Tisatoetal.,2013;

Harperetal.,2016;Fordeetal.,2016).Inthiscontext,ourgroup

hascontributedtothedemonstrationthatTRAILisabletopromote

survivalandproliferationofprimaryhumanendothelialcells(Zauli

etal.,2009;Secchieroetal.,2003).Inparticular,thepro-survival

signalsaremediatedbyphosphorylationoftheserine/threonine

kinaseAktviaPI3KactivationandbythestimulationofERK1/2

pathway(Secchieroetal.,2003).Infact,indifferentinvitro

stud-ies,theinhibitionofphosphatidylinositol3-kinase(PI3K)wasable

toreduceP-Akt, witha concomitant reduction ofBcl-2 leading

tothesensitizationof theendotheliumtoTRAIL-mediated

apo-ptosisviaextrinsicandintrinsicpathways(Secchieroetal.,2003;

Alladinaetal.,2005).Moreover,wehavealsodemonstratedthat

TRAILdownmodulatestheinteraction/adhesionbetween

leuko-cytesandendothelialcells,counteractingthepro-adhesiveactivity

ofbothTNF-␣andIL-1␤byselectivelydown-regulatingCCL8and

CXCL10chemokines,withbothTRAIL-R1andTRAIL-R2playinga

roleintheTRAIL-mediatedeffects(Secchieroetal.,2005).

2.1.2. TRAILandROSinendothelium

Impaired/inefficient activity of antioxidant systems such as

endothelial-derivedvasodilatorsmayleadstoROSaccumulation,

celldamageandtoavarietyofpathologicallesions(Sies,1997;Cai

andHarrison,2000).Inthisrespect,thereisawidelyacceptedlink

betweenoxidativestressandinflammationatthevascularlevel,

leadingtoendothelialcelldysfunctions(e.g.compromisedability

toregulatethevasculartoneandalteredpro-coagulantand

anti-inflammatorycapacities),whicharefeaturesofatherosclerosisand

vasculardiseases(Ross,1999;Higashietal.,2014;Sitietal.,2015).

MajorsourcesofcellularROSincludethemitochondrialrespiratory

chainandenzymaticreactionsmediatedbyenzymesystemssuch

asxanthineoxidoreductase,nitricoxide(NO)synthase(NOS)and

nicotinamideadeninedinucleotidephosphate(NADPH)oxidases.

Thephysiologicalandpathologicalrelevanceofthesesourcesis

dif-ferentdependingonthespecificdiseaseandtissue/organ.Within

the enzymesresponsible for ROS production, NADPHoxidases,

xanthineoxidasesand(uncoupled)NOSareofparticularly

impor-tanceintheendothelial/vascularcompartment.Atvascularlevel,

primaryROSproducts,mainlysuperoxide(O2−)andhydrogen

per-oxide(H2O2), are indeed involved in a broad range of cellular

functionsrelated toendothelialfunctions/dysfunctionsand

vas-cular functional integrity including cytoskeletalregulation, cell

proliferation, differentiation,migration and apoptosis (Lassegue

andGriendling,2010;MontezanoandTouyz,2012b;Raazetal.,

2014).A keyrole in endothelialcellbiologyand cardiovascular

homeostasisisplayedbyNO,aRNSsynthetizedfromL-Arginine

andinvolvedintheregulationofthevasculartone,andanomaliesin

theproduction/bioavailabilityofNOarefeaturesofendothelial

dys-functionsassociatedtocardiovasculardiseases(Zhaoetal.,2015).

At endotheliallevel NO modulates severalprocesses, including

plateletaggregation,leukocyteadhesion,vascularsmoothmuscle

cellproliferationandangiogenesis(Moncadaetal.,1991;Dimmeler

andZeiher,1999;Dimmeleretal.,1999;Fisslthaleretal.,2000; Vasaetal.,2000;Weilandetal.,2000).Inthisrespect,ourgroup

hasdemonstratedthatTRAILisabletoinducetheproductionof

NOupregulatingendothelialNOS(eNOS,themostimportant

enzy-maticsourceofNOinvascularendothelialcells),byactivatingofthe

Akt/eNOSpathwayandincreasingtheproductionofprostanoids

viacyclooxygenase-1,conferringtothecellsaproangiogenicand

anti-inflammatoryphenotype(Zaulietal.,2003).However,atthe

sametime,ininvitroendothelialcellsystemsothergroupsshowed

that TRAIL was alsoable to triggerFADD-caspase-8-dependent

apoptosistogetherwiththeinductionofinflammatorypathways

includingNF-␬BactivationandE-selectin,ICAM-1,andIL-8

expres-sion(Lietal.,2003).Inthesamefashion,intheirworkPritzkerand

colleaguesdemonstratedthatTRAILwasabletoinduceapoptosis

inhumanmicrovascularendothelialcellswhileitsdecoyreceptor

OPGactedassurvivalfactor(Pritzkeretal.,2004).Morerecentlyin

thepathologicalcontextofAlzheimer’sdisease,thepro-apoptotic

deathreceptorsDR4andDR5wereshowntomediatetheinduction

ofextrinsicapoptoticpathwaywithactivationofbothcaspase-8

andcaspase-9inhumanmicrovascularcerebralendothelialcells

(Fossatietal.,2012).Takentogetherthesedataoverallsuggestthat,

attheendotheliallevel,TRAILmighthavetheabilitytopromote

opposite signalingpathways actingeither as pro-apoptotic

sig-naloraspro-survival/anti-apoptotic/anti-inflammatorystimulus,

encouragingtheongoingdiscussion.

2.1.3. TRAIL-receptorsandROSinendothelium

ThereportedcontrastingeffectsmediatedbyTRAIL,inboth

nor-malandpathologicalconditions,havebeenalsoassociatedtothe

conceptofthesocalled“lipid rafts”,morerecentlydesignedas

“membraneraft”(MR).MRaredynamiccellmembranedomains

based on cholesterol, proteins and

sphingolipids/sphingolipids-metabolitesthatareabletomediateseveralcellfunctions(Zhang

etal.,2009).TheMRconstitutionisstrictlyrelatedtothe

genera-tionofceramideviahydrolysisofmembranesphingomyelinbyacid

sphingomyelinase(ASM),akeyeventthatsignificantlymodifyboth

cell membrane constitutionand propertiesthrough themutual

interactionbetweensphingolipidsandbetweensphingolipidsand

cholesterolresultingintheformationofdistinctmembrane-area.

Thefusionofdifferentsmallceramide-richmembraneareasleads

tothegenerationofmorelargeceramide-enrichedmembrane

plat-formsthatorganizethelocalandtemporaldistribution/clustering

ofcellreceptorsandsignalingmoleculesdrivinginthiswaythe

transmissionofspecificcellsignalsandthemodulationofthe

asso-ciated cell-pathways amplifying receptor- and stress-mediated

signalingevents(Zhang etal., 2009).It is ofinterest thatthere

is a specific link between ceramide-mediated MR constitution

and redox signalingat thevascular level witha crucial role of

ceramideinamplifyingredoxsignalinginendothelialcellsleading

toendothelialdysfunction(Lietal.,2010;Jinetal.,2011).Inthis

respect,ithasbeenshownthatceramide-reachplatformshavean

impactinROSproductionsincetheyareabletorecruitand

acti-vatekeymoleculesinvolvedinROSproductionsuchastheNADPH

oxidasefamily,gp91phox,p47phox,RacGTPase(Zhangetal.,2006,

2007;Jinetal.,2008).Moreover,theformationofMR-redox

signal-ingplatformsinendothelialcellsisassociatedwithaproductionof

ceramide,mediatedbylysosomalASMthattranslocateatthecell

membranelevelafterlysosomaltraffickinginresponseto

death-receptorsactivation(Baoetal.,2010a,b).

In thecontextof TRAIL,thegenerationofspecificlipid rafts

seemstobeoneofthepossiblemechanismsofactionbywhich

this ligandisabletotriggerdifferentcellularpathwayswithso

different cellulareffects. TRAIL hasbeen demonstrated to

acti-vateASMviaaredoxmechanismresultinginreleaseofceramide

and formation of ceramide-enriched membrane platforms that

are involved in the clustering of DR5, that amplify TRAIL-DR5

signaling(Dumitruand Gulbins,2006)(Fig.1B).In fact,intheir

studyDumitruandcolleaguesshowedthatantioxidantswereable

topreventASMstimulationand thereleaseofceramide

follow-ingTRAILtreatment,leadingtoabrogationofceramide-enriched

membrane platforms formation and inhibiting TRAIL-induced

apoptosis(DumitruandGulbins,2006).Morerecently,Liand

(5)

membranere-organizationprocessesinthecontextofendothelial

cells(Lietal.,2013).Inamodelofmurinecoronaryarterial

endothe-lialcells(CAECs),theauthorsshowedthatTRAILwasabletoinduce

theformation ofredox-MRplatformswithactivationofNADPH

oxidaseandproductionofO2−,leadingtoendothelialdysfunction

andvasodilatation(Lietal.,2013).Theproposedmodelhighlights

DR4astheTRAILreceptorinvolvedandresponsible,upon

activa-tion,ofanearly-stageandacuteeffectthroughtheinductionof

theassemblyandactivationofNADPHoxidaseinMRclusters.In

particular,theauthorsshowedthatTRAILwasabletotriggerthe

fusionoflysosomeswiththecellmembranewiththeformationof

MRredoxplatformsrichinceramideleadingtoimpaired

endothe-lialfunctions.Ofinterest,theresultsobtainedinthesamemodel

butinacontextofASM-deficiencyconfirmedthekeyroleofASMin

mediatingtheTRAIL/DR4-inducedformationoftheredox-MR

plat-formsandthesubsequentendothelialdysfunction.Thereported

cellalterationswereassociatedtoincreasedO2−levels,leadingto

areducedavailabilityofNOwithdeficiencyonvasodilatation(Li

etal.,2013).

