• Non ci sono risultati.

Design of a new experimental loop and of a coolant purifying system for corrosion experiments of EUROFER samples in flowing PbLi environment

N/A
N/A
Protected

Academic year: 2021

Condividi "Design of a new experimental loop and of a coolant purifying system for corrosion experiments of EUROFER samples in flowing PbLi environment"

Copied!
6
0
0

Testo completo

(1)

Fusion

Engineering

and

Design

j ourna l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / f u s e n g d e s

Design

of

a

new

experimental

loop

and

of

a

coolant

purifying

system

for

corrosion

experiments

of

EUROFER

samples

in

flowing

PbLi

environment

D.

Martelli

a,∗

,

G.

Barone

a

,

M.

Tarantino

b

,

M.

Utili

b

aUniversityofPisa,DipartimentodiIngegneriaCivileeIndustriale,LargoLucioLazzarino2,56122Pisa,Italy bENEABrasimone,40032Camugnano,Bologna,Italy

h

i

g

h

l

i

g

h

t

s

•DevelopmentofanexperimentalfacilityforthestudyofEUROFERcorrosioninflowingPbLi. •Developmentofacoldtrapsystem.

•Calculationofthemaximumallowablecorrosionsourceasafunctionofthecoldtraptemperature.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29September2016

Receivedinrevisedform26January2017 Accepted28January2017

Availableonline14February2017 Keywords:

EUROFERcorrosion LIFUSII

Coldtrap

a

b

s

t

r

a

c

t

Theuseofferritic/martensiticRAFMsteelsinPbLiblanketapplicationsrequiresabetterunderstandingof materialcompatibilityrelatedtophysical/chemicalcorrosionphenomenainthe450–550◦Ctemperature range.Theimpactofcorrosionincludesdeteriorationofthemechanicalintegrityoftheblanketstructure duetothewallthinning.Furthermore,seriousconcernsareassociatedwiththetransportofactivated corrosionproductsbythePbLicoolant.Inthisframe,thepresentworkaimstoillustratethedesignof anewexperimentalfacilitynamedLIFUSII(LIthiumforFUSionII)intendedtoextensivelyinvestigate corrosionmechanismsrelatedoncoated(Al2O3based)anduncoatedEUROFERsamplesatconstant tem-peratureof550◦C,forthreedifferentvelocitiesandfourdifferentexposuretimes.Moreover,a“coldtrap” purificationsystemisdesignedtoremoveimpuritiesandcorrosionproductsdissolvedintheliquidmetal viaupperconcentrationlimitsimposedbytemperature-dependentsolubilityconstrains.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thereducedactivationferritic/martensitic(F/M)steel EURO-FERiscurrentlyconsideredthereferencestructuralsteelforPbLi breedingblanketsinthefutureEuropeanDEMOreactor[1].Due totheextremeoperatingcondition,EUROFERcorrosionand cor-rosionproducttransportphenomenaconstitutestronglimitations fortheblanketdesignandforthePbLiloopsafety(plugging phe-nomenaandregionwithhighconcentrationofactivatedmaterials). AvailableexperimentaldataonthecorrosionrateforF/Msteels inflowingPbLishowalargedispersion,predictingvaluesathigh temperatures(450–500◦C)from5␮m/yrtoafewhundred␮m/yr [2].ThesameissueisobservedforthesolubilityofironinPbLi:

∗ Correspondingauthor.

E-mailaddresses:daniele.martelli@ing.unipi.it,martelli.daniele@gmail.com

(D.Martelli).

datafromdifferentcorrelationsareaffectedbyadispersionof sev-eralordersofmagnitude[3].Moreover,detailedinformationabout experimentalconditions,suchasthePbLiflow velocityandthe amountofimpuritiesdissolvedinthePbLialloy,areoftenmissing. ThislackofdataprecludesalsoarationaldesignofaPbLi purifica-tionsystemaffectingtheimpuritiessourcetermandthemaximum solubilityvalueabovewhichprecipitationoccurs.Inthisframenew experimentalactivitiesareforeseeninordertoinvestigate EURO-FERcorrosionbehaviourfortemperaturesandvelocitiessignificant fortheHeliumCooledLithiumLead,WaterCooledLithiumLeadand DualCoolantLithiumLeadBreedingBlanketdesign.The develop-mentofanewexperimentalapparatus,toberealizedattheENEA BrasimoneR.C.,ishereproposedaimingatassessingcorrosionrates onuncoatedandcoatedEUROFERsamplesataconstant tempera-tureof550◦C,forthreedifferentvelocities0.01,0.1and1m/sand fourdifferentexposuretimes1000,2000,4000and8000h.

http://dx.doi.org/10.1016/j.fusengdes.2017.01.054

0920-3796/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(2)

Fig.1.LIFUSIIP&ID.

