• Non ci sono risultati.

Analysis of the apparent nuclear modification in peripheral Pb–Pb collisions at 5.02 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Analysis of the apparent nuclear modification in peripheral Pb–Pb collisions at 5.02 TeV"

Copied!
13
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Analysis

of

the

apparent

nuclear

modification

in

peripheral

Pb–Pb

collisions

at

5.02 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received24May2018

Receivedinrevisedform26March2019 Accepted17April2019

Availableonline23April2019 Editor:W.-D.Schlatter

Charged-particlespectraatmidrapidityaremeasuredinPb–Pbcollisionsatthecentre-of-massenergy per nucleon–nucleon pair √sNN=5.02 TeV and presented in centrality classes ranging from most central (0–5%)tomostperipheral (95–100%)collisions.Possiblemediumeffectsarequantifiedusingthe nuclear modificationfactor (RAA)bycomparing the measuredspectrawith thosefrom proton–proton collisions, scaled by the number ofindependent nucleon–nucleon collisions obtained from aGlauber model. Atlarge transverse momenta (8<pT<20 GeV/c),the average RAA isfoundto increasefrom about 0.15 in0–5% centraltoamaximumvalue ofabout0.8 in75–85%peripheralcollisions,beyond which it falls off strongly tobelow 0.2 for the most peripheral collisions. Furthermore, RAA initially exhibitsapositiveslopeasafunctionofpTinthe8–20 GeV/c interval,whileforcollisionsbeyondthe 80% classthe slope is negative. To reduceuncertainties relatedto event selection and normalization, wealsoprovidetheratioofRAAinadjacentcentralityintervals.Ourresultsinperipheralcollisionsare consistentwithaPYTHIA-basedmodelwithoutnuclearmodification,demonstratingthatbiasescausedby theeventselectionandcollisiongeometrycanleadtotheapparentsuppressioninperipheralcollisions. ThisexplainstheunintuitiveobservationthatRAAisbelowunityinperipheralPb–Pb,butequaltounity inminimum-biasp–Pb collisionsdespitesimilarcharged-particlemultiplicities.

©2019ConseilEuropéenpourlaRechercheNucléaire.PublishedbyElsevierB.V.Thisisanopenaccess articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Transport properties of the Quark-Gluon Plasma (QGP) can be extracted from measurements of observables in high-energy nucleus–nucleus (AA) collisions, which involve large momentum transfers,suchasjetsoriginatingfromhardparton-parton scatter-ingsintheearlystageofthecollision.Whilepropagatingthrough the expanding medium, these hard partons lose energy due to medium-inducedgluonradiationandcollisionalenergyloss,a pro-cessknown as“jet quenching” [1,2]. Due to theenergy loss,the rateofhigh-pT particlesis expectedto be suppressedrelative to proton–protoncollisions. The effect is typically quantified by the nuclearmodificationfactor

RAA

=

1



Ncoll



dNAA ch

/

dpT dNppch

/

dpT

=

1



TAA



dNAA ch

/

dpT d

σ

chpp

/

dpT

,

(1)

definedastheratiooftheper-eventyieldsinAA andppcollisions normalizedtoanincoherentsuperpositionof



Ncoll



binarypp col-lisions.Theaveragenumberofcollisions



Ncoll



isdeterminedfrom

 E-mailaddress:alice-publications@cern.ch.

aMonteCarloGlaubermodel [3–5] andrelatedtotheaverage nu-clearoverlap



TAA

 = 

Ncoll

 /

σ

inelNN,where

σ

inelNN isthetotalinelastic nucleon-nucleon cross section. The yields measured in AA colli-sions,aswellas



Ncoll



,dependonthecollisioncentrality,andRAA isconstructedtobeunityintheabsenceofnucleareffectswhere particle productionis dominatedby hard processes.The collision centrality is expressed in percentiles of the total hadronic cross section,withthehighest(lowest)centrality0%(100%)referring to the most central (peripheral) collisions with zero (maximal) im-pact parameter. Experimentally, centralityis typically determined by ordering eventsaccordingtomultiplicity orenergy deposition inalimitedrapidityrangeandbyfittingthecorresponding distri-butionwithaGlauber-basedmodelofparticleproduction [6].