IncontrasttothecytotoxiceffectofTRAILassociatedwithROS

production,ithasbeennonethelessreportedthatROSmightbe

involvedinTRAIL-inducedprotectiveandanti-apoptoticeffect.Di

Bartoloandcolleagueshaverecentlyreportedtheresultsofastudy

aimingatunderstandthemechanismsofTRAILininducing

angio-genesisandneovascularization(DiBartoloetal.,2015)showing

thatNADPHenzymes,thekeyfactorsforROSproductionin

vas-cularcells, might triggerotherbiological effects. In a model of

angiogenesisfollowinghindlimbischemia,theauthorsreported

aproangiogeniceffectofTRAILasdownstreamregulatorof

FGF-2,and highlighted thelink betweenthe NADPHoxidase-4 and

NOsignaling.Inparticular,endothelialcellproliferation,migration

andtubuleformationuponTRAILstimulationweredependenton

H2O2andeNOS-derivedNOsignals(DiBartoloetal.,2015).Asthe

authorssuggestinthediscussion,thedifferentresultsobtainedin

theirmodelcomparedtothefindingsreportedbyLiandothers,

mightbeduetotheactivationofspecificNADPHoxidaseisoforms.

Inthislight,inanon-endothelialmodelithasbeendemonstrated

thatbothDR4andDR5canactivateNADPHoxidase-1andtrigger

anapoptoticpathwayviariboflavinkinaserecruitment,following

analternativemechanismofsignaltransductionfromthe

conven-tionalDISC-mediatedapoptosis(Parketal.,2012).

SeveralreportshaveindeedhighlightedthatNADPHoxidases

activationbyhighglucoseleadstoincreasedROSproductionwith

endothelialdamage/dysfunction, and alteration of theintegrity

of theendothelium byreducing NO bioavailability (

Bonnefont-Rousselot,2002;Nakagamietal.,2005;Yuand Lyons,2005).In

thiscontext,Liuandco-workershaverecentlydemonstratedthat

recombinantTRAILsignificantlyattenuatedendothelialcell

apo-ptosisandoxidativestressinducedbyhighglucoseinbothininvitro

andinvivoexperimentalmodels(Liuetal.,2014).Inparticular,

TRAILwasabletosuppresssuperoxideproductioninaninvivo

modelofhigh-glucosestressbyinducingasignificantincreaseof

superoxidedismutase(SOD)activity.Moreover,theinvitrodata

showedthatTRAILreducedhigh-glucosemediatedROS

produc-tionbysuppressingNADPHoxidaseactivityandbyincreasingthe

expressionofprotectivefactorsincludingSOD2andGPx-1.

Sig-nalpathwaysstudiesfinallysuggestedthatTRAILtreatmentcould

attenuatethedamageinducedbydiabetesattheendotheliallevel

throughtheinvolvementandactivationofthePI3K-Akt-eNOS

sig-nalingpathways(Liuetal.,2014).

Overall,thelinkbetweenTRAILandNOthroughthe

PI3K-Akt-eNOSsignalingpathwaysappearsoneofthemolecularnetworks

involvedin theprotectiverole ofTRAIL assupportedby

differ-entgroupsofinvestigators.Nonetheless,theinteractionbetween

TRAILandceramideemergesaswellasacriticalsignaling

path-way in regulating thebiological effects at endothelial level. In

particular,deeperinsightintothecrosstalkbetweenTRAILand

redoxsignals,inMR platformformationandinTRAIL-receptors

clusteringprocessesareneededtogetherwithabetter

understand-ingofthemechanismsofactionofTRAILinrelationtothedifferent

NADPHisoformsandROSgenerationpathways.

2.2. TRAILandredoxpathwaysinterplay:roleintumorbiology

2.2.1. TRAIL/TRAIL-receptorsandtumors

In thefield of cancer therapy, TRAILhas obtainedin recent

years tremendous interest due toits ability toinduce

apopto-sisinmalignanttumorcellswithoutaffectingnormalcells.This

feature,observed in severalinvitro andin vivomodel systems

of both solid and hematopoieticcancers, indicates TRAIL is an

idealanti-cancerdrug(Walczaketal.,1999;HolochandGriffith,

2009;deMigueletal.,2016).Onthesebases,severalresearchers

developedpharmacologicstrategies,usingrecombinantTRAILor

TRAIL-receptoragonists(TRAs),toexploitthepotentialofTRAILin

clinicalanticancerapplications(Lemkeetal.,2014).Whilethese

therapeuticapproachesareunderevaluationinphaseI/IIclinical

studies(Table1),twomajorissuesstilllimittheclinicaltranslation

ofTRAIL:theevidencethatsometumorsareTRAIL-resistantand

thatcancerscandevelopacquiredresistancetoTRAIL.The

mech-anismsbywhichcancercellsescapeTRAIL-inducedapoptosisare

several(Bunekeretal.,2009;TrivediandMishra,2015)and

innova-tiveapproachestoovercomeTRAILresistancearecurrentlydeeply

investigated.Ofinterest,agrowingnumberofstudiesindicatesthat

TRAILresistantcancercellscanbere-sensitizedbyusingseveral

agents(naturaland syntheticcompounds,FDA-approveddrugs)

targetingspecificintracellularpathways(TrivediandMishra,2015;

Farooqi et al., 2015).Following this recent therapeutic view, a

therapeuticapproachbasedonthecombination ofTRAILplusa

re-sensitizingagentisatpresentthebestopportunitytoimprove

theTRAILanti-tumoractivity.

2.2.2. Deathreceptorsandinflammationincancer

FollowingtheconceptthatTRAILexertsitsactivitynotonlyby

inducingcellapoptosisbutalsobymodulatingotherkeycellular

pathwayssuchasthoseinvolvedpromotinginflammation,

alter-nativecellsignalinghavebeenconsideredandinvestigatedalsoin

thecontextofcancer(TrivediandMishra,2015;CullenandMartin,

2015).TheengagementofTRAILreceptors(andFas)candrivethe

productionofpro-inflammatorycytokinesandchemokinesafter

NF-␬Bactivation(Zaulietal.,2005;Trauzoldetal.,2001;Siegmund

et al.,2005; Berget al., 2009), with importantimplications for

severaldiseaselinkedtochronicandacuteinflammationandfor

cancerbiology(TrivediandMishra,2015;Chenetal.,2010).

Con-sideringthatNF-␬Bactivationandproteintranslationareinhibited

duringtheapoptoticprocess,thenon-apoptoticeffectsofTRAIL

are more evident in apoptosis-resistant cells that can acquire

metastatic/invasivepotential,asshowninseveraltumortypessuch

as in pancreaticductaladenocarcinoma (Trauzold et al., 2006),

cholangiocarcinoma(Ishimuraetal.,2006),melanoma(Takahashi

et al., 2013) and breast cancer (Wang et al.,2014).Besides, in

additiontoitsanticancerrole,TRAILmightalsopromotethe

inflam-matorytumormicroenvironment.Inthislight,arelevantpaperof

BergandcolleaguesshowsthatTRAILactivatespro-inflammatory

pathwaysin50%ofprimarymyelomasamples,emphasizingthe

evidence that TRAIL shouldbe used in combination with

anti-inflammatorydrugstoreducethepro-inflammatoryeffectsofthe

molecule(Berget al.,2009).Coherently withthis suggestion, it

hasbeen demonstrated that NF-␬B activation canpromote the

expressionofinterleukins(suchasIL-1,IL-8andIL-6)thatexert

a growthpromotingeffect onthetumor,even though therole

ofNF-␬Bis stillcontroversialin sometumortypes(Ben-Neriah

(6)

Table1

ClinicaltrialswithagonisticantibodiesorsolubleTRAILreportedonwww.clinicaltrials.gov.