2. Descriptionofthefacility

LIFUSII(seetheP&IDreportedinFig.1)isalooptype exper-imentalfacilitydesignedwithaclassical“eightshape”.Twotest sections(TS-1,2)areinstalledinseriesinthehotlegoftheloop withanoperatingPbLitemperatureof550◦C.Onthecoldleg, oper-atedat400◦C,areinstalledtheelectromagneticpump(EP-100),the inductionflowmeter(IFM-105)andtheby-passtodriftaportion ofthetotalmassflowratetowardsthecoldtraps(CT-101,CT-102) forthepurificationprocess.

Thehotandcoldlegsarecoupledthroughaneconomizer (E-300)consistinginashellandtubePbLi/PbLiheatexchanger.The hotfluid(Th,in550◦C)enterstubesidesandcoolsdownto450◦Cat theexitsectionoftheheatexchanger.Onthecontrary,thecoldfluid (400◦C)entersshellsideandisheatedupto500◦C.Consideringthe totalmassflowrateof∼4.6kg/sandatemperaturejumpacrossthe economizerTECO∼100◦Ctheheatexchangedisabout87kW.The PbLiintheshellsideisthenchannelledtowardsthehotlegwhere, throughasubsequentheatingmodules(HT-350),reachesthe oper-atingtemperatureof550◦C(requiredpower∼45kWsuppliedby aseriesofelectricalheatingbandsinstalledona2½pipe,Fig.1).

PbLienteringthecoldlegneedstobefurthercooledtoreach 400◦C.Thisoperationisaccomplishedsplittingthetotalflowinto a portion channelled towards thepurification system where it is cooled down(e.g. 270◦C),while theother portionat 450◦C bypassesthepurificationsystem.TheflowrepartitionandtheCold Trap(CT)outlettemperaturearesuchthatthetwopartitionsre-join downstreamthepurificationzoneatanominalcoldtemperatureof 400◦C.Thereby,theCTcoversthedualfunctionofloopcoolingand purificationsystem.SuchaCTarrangementoffersaflexible opera-tionintermsoftreatedflow,permittinghence,awiderassessment ofthepurificationsystemefficiency.FromaheatbalancetheCT mustbedesignedtoremove∼45kWinordertomeettherated coldlegtemperaturerequirementof400◦C.ThedesiredPbLimass flowrateisguaranteedbyanelectromagneticpump(EP-100)with permanentmagnet(PMP,alternatingtravellingmagneticfield gen-eratedbya rotatingmagneticsystemwithpermanentmagnets poleswithalternatingpolarity)installeddownwardsthecoldtrap andoperatingatatemperatureof400◦C.Aninductionmassflow meter(IFM-105)isusedtomonitorandcontroltheloopmassflow rate.Thereferencestructuralmaterialforpipingandcomponents (HXEconomizer,TestSections,etc.)issteel2¼Cr-1Mo(ASTMA335 Gr.P22),whoserelativelylowcorrosionrate(lownickelcontent

(3)

Fig.2. CompositionofAl,Fe,CrandOwithinanAl-baseddiffusioncoatingabove theEUROFERsteel[7].

andconsequentlowdegradationbyprecipitation)contributesto minimizationofthecorrosionproductsdissolvedinthealloy.The mainpipelineofthecircuitconsistsof2Sch.80XSpipes,which guaranteesarelativelylowPbLipipingvelocity(0.25m/s) minimis-ingthepipelinecorrosion.Thecircuitiscompletedbythestorage vesselS-100withfillinganddraininglines,theexpansionvessel S-200andaremovablegloveboxinstalledabovethetestsections toensurethespecimensextractioninacontrolledandprotected atmosphereavoidinganycontaminationoftheloopwithoxygen duringthisphase.Inordertoreducethepluggingrisk,together withtheCTcomponentdesign,acoatingtreatmentofallthe struc-turalsteelinPbLiistakenintoconsideration.Accordingto[4–6], theAl-basedcoatingsuitableforoperationinPbLiisadiffusion doublelayerwheretheexternallayerconsistsoftheAl-Fephase andtheinternallayerconsistsof˛-Fe(Al)phase.Abovethedouble layerthereisalsoathinAl2O3layerwhichprovidesanenhancing protectionfeature.Fe-Aland,inparticular,␣-Fe(Al)andAl2O3are theprotectivephasesofthecoatingsincetheyhavelow solubil-ityinPbLi.OtherAl-enrichedphases(suchasFeAl2andFe2Al5)are unwantedandmustbeavoidedsincetheyarebrittleandsolublein theliquidmetal.Anexampleofgoodprotectivecoatingsfor oper-ationinPbLiisreportedin[6],wherethecompositionsofAlwithin eachAl-phasesarereportedinFig.2.Clearlyvisiblearetheexternal Al2O3layerwith40%ofAlandthe␣-Fe(Al)phaseswithabout15% ofAl.Thecoatingthicknessis50␮m.