Numerous measurements of RAA reported by experiments at the RelativisticHeavy-IonCollider(RHIC) [7–16] andattheLarge HadronCollider(LHC) [17–22] revealedthat high-pT particle pro-duction is suppressed strongly in central collisions, andthat the suppression reduceswithdecreasingcentrality.Furthermore, con-trol measurements of possible nuclear modification arising from theinitialstateind–Au andp–Pb collisions [23–28] andwith elec-tromagneticprobesinAA collisions [29–33] (whichshouldnot be affectedby partonicmatter)demonstratedthattheobserved sup-pression is dueto final state interactions, such as partonenergy loss. Contrary to expectations, RAA was also found to be below https://doi.org/10.1016/j.physletb.2019.04.047

0370-2693/©2019ConseilEuropéenpourlaRechercheNucléaire.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

unityathighpTinperipheralcollisions,reachinganapproximately constantvalueofabout0

.

80 above3 GeV/c in80–92%Au–Au col-lisions at

sNN

=

0

.

2 TeV [16] and about 0

.

75 above 10 GeV/c in 70–90% Pb–Pb collisions at

sNN

=

5

.

02 TeV [21]. In a final-statedominatedscenario, suchdifferencesrelative tounityimply alargejetquenchingparameterforperipheralcollisions,up toan orderofmagnitude largerthan forcold nuclear matter [34], and consequentlyraiseexpectationsoftherelevance ofpartonenergy losseveninsmallcollisionsystems [35–37].However,ithasbeen pointedoutrecently [38] thateventselectionandgeometrybiases —justlikethosediscussedforp–Pb collisions [39] —cancausean apparent suppression of RAA in peripheral collisions, even inthe absenceof nuclear effects,while self-normalizedcoincidence ob-servables [40,41] arenotaffected.

Theimpact parameterofindividual NN collisionsiscorrelated totheoverallcollisiongeometryleadingto anNN impact param-eterbiasinthetransverseplane [42],forperipheralcollisionsthe NN impact parameter is biased towards larger values. Centrality classification based on multiplicity can bias the mean multiplic-ityof individual nucleon–nucleon (NN)collisions, andhence the yieldofhardprocessesinAA collisionsduetocorrelatedsoftand hard particle production,amplifying the inherent NN impact pa-rameterbias. The presence of the multiplicity bias in peripheral Pb–Pb collisions was already demonstrated in Ref. [39] showing theaveraged multiplicityoftheGlauber-NBDfitislowerthanthe averagenumberofancestors timesthemeanmultiplicity ofNBD (leftpaneloffigure 8in Ref. [39]).Inthepresentpaper,weaimto studyitsrelevance oncharged-particlespectrainPb–Pb collisions at

sNN

=

5

.

02 TeV, in 20 centrality classes ranging from 0–5% to 95–100% collisions. The spectra at midrapidity are measured intherange 0

.

15

<

pT

<

30 GeV

/

c exceptfor the95–100%class, whereitis0

.

15

<

pT

<

20 GeV

/

c.Usingthecharged-particle spec-tra frompp collisions atthe sameenergy [22], we constructthe nuclear-modificationfactorandstudythecentralitydependenceof its average at high pT, as well asits slope at low andhigh pT. Toreduce uncertaintiesrelated toeventselection and normaliza-tion,whichareparticularlylargeforperipheralcollisions,wealso providetheratioofRAAinadjacentcentralityintervals,definedas R+1

Ri+1

=

RiAA RiAA+1

=



Ncoll



i+1



Ncoll



i dNAAch,i

/

dpT dNAAch,i+1

/

dpT

,

(2)

where i

+

1 denotes a 5% more central centrality class than i.

Thedefinitionof R+1 corresponds approximatelytothechangeof log RAAwithcentrality,anditsvaluewouldbeconstantforan ex-ponentialdependence.

Similar to RAA, we quantify the centrality dependence of the averageR+1athighpT,aswellasitsslopeatlowandathighpT. Wherepossible,theresultsarecomparedtoaPYTHIA-basedmodel of independent pp collisions without nuclear modification [38]. The remainder of the paper is structured as follows: Section 2

describestheexperimental setup.Section3describesthecharged particlemeasurementwithemphasisoncorrectionsand uncertain-tiesrelatedto the mostperipheral collisions. Section 4 describes theresults.Section5providesasummaryofourfindings.