Cancer n Combination Phase Status Identifiern◦

Conatumumab(AMG655)

Colon 202 ModifiedFOLFOX6,Bevacizumab,Placebo I/II C NCT00625651

Colon 53 Panitumumab I/II C NCT00630786

Colon 155 AMG479,FOLFIRI,Placebo II C NCT00813605

Colon 12 AMG479,Ganitumab,Bevacizumab II A(nr) NCT01327612

Colon,Lung,Ovarian,Pancreatic,Sarcoma 89 AMG479 I/II T NCT00819169

Hodgkin’slymphoma,NHL 33 Vorinostat,Bortezomib I C NCT00791011

Lung 172 Paclitaxel,Carboplatin I/II C NCT00534027

Ovarian,Peritoneal,FalopianTube 27 Birinapant I C NCT01940172

Pancreatic ND Capecitabine,Gemcitabine,Hydrochloride,Radiation I/II W NCT01017822

Pancreatic,Adenocarcinoma 138 AMG479,Placebo I/II C NCT00630552

Sarcoma 134 Placebo,Doxorubicin I/II C NCT00626704

AMG951(rhAPO2L/TRAIL)

Lung 213 Bevacizumab,Carboplatin,Paclitaxel II C NCT00508625

Tigatuzumab(CS-1008)

Breast 66 Abraxane II A(nr) NCT01307891

Colon 19 Differentvariantsoftigatuzumabantibody I C NCT01220999

Colon 21 FOLFIRI I C NCT01124630

Colon 8 Irinotecan II T NCT00969033

Liver,Hepatic 172 Sorafenib II C NCT01033240

Lung 109 Paclitaxel,Carboplatin,Placebo II C NCT00991796

Lymphoma 40 alone I C NCT00320827

Ovarian 24 Paclitaxel,Carboplatin II C NCT00945191

Pancreatic 65 Gemcitabine II C NCT00521404

Dulanermin

Colon 23 Bevacizumab,FOLFOX I C NCT00873756

Colon 42 FOLFIRI,Bevacizumab,Cetuximab,Irinotecan I C NCT00671372

NHL 72 Rituximab I/II T NCT00400764

Lexatumumab

Sarcoma,Neuroblastoma 19 InterferonGamma1b I T NCT00428272

Mapatumumab(HGS-ETR1)

Carcinoma,Hepatocellular 23 Sorafenib I C NCT00712855

Carcinoma,Hepatocellular 101 Placebo,Sorafenib II A(nr) NCT01258608

Cervical 9 Cisplatin,Radiotherapy I/II C NCT01088347

Lung 111 Paclitaxel,Carboplatin II C NCT00583830

MultipleMyeoloma 105 Bortezomib II C NCT00315757

Drozitumab(PRO95780)

Chondrosarcoma 90 Alone-Nocombinations II T NCT00543712

Colon 20 Bevacizumab,Cetuximab,FOLFIRI,Irinotecan I C NCT00497497

Colon 9 Bevacizumab,FOLFOX I C NCT00851136

Lung 128 Bevacizumab,Carboplatin,Paclitaxel,Placebo II C NCT00480831

NHL 49 Rituximab II C NCT00517049

TAS266(TetravalentNanobody)

AdvancedSolidTumor 6 Alone-Nocombinations I T NCT01529307

TRAIL-R1Mab

Lung,Carcinoma ND Alone-Nocombinations II C NCT00092924

NHL ND Alone-Nocombinations II C NCT00094848

NHL:non-Hodgkinlymphoma;C:Completed,A:Active;T:terminated;W:Withdrawn;Mab:monoclonalantibody;nr:notrecruiting;n:numberofpatientsenrolled;ND: numberofpatientsenrollednotdeclared.

for DR-induced chemokines, introducing theconcept that cells dyingbypro-apoptotic signalsmediated byFas,TNF andTRAIL are notimmunologically silentand mayrelease factors ableto coordinatetheremovalofdyingcellsbyphagocytes(Cullenetal.,

2013).Theauthorsreportedinparticulartheactivationofa

pro-inflammatoryprogram,uncoupledfromcaspasesactivityandcell

death,thatresultsinthesecretionofanarrayofchemokinesand

cytokinestriggeringchemotaxistowarddyingcells.Their

discov-erysuggestedasortof“find-me”signaloriginatingfromapoptotic

cellsandshowedforthefirsttimetheDR-inducedcelldeathasan

immunologicallyactiveprocess.

ItbecomesclearthattheroleofTRAILiscomplexand

multi-facetedalsointhecontextofcancer,andtheclassificationofTRAIL

andFasreceptorsas“deathreceptors”appearsasan

oversimplifica-tionsincetheiractivationisnotmerelycellapoptosisinductionbut

alsocytokines/chemokinesproductionandcontrolofcellfunctions

suchasproliferation,migrationand differentiation.Totakeinto

accountthiscomplexityisthereforemandatoryduringthedesign

ofnewanticancertherapiesbasedonTRAILincombinationwith

synergisticagents,inparticulartoavoidpro-tumoralsideeffectsin

thecaseofTRAIL-resistanttumors.Moreover,ithastobeconsider

thatrecentliteraturehasshownthatthemajorityof

intracellu-larmechanismsofTRAILresistanceimplicatesdisturbanceofthe

oxidativestress“homeostasis”.

2.2.3. TRAILandROSincancer

Looking for intracellular targetsthat might helpTRAIL

anti-canceractivity,thereisgrowinginterestintheinterplaybetween

TRAIL-mediatedsignalingandoxidativestressresponses.Thelink

betweenoxidativestressandcancerisnotarecentdiscovery,but

thecrosstalkwiththeTRAILpathwayhasamorerecentorigin.

(7)

Fig.2.RedoxsignalingandTRAILbiologicalactivity.ThepictureshowssomeofthemolecularmediatorsofthecrosstalkbetweenredoxsignalingandTRAILbiological activity.NOisnitricoxide;ROSarereactiveoxygenspecies;ASMisacidsphingomyelinase;SODissuperoxidedismutase;ERisendoplasmicreticulum;GSRisglutathione reductase;DRsaredeathreceptors;NOXareNADPHoxidases;O2−issuperoxide;H2O2ishydrogenperoxide;ONOO−isperoxynitrite.

tocaspasescascadeafterTRAILtreatmentweremadebyourgroup

inleukemiccells(Secchieroetal.,2001)andTRAILandROSwere

investigatedbyothergroupsindifferentpreclinicalmodelsofsolid

cancer.Forexample,ithasdemonstratedthatERstress/ROS(H2O2

andO2−)inductioncanresultintheupregulationofDR5inhuman

carcinomacelllines(YamaguchiandWang,2004)and,associated

tothedownregulationofsurvivin,in TRAIL-resistantmelanoma

cells(Tseetal.,2014).Moreover,regulationofDR4andDR5

expres-sionhasbeenassociatedtoER-mediatedapoptosisinhumanlung

cancercells treatedwithER stressinducing agents (DDIT3 and

KAT2A)(Lietal.,2015).SeveralotherreportsindicatethatTRAIL

receptorsDR4andDR5canbeinducedbyERstress,suggesting

thatERstressordrugs,suchasthapsigargin,canbeusedto

sensi-tizedcellstoTRAIL-mediatedapoptosis(IurlaroandMunoz-Pinedo,

2016).

Otherstudies describe a different mechanism of interaction

betweenTRAILandredoxsignalingviacellmembrane

depolariza-tion,duetoimpairmentofionchannelsortransportersofNa+,K+,

Cl−andCa2+,andtodisruptionofintracellularionhomeostasis,

leadingtoapoptosis.Severalhumanmalignanttumorcells

(includ-ingmelanoma,leukemiaand lungcancer),but notnormal cells,

showrobustandpersistentdepolarizationafterTRAILtreatment

inadoseandtime-dependentmannerandincorrelationwiththe

specificcellsensitivitytoTRAIL-inducedapoptosis(Suzukietal.,

2012; Inoue and Suzuki-Karasaki, 2013; Suzuki-Karasaki et al., 2014a).Thistypeofdepolarizationhasbeendescribedasanearly

andpro-apoptoticeventinducedalsobyotherpro-apoptoticwell

definedagentssuchasFas,rotenoneandarsenictrioxide(Bortner

etal.,2001;Nolteetal.,2004;Yinetal.,2009),anditis

associ-atedwithactivationofthemitochondrialapoptoticpathwayand

ROSgeneration.Inthisline,theresultsreportedbySuzuki-karasaki

(Suzuki-Karasakietal.,2014a)suggesttheexistenceofapositive

loopbetweendepolarizationandmitochondrial-derivedROS(O2−)

accumulationthroughDR5expression,althoughthespecific

mech-anismofmodulationandtheroleofNa+-KATPasestillneedtobe

definedinthecontextofTRAIL-inducedapoptosis.Inthisregard,a

varietyofcompoundscapableoffurtherincreasetheintracellular

levelsofROSinducedbyTRAIL,inparticularH2O2,hasbeenshown

tohavethecapabilitytopotentiatetheTRAILantitumoralefficacy

inseveraltumormodels(Suzuki-Karasakietal.,2014a,b)andoffers

increasingopportunityoftherapy.Ofinterest,alsoseveralnatural

pharmacologicalagentshaveshownthepotentialtosensitize

can-cercells toTRAILapoptotic activityviaROSproductionandthe

evidencethattheyareabletoupregulateTRAIL-DRsmakesthem

anappealingtherapeuticoptiontobeexploredalsoatthe

clini-callevelincombinationwithrecombinantTRAILorDRs-agonist

antibodies(SupplementaryTable1).Anotherkey componentof

theoxidativestressresponse,theenzymeGlutathionereductase

(GSR),hasbeenshowntobeinvolvedintheTRAIL-mediated

apo-ptosisin melanomaand carcinomacelllines ofdifferentorigin

(prostate,pancreatic,lungandbreast).Inthissetting,new

com-pounds,identifiedbyhighthroughputscreeningandabletoinhibit

theactivityofGSR,withaconcomitantdropofintracellular

antiox-idantreducedglutathione(GSH)andinductionofoxidativestress,

havebeenshowntopotentiateTRAILtoxicityinvitroandinmouse

xenograftmodels(Rozanovetal.,2015),offeringanotherweapon

tosupportTRAILanticancerskills.