3. Testsection

Twoidenticaltestsections(TS-1and2,Figs.1and3),vertically arrangedplacedinsequenceandworkingatconstanttemperature, areforeseeninthehotlegoftheloop(550◦C).ThefirstTSwill beadoptedforshortandmedium-termtests(1000,2000,4000h) whilethesecondonewillbeusedforlongtermtest(8000h).Each TSisdesignedwiththreespecificcrosssectionscharacterizedby increasingtheinnerdiameter(1,3and10)inordertoprovide therequestedvelocitiesinsideeachTS(respectively1.0,0.1and 0.01m/s).

Foreachvelocitysection,asetof6specimensareforeseen(3 uncoated+3coatedwithouterdiameterof10mmandalengthof 37mm(M5),screwedtogethertoformarodtobeinsertedinside thetestsection).DummyelementsareforeseenintheTSregion wherecrosssectionvariationoccurs.Thesamplesrodwillbe fas-tenedintheupperpartoftheTSwhilekeptfreetoexpandinthe lowerparttoavoidstressesduetodifferentthermalexpansions.In

Fig.3.TestSection.

Table1themainparametersthatcharacterizetheTSgeometryand theflowconditionsarereported.

The proposed corrosion-resistant coating is an Aluminium-based layer consisting of an amorphous matrix of Al2O3 with nano-crystallineinclusionsobtainedbymeansofPLD(PulsedLaser Deposition)techniquein theCNST(Center ofNano-Science and Technology) laboratories at IIT (Italian Institute of Technology) [8,9].

4. Purificationsystem

TheCTsystemconsistsofaheatandmasstransferdevice,where asupersaturatedsolutionofimpuritiesisgeneratedastheresultof PbLicooling,causingthecrystallizationoftheimpuritiesbothon theimmovablesurfacesandinsuspension.TheprincipleoftheCT istomaintaintheimpurityequilibriumconcentrationintheloop belowthePbLisolubilityat400◦C(coldzonetemperature).Such anapparatushasthepurposeofcollectingtheimpuritiesgenerated duringtheoperation,avoidingtherefore,thecorrosionproducts precipitatingintheloop.Althoughthepurificationprincipleis rel-ativelysimple,thedesigndifficultiesofacoldtraparesignificant andarerelatedtothelackofreliableexperimentaldataorempirical correlationon:

-steelcomponentssolubilityinPbLi(e.g.CrandFe); -thekineticsgoverningtheprecipitationphenomena; -thetotalsourcetermofthecorrosionproducts.

Foragenericsystemsolute/solventsystemwithasourceterm andprovidedwithapurificationapparatus,theimpurities concen-trationC(t),inppm,canbeobtainedfromabalanceequation:

C(t)=C∞(1−e ˙mctM t) (1)

whereMisthePbLitotalmassinthesystem(kg), ˙mctisthemass flowintheCT,theCTefficiencyandC∞theasymptotic concen-tration(t→∞)definedas:

C∞=



S  ˙mct +C Sat ct



(2)

(4)

Table1

TSmainparameter.

Quantity Unit Sec-1 Sec-2 Sec-3 NOTE

v m/s 1 0.1 0.01 Sectionvelocity Ap m2 4.7910−4 4.6910−3 4.8110−2 FlowArea Di mm 26.64 (1Sch.40) 77.92 (3Sch.40) 247.65 (10Sch.60)

Secinnerdiameter (Size)

dh=4A/PW m 1.6610−2 6.7910−2 2.3810−1 Hydraulicdiameter

L m 0.304 0.466 0.55 Sectionlength

Re=␳VL/ – 1.56105 65055 22199 Reynoldsnumber

m kg/s 4.6 Massflowrate

 Pas 1.0210−3 PbLiviscosityat550C

 kg/m3 9541.5 PbLidensityat550C

d m 0.01 Sampleouterdiameter

Fig.4.IronsolubilityinPbLi.

whereSisthesourceterm(␮g/s),CSat

ct representstheironsolubility attheminimumCTtemperature,Tct(beingtheironthemain com-ponent).ConcerningtheCTefficiency,itcanbegenericallydefined as:

=Cin−Cout Cin−CctSat

(3) andinaninitialassessment,itisassumedtohavethesameform oftheCTefficiencydefinedforthesodiumpurificationsystem:

= 1

1+pq (4)

where␶representsthefluidresidenttime(min)intheCTandp,q arecoefficientssetequalto122and3.4respectivelyforsodiumCT [10].TheappropriatenessofsuchacorrelationforPbLicorrosion systemwillbeevaluatedexperimentallywithchemicalanalysisof PbLisamplingupstreamanddownstreamtheCT.