2. Experimentalsetup

The ALICE detector is described in detail in Ref. [43], and a summary ofits performance can be found in Ref. [44]. Charged-particle reconstruction at midrapidity is based on tracking infor-mationfromtheInnerTrackingSystem(ITS)andtheTime Projec-tionChamber(TPC),bothlocatedinsideasolenoidalmagneticfield of0

.

5 Tparalleltothebeamaxis.

TheITS [45] consistsofthreesub-detectors,eachcomposed of two layerstomeasurethe trajectoriesofchargedparticles andto reconstructprimaryvertices.Thetwoinnermostlayersarethe Sil-icon PixelDetectors (SPD),themiddletwolayers areSiliconDrift Detectors (SDD), the outer two layers are Silicon Strip Detectors (SSD).

TheTPC [46] isalarge(90 m3)cylindricaldriftdetector.It cov-ersapseudorapidityrangeof

|

η

|

<

0

.

9 overfullazimuth,providing up to159reconstructedspacepoints per track.Chargedparticles originating from the primary vertex can be reconstructed down to pT

100 MeV/c. The relative pT resolution depends on mo-mentum, isapproximately 4%at0

.

15 GeV

/

c,1%at 1 GeV

/

c and

increaseslinearlyapproaching4%at50 GeV

/

c.

The pp and Pb–Pb collision data at

sNN

=

5

.

02 TeV were recordedin2015. Intotal,about110

·

106 pp and25

·

106 Pb–Pb eventssatisfyingtheminimumbiastriggerandanumberofoffline eventselection criteriawereused intheanalysis. The minimum-bias trigger required a signal in both, the V0-A and V0-C, scin-tillator arrays, covering 2

.

8

<

η

<

5

.

1 and

3

.

7

<

η

<

1

.

7, re-spectively [47].Beambackground eventswere rejectedefficiently byexploitingthetimingsignalsintheV0detectors,andinPb–Pb collisions alsoby usingthetwo ZeroDegreeCalorimeters (ZDCs). The latterare positioned closetobeamrapidity on both sidesof theinteractionpoint.

3. Dataanalysis

Themeasurementsofcharged-particlespectrainppandPb–Pb collisionsat

sNN

=

5

.

02 TeVaredescribedindetailinRef. [22].

The collision point or primary event vertex was determined fromreconstructedtracks.Ifnovertexwasfoundusingtracks,the vertex reconstruction was performed using track segments con-structed from the two innermost layers of the ITS. Events with a reconstructed vertex within

±

10 cm from the centre of the detector along the beam directionare used to ensure a uniform acceptanceandreconstructionefficiencyatmidrapidity.

Primarychargedparticles [48] weremeasuredinthekinematic range of

|

η

|

<

0

.

8 and 0

.

15

<

pT

<

30 GeV

/

c. The detector sim-ulations were performedusing the PYTHIA [49] and HIJING [50] MonteCarloeventgeneratorswithGEANT3 [51] formodelling the detector response. Track-level corrections include acceptance, ef-ficiency, purityand pT resolution, whichwere obtained usingan improvedmethod tuned ondata toreduce the systematic uncer-tainties related to particle species dependence (see Ref. [22] for details).Eventsare classifiedinpercentilesofthehadronic cross-section using the sum of the amplitudes of the V0-A and V0-C signals (V0Mestimator) [6].Theabsolutescaleofthecentralityis definedbytherangeof0–90%centralityinwhichaGlauber-based multiplicity model is fitted to the V0M distribution. The lower centrality limit of 90% ofthis range withits corresponding V0M signal isdenotedthe anchorpoint (AP).The multiplicityforeach particlesource ismodelled witha negativebinomial distribution, where the effective number of independent particle production sources is described by a linear combination of the number of participants (Npart) and collisions (Ncoll). The AP was shifted by

±

0.5%, leading to a systematic uncertainty in the normalization of thespectra of up to 6.7% forthe 85–90% centralityclass. Un-like previous measurements inPb–Pb collisions, the analysiswas not limitedto 0–90% most central events, where effects of trig-ger inefficiency and contamination by electromagnetic processes arenegligible,butalsoincludedthe90–100%mostperipheral col-lisions.TheV0Mvaluecorrespondingto95%ofthehadroniccross sectionwasdeterminedbyselectingeither95%oftheeventsgiven by the Glauber-NBD parametrization, orthe numberofevents in the 0–90% centrality class multiplied by the factor 95/90, where

(3)

thelatterisusedasavariationtoassessthesystematicuncertainty ofthe approach. The difference on themeasured yields between the two ways was assigned as additionalsystematic uncertainty. For the centrality class 90–95% (95–100%) the combined uncer-tainty amounts to afully correlated partof10.8% (11.7%) onthe normalizationof thespectra anda 2.9% (4.6%) residual effecton theshape.