TheinterplaybetweenoxidativestressandTRAIL-induced

apo-ptosis hasbeen alsoreported for specificNO-derived chemical

species,referringinparticulartoperoxynitrite,ahighlyreactive

freeradicalresultingfromtherapidinteractionbetweenNOand

superoxide(Stamler etal.,1992).Oncegenerated,peroxynitrite

actsasapotentoxidantabletotriggerawiderangeofeffects

culmi-natingincelldysfunction,apoptosisornecrosis(Viragetal.,2003)

andithasbeensuggestedtobeabletopotentiateTRAIL-induced

apoptoticdeath(Leeetal.,2001).Inaddition,inarecentworkSeah

andcolleagueshavehighlightedtheroleofperoxynitritein

medi-ating the TRAIL-mediated apoptotic effect in cisplatin-resistant

cancercells(Seahetal.,2015).Inlinewithpreviousfindings,the

authorsdetectedmitochondrialdefectsoncisplatin-resistantlung

andovariancancercellscomparedtowildtype(cancer)cellsand

reporteda higher susceptibilityof thesecells toTRAIL-induced

apoptosis.Thiseffectoncisplatin-resistantcellswasinparticular

associatedwithadifferentre-destributionofDRstolipidraftson

theplasmamembrane,increasediNOSexpressionwithsubsequent

NOgenerationbytargetcellshighlightingthekeyroleof

peroxyni-tritethatappearstoberequiredformaximalTRAIL-inducedcell

death.Itisofinterestthatthisstudysuggeststhepresenceofa

(8)

iNOSactivityleadingtoNOreleaseandperoxynitriteproduction

thatinturnamplifydeathexecution(Seahetal.,2015).

Overall,thereisincreasingevidencesuggestingthattumorcells

aremoresuitablethannormalcellstooxidativestressand

depolar-izationandmoreexposedtomitochondrialnetworkabnormalities

andthatthisvulnerabilitycanberelevanttothetumor-targeting

killingbyTRAIL.Moreover,consideringthat:i)cancerscan

orig-inatefromchronicallyinflamedtissues(Reuteret al.,2010);ii)

inflammationistightlyregulatedbytheredoxsignaling(Leietal.,

2015)andthatiii)increasingreportshighlighttheroleofTRAIL

signalingin both inflammationand redoxmodulation, there is

growingattention toTRAIL asa key element able totalk with

andmodulateallthesepathways.Thisfeature,togetherwiththe

pro-apoptoticanticancercapabilityofTRAIL,canbetailoredand

guidedfor severalpurposes.In particular,thesynergy between

TRAILandmoleculesabletotargetoneofthementionedpathways

willprovideefficaciouscombinationsabletotargetandkilleven

TRAIL-resistanttumorswhilesavingnormalcells.

3. Concludingremarks

WhileROSwereinitiallyconsideredspeciesresponsibleonlyfor

celldamageandcelldeath,theirrolehasbeennowrevisedinlight

oftheirinvolvementinamorecomplexrangeofreactionsincluding

signaltransductionpathwaysandregulationofseveralcell

func-tions.Theattemptofdefiningthespecifictypeofoxidativestress

ineachphysiopathologicaland/orexperimentalcontext,perhaps

byusingtheproposed“intensity-based”classification(Lushchak,

2014),isstillachallengingtasksincespecificandstrictguidelinesto

discriminatebetweendifferentlevels/rangesofoxidativestressare

needed.InthecontextofTRAIL,thereisgrowinginterestin

under-standinghowreactivespeciesandredoxmediatorscaninterfere

withitspathwaysandmechanismsofactionsincethese

knowl-edgemightbeusedtoimproveandoptimizeitsbiologicalactivity.

ThebindingofTRAILtoitssurfacereceptorsisfarmorethatsimply

caspasesactivationandthemechanismsofprotectionofnormal

cellsagainstapoptosisaswellastheabilityofactivateopposite

pathwaysleadingtodifferentbiologicaloutcomesarenotclearand

needfurtherinsights.Inthislight,theconceptofmembrane

traf-fickingandthedemonstrationofacrosstalkbetweenoxidative

systemandASMpathwayinDR-mediatedsignalingactivationhas

shedsomelightontheregulationofendothelialcellfunctionsand

onTRAIL-inducedeffects(Fig.2).InthecontextofcancerTRAIL

already represents a therapeutic option under evaluation used

eitheraloneorincombinationwithothermolecules,inparticular

withROSinducers,inordertotriggerTRAIL-mediatedapoptosis

(Fig.2).Nonetheless,ithasbeenrecentlyshowedthatmild

oxida-tivestresscontributedtoescape TRAIL-mediated apoptosisand

mediatedTRAILtoleranceinanovariancancermodel(Luetal.,

2016),inagreementwithpreviousfindingsaboutthepromoting

roleofROSinTRAILresistance(Choietal.,2010).These

contradic-toryresults,inlinewiththe“dual”natureofTRAIL,highlightthe

needoffurtherinvestigationstogaindeeperinsightsonthe

mech-anismsofTRAILresistanceand onthequantificationofthereal

intracellularROSconcentrationsinrelationtothemodifications

inducedinROStargetsineach experimental/physiopathological

condition.Furtherinvestigationsarealsorequiredtoclarifyother

issuessuchasthemechanismsofDRrecruitmentandthe

forma-tionofredoxsignalingplatformsuponTRAILstimulationandthe

functions/effectsinducedby“localdoses”oftheTRAILinput.

Finally,newmechanisticcomprehensionsofthelinkbetween

ROSandredoxsignalingwithTRAIL-inducedresponsesinspecific

cellsubsetsindifferentphysiopathologicalcontexts,including

can-cer,willhelptounderstandthe“life-death”signalingmediatedby

TRAIL,withsignificanttherapeuticimplications.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,athttp://dx.doi.org/10.1016/j.biocel.2016.09.

019.

References

Alladina,S.J.,Song,J.H.,Davidge,S.T.,Hao,C.,Easton,A.S.,2005.TRAIL-induced apoptosisinhumanvascularendotheliumisregulatedbyphosphatidylinositol 3-kinase/AktthroughtheshortformofcellularFLIPandBcl-2.J.Vasc.Res.42, 337–347.

Ashkenazi,A.,Herbst,R.S.,2008.Tokillatumorcell:thepotentialofproapoptotic receptoragonists.J.Clin.Invest.118,1979–1990.

Ashkenazi,A.,Pai,R.C.,Fong,S.,Leung,S.,Lawrence,D.A.,Marsters,S.A.,Blackie,C., Chang,L.,McMurtrey,A.E.,Hebert,A.,DeForge,L.,Koumenis,I.L.,Lewis,D., Harris,L.,Bussiere,J.,Koeppen,H.,Shahrokh,Z.,Schwall,R.H.,1999.Safetyand antitumoractivityofrecombinantsolubleApo2ligand.J.Clin.Invest.104, 155–162.

Audo,R.,Combe,B.,Hahne,M.,Morel,J.,2013.ThetwodirectionsofTNF-related apoptosis-inducingligandinrheumatoidarthritis.Cytokine63,81–90. Baker,S.J.,Reddy,E.P.,1996.Transducersoflifeanddeath:TNFreceptor

superfamilyandassociatedproteins.Oncogene12,1–9.

Bao,J.X.,Xia,M.,Poklis,J.L.,Han,W.Q.,Brimson,C.,Li,P.L.,2010a.Triggeringroleof acidsphingomyelinaseinendotheliallysosome-membranefusionand dysfunctionincoronaryarteries.Am.J.Physiol.HeartCirc.Physiol.298, H992–H1002.

Bao,J.X.,Jin,S.,Zhang,F.,Wang,Z.C.,Li,N.,Li,P.L.,2010b.Activationofmembrane NADPHoxidaseassociatedwithlysosome-targetedacidsphingomyelinasein coronaryendothelialcells.Antioxid.RedoxSignal.12,703–712.

Ben-Neriah,Y.,Karin,M.,2011.Inflammationmeetscancer,withNF-kappaBasthe matchmaker.Nat.Immunol.12,715–723.

Berg,D.,Stuhmer,T.,Siegmund,D.,Muller,N.,Giner,T.,Dittrich-Breiholz,O., Kracht,M.,Bargou,R.,Wajant,H.,2009.Oligomerizedtumornecrosis factor-relatedapoptosisinducingligandstronglyinducescelldeathin myelomacells,butalsoactivatesproinflammatorysignalingpathways.FEBSJ. 276,6912–6927.