Inapreliminarydesign,theavailablecorrelationsfor determin-ingironsolubilityinPbLi[2](Fig.4)wereinvestigatedtodetermine themaximumcorrosionsourceasafunctionofTct,(Fig.5)obtained fromEq.(2) imposing C∞<CSat

400◦C in order toavoidanymetal precipitationinthecoldzoneoftheloop(Tcold=400◦C):

Smax= ˙m ct



Csat 400◦C−Cctsat



(5) According to the Smolentsev [2] correlation, chosen as ref-erence, themaximum source termallowablein order to avoid precipitation of corrosion products in thecold leg of the loop (T∼400◦C)foraCTtemperatureintherange270–300◦Cisabout 3.6␮g/s(0.11kg/yr).

The saturation concentration significantly decreases in the rangefrom450to250◦C,forthisreasonaminimumCT

temper-Fig.5. Maximumallowablecorrosionsource.

atureofTCT=270◦Cisfixedtokeepanacceptablesafetymargin fromthesolidificationtemperature(235◦C).ForTCT=270◦C the minimumflowbypassedinCTisabout1.3kg/s(beingtheCT cool-ingpowerfixedtoabout45kW).Themaximumtemperatureinthe CTis400◦CifweconsidertoprocessallthePbLimassflowrate.

AnothersignificantparametertobedefinedistheCTresidence time,␶,affectingthedepositionkineticsandthereforetheCT effi-ciency. This parameter depends on the CTvolume, VCT and is inverselyproportionalto ˙mct.ThevalueofVCThasbeensettoabout 50l,inordertoobtainaresidencetimemaximumvalue␶≈400s (for ˙mct=1.3kg/s)andaminimumvalue␶≈110s(for ˙mct=4.6kg/s). RegardingthelayoutoftheCT,ashellandtubeheatexchangerwith 2-passtubesideconfigurationisproposed.PbLienters,shellside,at 450◦Candexitsat270◦C–400◦C.Theinnerdiameteroftheshellis 303.23mm(12Sch.40)andthevelocityofthePbLiisintherange 2–6mm/srespectivelyfor1.3and4.6kg/s.Aseriesofbaffleassures bothaneffectiveliquidmetalcirculationandanincreasedCT pre-cipitationsurface.ThepreliminarysketchoftheCTisreportedin Fig.6.

The purification system will be arranged in a parallel con-figuration in order to ensure the continuous operation of the experimentalfacility(ifneeded,theflowwillbedivertedinthe secondCT-102,whilethefirstone(CT-101)canbedrainedand dis-assembledformaintenanceorreconditioning,e.g.removalofthe pluggedimpurities).UpstreamanddownstreamtheCTsasampling devicesisforeseentoextractthecirculatingPbLiandtoanalyzeits impuritiescontentaimingatassessingtheCTefficiency.

Thesecondarysideofthepurifyingsystemconsistsina pres-surizedwaterloop(seetheP&IDSchemeinFig.7).Thepressure ofthesecondaryloopissetto20bar(Tsat=212◦C),theinletand

(5)

Fig.6. PreliminaryCTconfiguration.

outletwatertemperaturesare160◦Cand193◦Crespectively,with awatermassflowraterangeof0.2–1kg/s.Thewaterflowsthrough abundleof12(U-tubeconfiguration),double-walltubeswitha stainlesssteelpowderfillingthegapbetweenthetwotubes(Fig.6). Thisgeometryprovidesadoublephysicalseparationbetweenthe twofluidsthatallowsthethermo-mechanicallydecouplingofthe

TheAirCooler,E-501,isdesignedtoremovethepowerfrom watersecondaryfluidwhile,theheatingsystemHT-501is consid-eredinordertopre-heatthewaterattheoperatingconditions.