The triggerandevent-vertex reconstruction efficiencyandthe related systematic uncertainties for peripheral Pb–Pb collisions wereestimatedfromsimulationsusingHIJINGandPYTHIA includ-ingsingle- and double-diffractiveprocesses,butignoringpossible differencesfromnucleareffects.TheV0Mdistributioninthe sim-ulationswasreweightedwiththemeasuredV0Mdistribution.The combinedefficiencywasfoundtobe0

.

985

±

0

.

015 forthe90–95% and0

.

802

±

0

.

057 forthe95–100%centralityclasses,respectively, whilefullyefficientformorecentralcollisions. Inaddition,inthe most peripheral bin a pT-dependent signal loss of up to 14.7% atlow pT iscorrected for.To accountfor diffractiveprocesses in this correction and its systematic uncertainty, two limiting sce-narioshave beenconsidered: a)the signal loss isassumedto be asinppcollisions intheV0Mrangeofthe95–100%bin; b)only thefractionofeventswitha single nucleon–nucleoncollisionare correctedforassumingthesignallossfromminimum-biaspp col-lisions.

Contaminationoftheperipheralbinsbyelectromagnetic inter-actionswasstudiedinthedataby removingalleventswithsmall energydepositsintheneutron ZDCs.Theresultingchangeofthe spectrumwiththerequirementsofatleastafive-neutron equiva-lentenergyinboth neutronZDCsamountsto5%forthe95–100% centralityclass,3%forthe90-95%classand2%forthe80-85%and 85-90% classes and is assigned assystematic uncertainty. To ac-countforcontaminationofthetriggerfromeventswithout recon-structed vertex, those events are removed fromthe analysis and theresultingchange isassignedassystematicuncertaintyonthe normalization (6.8%inthe95–100%classand0.5%inthe90–95% class).

Systematicuncertaintiesrelatedtovertexselection,track selec-tion,secondary-particle contamination, primary-particle composi-tion, pT resolution, material budget andtracking efficiency were estimatedasdescribedinRef. [22] andareassignedasbin-by-bin uncertainties. The systematicuncertainties relatedto the central-ity selection were estimated by a comparison of the pT spectra whenthelimitsofthecentralityclassesareshiftedduetoan un-certainty of

±

0.5% in the fraction of the hadronic cross section usedintheanalysis.Theyaresplitintotwoparts:onepartthatis fullycorrelated betweenthe pT bins assignedasa normalization uncertainty plus an additional part taking into account residual differencesin the spectral shape assignedasa bin-by-bin uncer-tainty.The overall normalizationuncertainty of RAA contains the uncertainty relatedto the centrality selection, the uncertainty of

Ncoll, the uncertainty ofthe trigger efficiency, the uncertainty of thetriggercontaminationandthenormalizationuncertaintyofthe ppreferencespectrumaddedinquadrature.Notethatmost uncer-taintiesarecorrelatedtoalargeextentbetweenadjacentcentrality binsleadingtoreduceduncertaintiesinR+1.

Orderingeventsaccordingtomultiplicityintroducesabias rel-ativetousingtheimpactparameterinGlauber-basedparticle pro-ductionmodels.Itisexpectedthatpartofthebiasintroducedby theorderingcanbe cancelled inRAA,when Ncoll isalsoobtained inthesamewayasinthedata.Thedifferencerelativeto averag-ingoverimpactparameterisquantifiedinFig.1,whichshowsthe ratio of



Ncoll



by slicing either in multiplicity (estimated using the V0M amplitude)



Nmultcoll



or impact parameter



Ngeocoll



, as car-riedout so faratthe LHC.The differenceis below5% upto 80%

Fig. 1. Ratioofnumberofcollisionsdeterminedbyslicinginmultiplicity (Nmult

coll)

dividedbythenumberofcollisionsdetermineddirectlyfromtheimpact parame-ter (Ngeocoll).