Bernardi,S.,Norcio,A.,Toffoli,B.,Zauli,G.,Secchiero,P.,2012a.Potentialroleof TRAILinthemanagementofautoimmunediabetesmellitus.Curr.Pharm.Des. 18,5759–5765.

Bernardi,S.,Zauli,G.,Tikellis,C.,Candido,R.,Fabris,B.,Secchiero,P.,Cooper,M.E., Thomas,M.C.,2012b.TNF-relatedapoptosis-inducingligandsignificantly attenuatesmetabolicabnormalitiesinhigh-fat-fedmicereducingadiposity andsystemicinflammation.Clin.Sci.123,547–555.

Bisgin,A.,Yalcin,A.D.,Gorczynski,R.M.,2012.Circulatingsolubletumornecrosis factorrelatedapoptosisinducing-ligand(TRAIL)isdecreasedintype-2newly diagnosed,non-drugusingdiabeticpatients.DiabetesRes.Clin.Pract.96, e84–86.

Bonnefont-Rousselot,D.,2002.Glucoseandreactiveoxygenspecies.Curr.Opin. Clin.Nutr.Metab.Care5,561–568.

Bortner,C.D.,Gomez-Angelats,M.,Cidlowski,J.A.,2001.Plasmamembrane depolarizationwithoutrepolarizationisanearlymoleculareventin anti-Fas-inducedapoptosis.J.Biol.Chem.276,4304–4314.

Bossi,F.,Bernardi,S.,Zauli,G.,Secchiero,P.,Fabris,B.,2015.TRAILmodulatesthe immunesystemandprotectsagainstthedevelopmentofdiabetes.J.Immunol. Res.2015,680749.

Brombo,G.,Volpato,S.,Secchiero,P.,Passaro,A.,Bosi,C.,Zuliani,G.,Zauli,G.,2013. Associationofsolubletumornecrosisfactor-relatedapoptosis-inducingligand (TRAIL)withcentraladiposityandlow-densitylipoproteincholesterol.PLoS One8,e58225.

Buneker,C.,Mohr,A.,Zwacka,R.M.,2009.TheTRAIL-receptor-1:TRAIL-receptor-3 and-4ratioisapredictorforTRAILsensitivityofcancercells.Oncol.Rep.21, 1289–1295.

Cai,H.,Harrison,D.G.,2000.Endothelialdysfunctionincardiovasculardiseases: theroleofoxidantstress.Circ.Res.87,840–844.

Cantarella,G.,DiBenedetto,G.,Ribatti,D.,Saccani-Jotti,G.,Bernardini,R.,2014. Involvementofcaspase8andc-FLIPLintheproangiogeniceffectsofthe tumournecrosisfactor-relatedapoptosis-inducingligand(TRAIL).FEBSJ.281, 1505–1513.

Chen,L.,Park,S.M.,Tumanov,A.V.,Hau,A.,Sawada,K.,Feig,C.,Turner,J.R.,Fu,Y.X., Romero,I.L.,Lengyel,E.,Peter,M.E.,2010.CD95promotestumourgrowth. Nature465,492–496.

Chen,D.,Yu,J.,Zhang,L.,2016.Necroptosis:analternativecelldeathprogram defendingagainstcancer.Biochim.Biophys.Acta1865,228–236. Cheng,W.,Zhao,Y.,Wang,S.,Jiang,F.,2014.Tumornecrosisfactor-related

apoptosis-inducingligandinvascularinflammationandatherosclerosis:a protectororculprit.Vascul.Pharmacol.63,135–144.

Choi,K.,Ryu,S.W.,Song,S.,Choi,H.,Kang,S.W.,Choi,C.,2010.Caspase-dependent generationofreactiveoxygenspeciesinhumanastrocytomacellscontributes toresistancetoTRAIL-mediatedapoptosis.CellDeathDiffer.17,833–845. Collison,A.,Li,J.,PereiradeSiqueira,A.,Zhang,J.,Toop,H.D.,Morris,J.C.,Foster,

P.S.,Mattes,J.,2014.Tumornecrosisfactor-relatedapoptosis-inducingligand regulateshallmarkfeaturesofairwaysremodelinginallergicairwaysdisease. Am.J.Respir.CellMol.Biol.51,86–93.

(9)

Cullen,S.P.,Martin,S.J.,2015.FasandTRAIL‘deathreceptors’asinitiatorsof inflammation:implicationsforcancer.Semin.CellDev.Biol.39,26–34. Cullen,S.P.,Henry,C.M.,Kearney,C.J.,Logue,S.E.,Feoktistova,M.,Tynan,G.A.,

Lavelle,E.C.,Leverkus,M.,Martin,S.J.,2013.Fas/CD95-inducedchemokines canserveasfind-mesignalsforapoptoticcells.Mol.Cell49,1034–1048. Delmas,D.,Rebe,C.,Micheau,O.,Athias,A.,Gambert,P.,Grazide,S.,Laurent,G.,

Latruffe,N.,Solary,E.,2004.RedistributionofCD95,DR4andDR5inrafts accountsforthesynergistictoxicityofresveratrolanddeathreceptorligands incoloncarcinomacells.Oncogene23,8979–8986.

DiBartolo,B.A.,Chan,J.,Bennett,M.R.,Cartland,S.,Bao,S.,Tuch,B.E.,Kavurma, M.M.,2011.TNF-relatedapoptosis-inducingligand(TRAIL)protectsagainst diabetesandatherosclerosisinApoe(−)/(−)mice.Diabetologia54,3157–3167. DiBartolo,B.A.,Cartland,S.P.,Prado-Lourenco,L.,Griffith,T.S.,Gentile,C.,

Ravindran,J.,Azahri,N.S.,Thai,T.,Yeung,A.W.,Thomas,S.R.,Kavurma,M.M., 2015.Tumornecrosisfactor-Relatedapoptosis-inducingligand(TRAIL) promotesangiogenesisandischemia-inducedneovascularizationviaNADPH oxidase4(NOX4)andnitricoxide-dependentmechanisms.J.Am.HeartAssoc., 4.

DiPietro,R.,Zauli,G.,2004.Emergingnon-apoptoticfunctionsoftumornecrosis factor-relatedapoptosis-inducingligand(TRAIL)/Apo2L.J.Cell.Physiol.201, 331–340.

Dimmeler,S.,Zeiher,A.M.,1999.Nitricoxide-anendothelialcellsurvivalfactor. CellDeathDiffer.6,964–968.

Dimmeler,S.,Fleming,I.,Fisslthaler,B.,Hermann,C.,Busse,R.,Zeiher,A.M.,1999. ActivationofnitricoxidesynthaseinendothelialcellsbyAkt-dependent phosphorylation.Nature399,601–605.

Droge,W.,2002.Freeradicalsinthephysiologicalcontrolofcellfunction.Physiol. Rev.82,47–95.

Dumitru,C.A.,Gulbins,E.,2006.TRAILactivatesacidsphingomyelinaseviaaredox mechanismandreleasesceramidetotriggerapoptosis.Oncogene25, 5612–5625.

Falschlehner,C.,Emmerich,C.H.,Gerlach,B.,Walczak,H.,2007.TRAILsignalling: decisionsbetweenlifeanddeath.Int.J.Biochem.CellBiol.39,1462–1475. Falschlehner,C.,Ganten,T.M.,Koschny,R.,Schaefer,U.,Walczak,H.,2009.TRAIL

andotherTRAILreceptoragonistsasnovelcancertherapeutics.Adv.Exp.Med. Biol.647,195–206.

Farooqi,A.A.,Li,K.T.,Fayyaz,S.,Chang,Y.T.,Ismail,M.,Liaw,C.C.,Yuan,S.S.,Tang, J.Y.,Chang,H.W.,2015.Anticancerdrugsforthemodulationofendoplasmic reticulumstressandoxidativestress.TumourBiol.36,5743–5752. Fisslthaler,B.,Dimmeler,S.,Hermann,C.,Busse,R.,Fleming,I.,2000.

Phosphorylationandactivationoftheendothelialnitricoxidesynthasebyfluid shearstress.ActaPhysiol.Scand.168,81–88.

Forde,H.,Harper,E.,Davenport,C.,Rochfort,K.D.,Wallace,R.,Murphy,R.P.,Smith, D.,Cummins,P.M.,2016.Thebeneficialpleiotropiceffectsoftumournecrosis factor-relatedapoptosis-inducingligand(TRAIL)withinthevasculature:a reviewoftheevidence.Atherosclerosis247,87–96.

Fossati,S.,Ghiso,J.,Rostagno,A.,2012.TRAILdeathreceptorsDR4andDR5 mediatecerebralmicrovascularendothelialcellapoptosisinducedby oligomericAlzheimer’sAbeta.CellDeathDis.3,e321.

Fuchs,Y.,Steller,H.,2015.Livetodieanotherway:modesofprogrammedcell deathandthesignalsemanatingfromdyingcells.Nat.Rev.Mol.CellBiol.16, 329–344.

Gasparini,C.,VecchiBrumatti,L.,Monasta,L.,Zauli,G.,2013.TRAIL-based therapeuticapproachesforthetreatmentofpediatricmalignancies.Curr.Med. Chem.20,2254–2271.