5. Conclusions

A new facility named LIFUS-II, to be constructed at ENEA BrasimoneR.C.,hasbeendesignedtoinvestigatetheRAFM/PbLi corrosionaspectsforthecurrentbreedingblanketconcepts.The LIFUS-IIexperimentalcampaignwillbedevotedtoevaluatethe corrosionrateofthereferencesteeland thechemical compati-bilityofanewAl-basedcoating proposedasanti-corrosionand anti-permeationbarrierinflowingPbLi.Therefore,uncoatedand coatedEUROFERsampleswillbeexposedtodifferentPbLiflow velocities(1.0,0.1and0.01m/s)atatemperatureof550◦C. Exper-imentaldatawillbecollectedatdifferentexposuretimes(1000, 2000,4000and8000h).

Finally,aCTpreliminarydesignisproposedtogetherwiththe samplingsystemtomaintainimpuritiesconcentrationbelowthe coldzonesaturationpoint,avoidingprecipitationinthecoldestpart oftheloopandprovidingdetailedinformationaboutexperimental conditions.Moreover,theexperimentalcampaignwillbeusefulin ordertoassesstheparametersaffectingthepurificationefficiency.

(6)

Acknowledgments

This work has been carried out within the framework of theEUROfusionConsortium and hasreceivedfundingfromthe Euratomresearchandtrainingprogramme2014–2018undergrant agreementNo633053.Theviewsandopinionsexpressedhereindo notnecessarilyreflectthoseoftheEuropeanCommission.

References

[1]R.Lindau,etal.,PresentdevelopmentstatusofEUROFERandODS-EUROFER forapplicationinblanketconcepts,FusionEng.Des.75–79(2005)989–996.

[2]S.Smolentsev,etal.,Numericalstudyofcorrosionofferritic/martensitic steelsintheflowingPbLiwithandwithoutamagneticfield,J.Nucl.Mater. 432(2013)294–304.

[3]M.Abdou,etal.,Blanket/firstwallchallengesandrequiredR&Donthe pathwaytoDEMO,FusionEng.Des.100(2015)2–43.

[4]H.Glasbrenner,etal.,CorrosionbehaviourofAlbasedtritiumpermeation barriersinflowingPb-17Li,J.Nucl.Mater.307–311(2002)1360–1363.

[5]J.Konys,etal.,Comparisonofcorrosionbehaviorofbareandhot-dipcoated EUROFERsteelinflowingPb-17Li,J.Nucl.Mater.367–370(2007)1144–1149.

[6]W.Krauss,etal.,Al-basedanti-corrosionandT-permeationbarrier

developmentforfutureDEMOblankets,J.Nucl.Mater.417(2011)1233–1236.

[7]W.Krauss,J.Konys,N.Holstein,H.Zimmermann,Al-basedanti-corrosionand T-permeationbarrierdevelopmentforfutureDEMOblankets,J.Nuc.Mater. 417(2011)1233–1236.

[8]F.GarcíaFerré,etal.,Themechanicalpropertiesofananocrystalline Al2O3/a-Al2O3compositecoatingmeasuredbynanoindentationand Brillouinspectroscopy,ActaMater.61(2013)2662–2670.

[9]F.GarcíaFerré,etal.,AdvancedAl2O3coatingsforhightemperature operationofsteelsinheavyliquidmetals:apreliminarystudy,Corros.Sci.77 (2013)375–378.

[10]B.R.Grundy,Experimentalcharacterizationofsodiumcoldtrapsand modellingoftheirbehaviour,Proc.Int.Conf.onLiq.Met.Tech.inEn.Prod., Champion(1976)650.

[11]G.Coccoluto,etal.,Heavyliquidmetalnaturalcirculationina one-dimensionalloop,Nucl.Eng.Des.24(2011)1301–1309.

Riferimenti

Documenti correlati

[r]

In October the WWLLN network recorded a small number of lightning in the defined region (Fig. 3) and the diurnal variation was not clearly observed (Fig. 4,10) whereas the

The main purpose of the present work was the completion and the thermo-fluid dynamic characterization of a Rotary Permanent Magnet Magnetic Refrigerator operating

Innanzitutto una riflessione sulle tematiche della ricezione del romanzo cavalleresco: il saggio di Cátedra affronta casi concreti di pratiche di lettura della finzione

A necessary starting action in justifying the zone of a stable gradient (to place a sample subject to the study of its magnetic susceptibility) is to obtain in the region of

Non-Oriented Parent-Offspring duos in- ferred with less than 600 Mendelian Errors (ME), indicating the preferred name of the two individuals of the pair (Preferred Name Ind1,

The scale for the flow pattern is used as a guide, only.Positive velocities, coloured in red, represent regions of downstream, while negative velocities, coloured in blue,

An object-oriented designed finite-difference time-domain simulator for electromagnetic analysis and design in MRI-applications to high field analyses.. On the Analysis of