Table 1

SummaryoftheaverageNpart,Ncoll,TAAforallcentralityclassesobtainedbyslicing

theV0Mamplitudedistributioninsteadoftheimpactparameter.Alluncertainties listedaresystematicuncertainties.Statisticaluncertaintiesarenegligible.

Centrality class Npart

 Ncoll TAA(mb−1) 0–5% 382.3±2.4 1752±28 25.92±0.37 5–10% 329.1±5.0 1367±37 20.22±0.52 10–15% 281.1±5.2 1080±26 15.98±0.36 15–20% 239.4±5.2 850±26 12.57±0.37 20–25% 202.7±4.6 662±25 9.79±0.36 25–30% 170.8±3.1 513±16 7.58±0.22 30–35% 142.5±3.0 390±13 5.77±0.18 35–40% 118.0±2.1 293.4±7.4 4.34±0.11 40–45% 96.3±2.0 215.2±6.4 3.184±0.095 45–50% 77.5±1.5 154.8±4.0 2.290±0.066 50–55% 61.29±0.86 109.0±1.8 1.612±0.033 55–60% 47.43±0.59 74.1±1.4 1.096±0.026 60–65% 35.84±0.67 49.2±1.2 0.728±0.020 65–70% 26.19±0.56 31.6±1.1 0.468±0.018 70–75% 18.60±0.40 19.89±0.77 0.294±0.012 75–80% 12.78±0.32 12.19±0.46 0.1803±0.0075 80–85% 8.50±0.23 7.22±0.30 0.1068±0.0048 85–90% 5.45±0.11 4.12±0.13 0.0609±0.0021 90–95% 3.31±0.19 2.18±0.16 0.0323±0.0024 95–100% 2.24±0.11 1.223±0.096 0.0181±0.0014

centrality,andthenincreasesstronglyupto40%formore periph-eral classes.The average quantities fora centralityclass, such as the numberofparticipants Npart,thenumberof binarycollisions Ncoll andthe nuclearoverlapfunction TAA,were obtainedby av-eraging over the V0Mmultiplicity intervals, andare summarized inTable1.Forthecalculationof RAA andR+1 we useonlythose multiplicity averaged quantities.As before [5,6], theuncertainties on the mean were obtained by changing the various ingredients of the Glauber MC model by one standard deviation. The result-ing relative uncertainties on themean are below6%, howeverin particularforperipheralcollisionsthewidthsoftherespective dis-tributionsaresignificantlylarger.

The charged particle multiplicity dNch

/

d

η

and the average transversemomentum



pT



forallcentralityintervalsarelistedin Table 2,valuesgivenfordNch

/

d

η

and



pT



>0 are extrapolatedto pT

=

0 using a modified Hagedorn functionfitted tothe data,as describedinRef. [52].

(4)

Fig. 2. Nuclear-modificationfactorversuspTforchargedparticlesatmidrapidityinPb–Pb collisionsat√sNN=5.02 TeVfor5%-widecentralityclasses.Thefilled,coloured

markersareforthefivemostperipheralclasses,withthecorrespondingglobaluncertaintiesdenotedclosetopT=0.1 GeV/c.Verticalerrorbarsdenotestatistical

uncer-tainties,whiletheboxesdenotethesystematicuncertainties.Forvisibility,theuncertaintiesareonlydrawnfortheperipheralclasses.

Table 2

SummaryoftheaveragedNch/dηandpTin|η|<0.8 forallcentralityclasses.

WhilepT>0.15isaveragedoverthemeasuredrange0.15<pT<10 GeV/c,pT>0

isextrapolatedtopT=0.Alluncertaintieslistedaresystematicuncertainties.

Sta-tisticaluncertaintiesarenegligible.

Centrality class dNch/dη pT>0.15(GeV/c) pT>0(GeV/c)