Gochuico,B.R.,Zhang,J.,Ma,B.Y.,Marshak-Rothstein,A.,2000.FineA:TRAIL expressioninvascularsmoothmuscle.Am.J.Physiol.LungCell.Mol.Physiol. 278,L1045–1050.

Harper,E.,Forde,H.,Davenport,C.,Rochfort,K.D.,Smith,D.,Cummins,P.M.,2016. Vascularcalcificationintype-2diabetesandcardiovasculardisease:integrative rolesforOPG,RANKLandTRAIL.Vascul.Pharmacol.82(July),30–40. Hayakawa,Y.,Screpanti,V.,Yagita,H.,Grandien,A.,Ljunggren,H.G.,Smyth,M.J.,

Chambers,B.J.,2004.NKcellTRAILeliminatesimmaturedendriticcellsinvivo andlimitsdendriticcellvaccinationefficacy.J.Immunol.172,123–129. Higashi,Y.,Maruhashi,T.,Noma,K.,Kihara,Y.,2014.Oxidativestressand

endothelialdysfunction:clinicalevidenceandtherapeuticimplications. TrendsCardiovasc.Med.24,165–169.

Holoch,P.A.,Griffith,T.S.,2009.TNF-relatedapoptosis-inducingligand(TRAIL):a newpathtoanti-cancertherapies.Eur.J.Pharmacol.625,63–72.

Inoue,T.,Suzuki-Karasaki,Y.,2013.Mitochondrialsuperoxidemediates mitochondrialandendoplasmicreticulumdysfunctionsinTRAIL-induced apoptosisinJurkatcells.FreeRadic.Biol.Med.61,273–284.

Ishimura,N.,Isomoto,H.,Bronk,S.F.,Gores,G.J.,2006.Trailinducescellmigration andinvasioninapoptosis-resistantcholangiocarcinomacells.Am.J.Physiol. Gastrointest.LiverPhysiol.290,G129–136.

Iurlaro,R.,Munoz-Pinedo,C.,2016.Celldeathinducedbyendoplasmicreticulum stress.FEBSJ.283(July(14)),2640–2652.

Janssen,E.M.,Droin,N.M.,Lemmens,E.E.,Pinkoski,M.J.,Bensinger,S.J.,Ehst,B.D., Griffith,T.S.,Green,D.R.,Schoenberger,S.P.,2005.CD4+T-cellhelpcontrols CD8+T-cellmemoryviaTRAIL-mediatedactivation-inducedcelldeath.Nature 434,88–93.

Jin,S.,Yi,F.,Zhang,F.,Poklis,J.L.,Li,P.L.,2008.Lysosomaltargetingandtrafficking ofacidsphingomyelinasetolipidraftplatformsincoronaryendothelialcells. Arterioscler.Thromb.Vasc.Biol.28,2056–2062.

Jin,S.,Zhou,F.,Katirai,F.,Li,P.L.,2011.Lipidraftredoxsignaling:molecular mechanismsinhealthanddisease.Antioxid.RedoxSignal.15,1043–1083.

Jouan-Lanhouet,S.,Arshad,M.I.,Piquet-Pellorce,C.,Martin-Chouly,C.,Le Moigne-Muller,G.,VanHerreweghe,F.,Takahashi,N.,Sergent,O.,

Lagadic-Gossmann,D.,Vandenabeele,P.,Samson,M.,Dimanche-Boitrel,M.T., 2012.TRAILinducesnecroptosisinvolvingRIPK1/RIPK3-dependentPARP-1 activation.CellDeathDiffer.19,2003–2014.

Lassegue,B.,Griendling,K.K.,2010.NADPHoxidases:functionsandpathologiesin thevasculature.Arterioscler.Thromb.Vasc.Biol.30,653–661.

Lee,Y.J.,Lee,K.H.,Kim,H.R.,Jessup,J.M.,Seol,D.W.,Kim,T.H.,Billiar,T.R.,Song, Y.K.,2001.SodiumnitroprussideenhancesTRAIL-inducedapoptosisviaa mitochondria-dependentpathwayinhumancolorectalcarcinomaCX-1cells. Oncogene20,1476–1485.

Lei,Y.,Wang,K.,Deng,L.,Chen,Y.,Nice,E.C.,Huang,C.,2015.Redoxregulationof inflammation:oldelements,anewstory.Med.Res.Rev.35,306–340. Lemke,J.,vonKarstedt,S.,Zinngrebe,J.,Walczak,H.,2014.GettingTRAILbackon

trackforcancertherapy.CellDeathDiffer.21,1350–1364.

Li,J.H.,Kirkiles-Smith,N.C.,McNiff,J.M.,Pober,J.S.,2003.TRAILinducesapoptosis andinflammatorygeneexpressioninhumanendothelialcells.J.Immunol. 171,1526–1533.

Li,X.,Becker,K.A.,Zhang,Y.,2010.Ceramideinredoxsignalingandcardiovascular diseases.Cell.Physiol.Biochem.26,41–48.

Li,X.,Han,W.Q.,Boini,K.M.,Xia,M.,Zhang,Y.,Li,P.L.,2013.TRAILdeathreceptor4 signalingvialysosomefusionandmembraneraftclusteringincoronary arterialendothelialcells:evidencefromASMknockoutmice.J.Mol.Med.91, 25–36.

Li,T.,Su,L.,Lei,Y.,Liu,X.,Zhang,Y.,Liu,X.,2015.DDIT3andKAT2Aproteins regulateTNFRSF10AandTNFRSF10Bexpressioninendoplasmicreticulum stress-mediatedapoptosisinhumanlungcancercells.J.Biol.Chem.290, 11108–11118.

Liabakk,N.B.,Sundan,A.,Torp,S.,Aukrust,P.,Froland,S.S.,Espevik,T.,2002. Development,characterizationanduseofmonoclonalantibodiesagainst sTRAIL:measurementofsTRAILbyELISA.J.Immunol.Methods259, 119–128.

Liabeuf,S.,Barreto,D.V.,Barreto,F.C.,Chasseraud,M.,Brazier,M.,Choukroun,G., Kamel,S.,Massy,Z.A.,2010.ThecirculatingsolubleTRAILisanegativemarker forinflammationinverselyassociatedwiththemortalityriskinchronickidney diseasepatients.Nephrol.Dial.Transplant.25,2596–2602.

Liu,M.,Xiang,G.,Lu,J.,Xiang,L.,Dong,J.,Mei,W.,2014.TRAILprotectsagainst endotheliuminjuryindiabetesviaAkt-eNOSsignaling.Atherosclerosis237, 718–724.

Lu,J.,Zhang,L.,Xie,F.,Zhu,L.,Li,X.,Ouyang,J.,He,X.,Han,S.,Yi,C.,2016.Mild oxidativestressinducedbyalowdoseofcisplatincontributestotheescapeof TRAIL-mediatedapoptosisintheovariancancerSKOV3cellline.Oncol.Rep. 35,3427–3434.

Lushchak,V.I.,2014.Freeradicals,reactiveoxygenspecies,oxidativestressandits classification.Chem.Biol.Interact.224,164–175.

Michowitz,Y.,Goldstein,E.,Roth,A.,Afek,A.,Abashidze,A.,BenGal,Y.,Keren,G., George,J.,2005.Theinvolvementoftumornecrosisfactor-related

apoptosis-inducingligand(TRAIL)inatherosclerosis.J.Am.Coll.Cardiol.45, 1018–1024.

deMiguel,D.,Lemke,J.,Anel,A.,Walczak,H.,Martinez-Lostao,L.,2016.Onto betterTRAILsforcancertreatment.CellDeathDiffer.23,733–747. Moncada,S.,Palmer,R.M.,Higgs,E.A.,1991.Nitricoxide:physiology,

pathophysiology,andpharmacology.Pharmacol.Rev.43,109–142. Montezano,A.C.,Touyz,R.M.,2012a.Oxidativestress,Noxs,andhypertension:

experimentalevidenceandclinicalcontroversies.Ann.Med.44(Suppl.1), S2–16.

Montezano,A.C.,Touyz,R.M.,2012b.Reactiveoxygenspeciesandendothelial function-roleofnitricoxidesynthaseuncouplingandNoxfamilynicotinamide adeninedinucleotidephosphateoxidases.BasicClin.Pharmacol.Toxicol.110, 87–94.

Nakagami,H.,Kaneda,Y.,Ogihara,T.,Morishita,R.,2005.Endothelialdysfunction inhyperglycemiaasatriggerofatherosclerosis.Curr.DiabetesRev.1,59–63. Nesterov,A.,Ivashchenko,Y.,Kraft,A.S.,2002.Tumornecrosisfactor-related

apoptosis-inducingligand(TRAIL)triggersapoptosisinnormalprostate epithelialcells.Oncogene21,1135–1140.

Niessner,A.,Hohensinner,P.J.,Rychli,K.,Neuhold,S.,Zorn,G.,Richter,B., Hulsmann,M.,Berger,R.,Mortl,D.,Huber,K.,Wojta,J.,Pacher,R.,2009. Prognosticvalueofapoptosismarkersinadvancedheartfailurepatients.Eur. HeartJ.30,789–796.

Nolte,F.,Friedrich,O.,Rojewski,M.,Fink,R.H.,Schrezenmeier,H.,Korper,S.,2004. Depolarisationoftheplasmamembraneinthearsenictrioxide(As2O3)-and

anti-CD95-inducedapoptosisinmyeloidcells.FEBSLett.578,85–89. O’Brien,L.A.,Richardson,M.A.,Mehrbod,S.F.,Berg,D.T.,Gerlitz,B.,Gupta,A.,

Grinnell,B.W.,2007.ActivatedproteinCdecreasestumornecrosisfactor relatedapoptosis-inducingligandbyanEPCR-independentmechanism involvingEgr-1/Erk-1/2activation.Arterioscler.Thromb.Vasc.Biol.27, 2634–2641.

Orlinick,J.R.,Chao,M.V.,1998.TNF-relatedligandsandtheirreceptors.Cell.Signal. 10,543–551.

Osmancik,P.,Teringova,E.,Tousek,P.,Paulu,P.,Widimsky,P.,2013.Prognostic valueofTNF-relatedapoptosisinducingligand(TRAIL)inacutecoronary syndromepatients.PLoSOne8,e53860.

Panieri,E.,Santoro,M.M.,2016.ROShomeostasisandmetabolism:adangerous liasonincancercells.CellDeath.Dis.7,e2253.

Park,K.J.,Lee,C.H.,Kim,A.,Jeong,K.J.,Kim,C.H.,Kim,Y.S.,2012.Deathreceptors4 and5activateNox1NADPHoxidasethroughriboflavinkinasetoinduce

(10)

reactiveoxygenspecies-mediatedapoptoticcelldeath.J.Biol.Chem.287, 3313–3325.

Pitti,R.M.,Marsters,S.A.,Ruppert,S.,Donahue,C.J.,Moore,A.,Ashkenazi,A.,1996. InductionofapoptosisbyApo-2ligand,anewmemberofthetumornecrosis factorcytokinefamily.J.Biol.Chem.271,12687–12690.

Pritzker,L.B.,Scatena,M.,Giachelli,C.M.,2004.Theroleofosteoprotegerinand tumornecrosisfactor-relatedapoptosis-inducingligandinhuman microvascularendothelialcellsurvival.Mol.Biol.Cell15,2834–2841. Raaz,U.,Toh,R.,Maegdefessel,L.,Adam,M.,Nakagami,F.,Emrich,F.C.,Spin,J.M.,

Tsao,P.S.,2014.Hemodynamicregulationofreactiveoxygenspecies: implicationsforvasculardiseases.Antioxid.RedoxSignal.20,914–928. Reuter,S.,Gupta,S.C.,Chaturvedi,M.M.,Aggarwal,B.B.,2010.Oxidativestress,

inflammation,andcancer:howaretheylinked?FreeRadic.Biol.Med.49, 1603–1616.

Ross,R.,1999.Atherosclerosisisaninflammatorydisease.Am.HeartJ.138, S419–420.

Rozanov,D.,Cheltsov,A.,Sergienko,E.,Vasile,S.,Golubkov,V.,Aleshin,A.E.,Levin, T.,Traer,E.,Hann,B.,Freimuth,J.,Alexeev,N.,Alekseyev,M.A.,Budko,S.P., Bachinger,H.P.,Spellman,P.,2015.TRAIL-basedhighthroughputscreening revealsalinkbetweenTRAIL-mediatedapoptosisandglutathionereductase,a keycomponentofoxidativestressresponse.PLoSOne10,e0129566. Schieber,M.,Chandel,N.S.,2014.ROSfunctioninredoxsignalingandoxidative

stress.Curr.Biol.24,R453–462.

Seah,S.,Low,I.C.,Hirpara,J.L.,Sachaphibulkij,K.,Kroemer,G.,Brenner,C.,Pervaiz, S.,2015.Activationofsurrogatedeathreceptorsignalingtriggers

peroxynitrite-dependentexecutionofcisplatin-resistantcancercells.Cell DeathDis.6,e1926.

Secchiero,P.,Zauli,G.,2012.TRAIL,anewweaponagainstneointimalhyperplasia. Cardiology123,94–96.

Secchiero,P.,Gonelli,A.,Celeghini,C.,Mirandola,P.,Guidotti,L.,Visani,G., Capitani,S.,Zauli,G.,2001.Activationofthenitricoxidesynthasepathway representsakeycomponentoftumornecrosisfactor-related

apoptosis-inducingligand-mediatedcytotoxicityonhematologic malignancies.Blood98,2220–2228.

Secchiero,P.,Gonelli,A.,Carnevale,E.,Milani,D.,Pandolfi,A.,Zella,D.,Zauli,G., 2003.TRAILpromotesthesurvivalandproliferationofprimaryhuman vascularendothelialcellsbyactivatingtheAktandERKpathways.Circulation 107,2250–2256.

Secchiero,P.,Corallini,F.,diIasio,M.G.,Gonelli,A.,Barbarotto,E.,Zauli,G.,2005. TRAILcounteractstheproadhesiveactivityofinflammatorycytokinesin endothelialcellsbydown-modulatingCCL8andCXCL10chemokine expressionandrelease.Blood105,3413–3419.

Secchiero,P.,Corallini,F.,Ceconi,C.,Parrinello,G.,Volpato,S.,Ferrari,R.,Zauli,G., 2009.PotentialprognosticsignificanceofdecreasedserumlevelsofTRAILafter acutemyocardialinfarction.PLoSOne4,e4442.

Secchiero,P.,Corallini,F.,Beltrami,A.P.,Ceconi,C.,Bonasia,V.,DiChiara,A.,Ferrari, R.,Zauli,G.,2010a.AnimbalancedOPG/TRAILratioisassociatedtosevere acutemyocardialinfarction.Atherosclerosis210,274–277.

Secchiero,P.,Gonelli,A.,Corallini,F.,Ceconi,C.,Ferrari,R.,Zauli,G.,2010b. Metalloproteinase2cleavesinvitrorecombinantTRAIL:potentialimplications forthedecreasedserumlevelsofTRAILafteracutemyocardialinfarction. Atherosclerosis211,333–336.

Secchiero,P.,Rimondi,E.,diIasio,M.G.,Agnoletto,C.,Melloni,E.,Volpi,I.,Zauli,G., 2013.C-ReactiveproteindownregulatesTRAILexpressioninhumanperipheral monocytesviaanEgr-1-dependentpathway.Clin.CancerRes.19,1949–1959. Sessler,T.,Healy,S.,Samali,A.,Szegezdi,E.,2013.StructuraldeterminantsofDISC

function:newinsightsintodeathreceptor-mediatedapoptosissignalling. Pharmacol.Ther.140,186–199.

Siegmund,D.,Wicovsky,A.,Schmitz,I.,Schulze-Osthoff,K.,Kreuz,S.,Leverkus,M., Dittrich-Breiholz,O.,Kracht,M.,Wajant,H.,2005.Deathreceptor-induced signalingpathwaysaredifferentiallyregulatedbygammainterferonupstream ofcaspase8processing.Mol.Cell.Biol.25,6363–6379.

Sies,H.,1997.Oxidativestress:oxidantsandantioxidants.Exp.Physiol.82, 291–295.

Sies,H.,2015.Oxidativestress:aconceptinredoxbiologyandmedicine.Redox Biol.4,180–183.

Siti,H.N.,Kamisah,Y.,Kamsiah,J.,2015.Theroleofoxidativestress,antioxidants andvascularinflammationincardiovasculardisease(areview).Vascul. Pharmacol.71,40–56.

Stamler,J.S.,Singel,D.J.,Loscalzo,J.,1992.Biochemistryofnitricoxideandits redox-activatedforms.Science258,1898–1902.

Stuckey,D.W.,Shah,K.,2013.TRAILontrial:preclinicaladvancesincancer therapy.TrendsMol.Med.19,685–694.

Suzuki,Y.,Inoue,T.,Murai,M.,Suzuki-Karasaki,M.,Ochiai,T.,Ra,C.,2012. DepolarizationpotentiatesTRAIL-inducedapoptosisinhumanmelanoma cells:roleforATP-sensitiveK+channelsandendoplasmicreticulumstress.Int. J.Oncol.41,465–475.

Suzuki-Karasaki,M.,Ochiai,T.,Suzuki-Karasaki,Y.,2014a.Crosstalkbetween mitochondrialROSanddepolarizationinthepotentiationofTRAIL-induced apoptosisinhumantumorcells.Int.J.Oncol.44,616–628.

Suzuki-Karasaki,Y.,Suzuki-Karasaki,M.,Uchida,M.,Ochiai,T.,2014b. DepolarizationcontrolsTRAIL-sensitizationandtumor-selectivekillingof cancercells:crosstalkwithROS.Front.Oncol.4,128.

Takahashi,K.,Takeda,K.,Saiki,I.,Irimura,T.,Hayakawa,Y.,2013.Functionalroles oftumornecrosisfactor-relatedapoptosis-inducingligand-DR5interactionin

B16F10cellsbyactivatingthenuclearfactor-kappaBpathwaytoinduce metastaticpotential.CancerSci.104,558–562.

Tisato,V.,Secchiero,P.,Rimondi,E.,Gianesini,S.,Menegatti,E.,Casciano,F., Zamboni,P.,Zauli,G.,2013.GM-CSFexhibitsanti-inflammatoryactivityon endothelialcellsderivedfromchronicvenousdiseasepatients.Mediators Inflamm.2013,561689.

Tisato,V.,Garrovo,C.,Biffi,S.,Petrera,F.,Voltan,R.,Casciano,F.,Meroni,G., Agnoletto,C.,Zauli,G.,Secchiero,P.,2014.Intranasaladministrationof recombinantTRAILdown-regulatesCXCL-1/KCinanovalbumin-induced airwayinflammationmurinemodel.PLoSOne9,e115387.

Tisato,V.,Gonelli,A.,Voltan,R.,Secchiero,P.,Zauli,G.,2016.Clinicalperspectives ofTRAIL:insightsintocentralnervoussystemdisorders.Cell.Mol.LifeSci.73, 2017–2027.

Tornese,G.,Iafusco,D.,Monasta,L.,Agnoletto,C.,Tisato,V.,Ventura,A.,Zauli,G., Secchiero,P.,2014.ThelevelsofcirculatingTRAILattheonsetoftype1 diabetesaremarkedlydecreasedinpatientswithketoacidosisandwiththe highestinsulinrequirement.ActaDiabetol.51,239–246.

Tornese,G.,Tisato,V.,Monasta,L.,VecchiBrumatti,L.,Zauli,G.,Secchiero,P.,2015. SerumTRAILlevelsincreaseshortlyafterinsulintherapyandmetabolic stabilizationinchildrenwithtype1diabetesmellitus.ActaDiabetol.52 (October(5)),1003–1006.

Trauzold,A.,Wermann,H.,Arlt,A.,Schutze,S.,Schafer,H.,Oestern,S.,Roder,C., Ungefroren,H.,Lampe,E.,Heinrich,M.,Walczak,H.,Kalthoff,H.,2001.CD95 andTRAILreceptor-mediatedactivationofproteinkinaseCandNF-kappaB contributestoapoptosisresistanceinductalpancreaticadenocarcinomacells. Oncogene20,4258–4269.

Trauzold,A.,Siegmund,D.,Schniewind,B.,Sipos,B.,Egberts,J.,Zorenkov,D., Emme,D.,Roder,C.,Kalthoff,H.,Wajant,H.,2006.TRAILpromotesmetastasis ofhumanpancreaticductaladenocarcinoma.Oncogene25,7434–7439. Trivedi,R.,Mishra,D.P.,2015.TrailingTRAILresistance:noveltargetsforTRAIL

sensitizationincancercells.Front.Oncol.5,69.

Tse,A.K.,Cao,H.H.,Cheng,C.Y.,Kwan,H.Y.,Yu,H.,Fong,W.F.,Yu,Z.L.,2014. IndomethacinsensitizesTRAIL-resistantmelanomacellstoTRAIL-induced apoptosisthroughROS-mediatedupregulationofdeathreceptor5and downregulationofsurvivin.J.Invest.Dermatol.134,1397–1407. Ursini-Siegel,J.,Zhang,W.,Altmeyer,A.,Hatada,E.N.,Do,R.K.,Yagita,H.,

Chen-Kiang,S.,2002.TRAIL/Apo-2ligandinducesprimaryplasmacell apoptosis.J.Immunol.169,5505–5513.

Vaccarezza,M.,Delbello,G.,Zauli,G.,2007.AroleoftheTRAIL-TRAILreceptor systeminthepathogenesisofdiabetes.ActaBioMed.78(Suppl.1),262–267. Vanhoutte,P.M.,Shimokawa,H.,Tang,E.H.,Feletou,M.,2009.Endothelial

dysfunctionandvasculardisease.ActaPhysiol.196,193–222.

Vasa,M.,Breitschopf,K.,Zeiher,A.M.,Dimmeler,S.,2000.Nitricoxideactivates telomeraseanddelaysendothelialcellsenescence.Circ.Res.87,540–542. Virag,L.,Szabo,E.,Gergely,P.,Szabo,C.,2003.Peroxynitrite-inducedcytotoxicity:

mechanismandopportunitiesforintervention.Toxicol.Lett.140–141, 113–124.

Volpato,S.,Ferrucci,L.,Secchiero,P.,Corallini,F.,Zuliani,G.,Fellin,R.,Guralnik, J.M.,Bandinelli,S.,Zauli,G.,2011.Associationoftumornecrosisfactor-related apoptosis-inducingligandwithtotalandcardiovascularmortalityinolder adults.Atherosclerosis215,452–458.

Walczak,H.,Miller,R.E.,Ariail,K.,Gliniak,B.,Griffith,T.S.,Kubin,M.,Chin,W., Jones,J.,Woodward,A.,Le,T.,Smith,C.,Smolak,P.,Goodwin,R.G.,Rauch,C.T., Schuh,J.C.,Lynch,D.H.,1999.Tumoricidalactivityoftumornecrosis factor-relatedapoptosis-inducingligandinvivo.Nat.Med.5,157–163. Wang,H.,Xu,C.,Kong,X.,Li,X.,Kong,X.,Wang,Y.,Ding,X.,Yang,Q.,2014.Trail

resistanceinducesepithelial-mesenchymaltransitionandenhances invasivenessbysuppressingPTENviamiR-221inbreastcancer.PLoSOne9, e99067.

Weidinger,A.,Kozlov,A.V.,2015.Biologicalactivitiesofreactiveoxygenand nitrogenspecies:oxidativestressversussignaltransduction.Biomolecules5, 472–484.

Weiland,U.,Haendeler,J.,Ihling,C.,Albus,U.,Scholz,W.,Ruetten,H.,Zeiher,A.M., Dimmeler,S.,2000.Inhibitionofendogenousnitricoxidesynthasepotentiates ischemia-reperfusion-inducedmyocardialapoptosisviaacaspase-3 dependentpathway.Cardiovasc.Res.45,671–678.

Wiley,S.R.,Schooley,K.,Smolak,P.J.,Din,W.S.,Huang,C.P.,Nicholl,J.K., Sutherland,G.R.,Smith,T.D.,Rauch,C.,Smith,C.A.,etal.,1995.Identification andcharacterizationofanewmemberoftheTNFfamilythatinduces apoptosis.Immunity3,673–682.

Xiang,G.,Zhang,J.,Ling,Y.,Zhao,L.,2014.CirculatinglevelofTRAILconcentration ispositivelyassociatedwithendothelialfunctionandincreasedbydiabetic therapyinthenewlydiagnosedtype2diabeticpatients.Clin.Endocrinol.80, 228–234.

Yamaguchi,H.,Wang,H.G.,2004.CHOPisinvolvedinendoplasmicreticulum stress-inducedapoptosisbyenhancingDR5expressioninhumancarcinoma cells.J.Biol.Chem.279,45495–45502.

Yerbes,R.,Palacios,C.,Lopez-Rivas,A.,2011.ThetherapeuticpotentialofTRAIL receptorsignallingincancercells.Clin.Transl.Oncol.13,839–847. Yin,W.,Li,X.,Feng,S.,Cheng,W.,Tang,B.,Shi,Y.L.,Hua,Z.C.,2009.Plasma

membranedepolarizationandNa,K-ATPaseimpairmentinducedby mitochondrialtoxinsaugmentleukemiacellapoptosisviaanovel mitochondrialamplificationmechanism.Biochem.Pharmacol.78,191–202. Yu,Y.,Lyons,T.J.,2005.Alethaltetradindiabetes:hyperglycemia,dyslipidemia, oxidativestress,andendothelialdysfunction.Am.J.Med.Sci.330,227–232.

Figura

Fig. 1. Schematic representation of TRAIL-mediated apoptotic, pro-survival and necroptotic signaling
Fig. 2. Redox signaling and TRAIL biological activity. The picture shows some of the molecular mediators of the cross talk between redox signaling and TRAIL biological activity

Riferimenti

Documenti correlati

These data are consistent with animal studies – which showed that systemic TRAIL blockade as well as knocking out TRAIL gene would increase both incidence and severity

Numerous nuclei stained positive to TUNEL in the patient’s specimen (Figure 6A), whereas hardly any staining was detected in a normal control muscle (not shown) or in three

Accanto a queste due ipotesi che, nella contrapposizione tra autonomia a subordinazione — tertium non datur —, ben rappresentano la tradizionale configurazione binaria delle

(see Tumour necrosis factor-related apoptosis-inducing ligand) transforming growth factor (TGF)-ß 13 treatment toxicity 51. TRIKE regimen 152 tuberculosis

Fas-associat- ed death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex dur- ing tumor necrosis factor-induced

Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance

Stimulation of death receptors of the tumor necrosis factor (TNF) receptor superfamily such as CD95 (APO-1/Fas) or TNF-related apoptosis-inducing ligand (TRAIL) receptors results in

Niederkorn, “Uveal melanoma expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors and susceptibility to TRAIL-induced apoptosis,”