0–5% 1910±49 0.729±0.010 0.681±0.010 5–10% 1547±40 0.731±0.010 0.683±0.010 10–15% 1273±30 0.732±0.009 0.683±0.009 15–20% 1048±25 0.733±0.009 0.683±0.009 20–25% 863±19 0.730±0.009 0.678±0.008 25–30% 703±16 0.727±0.009 0.676±0.008 30–35% 568±13 0.723±0.008 0.671±0.008 35–40% 453±11 0.719±0.008 0.666±0.008 40–45% 356.6±8.4 0.710±0.008 0.657±0.008 45–50% 275.1±6.8 0.704±0.008 0.650±0.007 50–55% 208.5±5.6 0.695±0.008 0.640±0.008 55–60% 154.1±4.5 0.687±0.008 0.631±0.007 60–65% 111.4±3.5 0.676±0.007 0.619±0.007 65–70% 78.0±2.8 0.667±0.007 0.609±0.007 70–75% 53.1±2.1 0.659±0.007 0.599±0.007 75–80% 34.9±1.6 0.650±0.008 0.589±0.007 80–85% 22.0±1.4 0.636±0.014 0.575±0.013 85–90% 12.87±0.98 0.612±0.014 0.551±0.013 90–95% 6.46±0.78 0.574±0.017 0.516±0.015 95–100% 2.71±0.51 0.524±0.031 0.471±0.028 4. Results

Fig.2presentsthenuclear-modificationfactor,giveninEq. (1), versus pT forchargedparticlesatmidrapidity inPb–Pb collisions at

sNN

=

5

.

02 TeVfor5%-widecentralityclasses.Thefocusofthe presentedanalysis ismainly on the peripheralclasses, whichfor convenience are displayed in filled, coloured symbols with their corresponding global uncertainties of about 10–20% denoted at

pT

0

.

1 GeV

/

c.Asusual,ifnototherwisestated,verticalerrorbars denotestatisticaluncertainties,whiletheboxesdenotethe system-aticuncertainties.

From central to peripheral collisions RAA increases, which in particular above about 10 GeV

/

c can be understood asthe pro-gressivereductionofmedium-inducedpartonenergyloss. Further-more,theshapeissimilarfromthemostcentraluptothe80–85%

centralityclass,namelyanincreaseatlow pT,amaximumaround 2–3 GeV

/

c, related to radial flow, then a decrease with a local minimum atabout 7 GeV

/

c, followed by a mild increase. Above 80–85% centrality, theevolution isdifferentasalreadyat low pT the slope is negative and RAA decreases monotonously with in-creasingpT.Thechangeinbehaviourseemstooccurinthe75–85% interval, since the 80–85% RAA values appear to be the same or even lower than those ofthe 75–80% interval. For the most pe-ripheral classes, the reduction of the nuclear modification factor withincreasing pT isqualitativelysimilar totheoneobservedfor low multiplicity p–Pb [39] collisions, indicating that the underly-ingbiastowardsmoreperipheralcollisionswithareducedrateof hardscatteringspernucleon–nucleoncollisions isthesame.If in-stead of using Nmultcoll , we had used Ngeocoll in the normalization of

RAA,theresultsforperipheralcollisionsabove80%wouldbeeven lower,namelybytheratioquantifiedinFig.1.

To quantify these observations we provide in Fig. 3 the av-erage RAA at high pT (within 8

<

pT

<

20 GeV

/

c), which in-creases smoothly frommostcentral up to 70–75% centrality and drops strongly beyondthe 80–85% centrality class. The data are compared to the high pT limit of a PYTHIA-based model (HG-PYTHIA) [38], which for every binary nucleon–nucleon collision superimposes a number of PYTHIA events incoherently without nuclear modification. The essential feature of the model is that particleproduction per nucleon–nucleoncollision originatesfrom a fluctuatingnumber ofmultiplepartonic interactions depending on the nucleon–nucleon impact parameter. Despitethe fact that HG-PYTHIA is a rather simple approach, for 75–80% and more peripheral collisions, it describes the average RAA relatively well suggestingthat theapparent suppression forperipheralcollisions isnotcausedbypartonenergyloss,butratherbytheevent selec-tioncriteriaimposedtodeterminethecentralityofthecollisions. The data are significantly lower than the model calculation for themostperipheralcentralityclasses,possiblyduetoasignificant contribution ofdiffraction, which isnot modelled in HG-PYTHIA. Theslopeofalinearfitto RAAperformedfor8

<

pT

<

20 GeV

/

c, theregion wherethe RAA incentralcollisions risesafterits min-imum,isshowninFig.4asafunction ofcentrality.Thishigh-pT slope is positive and initially increasing mildly before

(5)

decreas-Fig. 3. AverageRAAfor8<pT<20 GeV/c versuscentralitypercentileinPb–Pb

col-lisionsat√sNN=5.02 TeVcomparedtopredictionsfromHG-PYTHIA [38].Vertical

errorbarsdenotestatisticaluncertainties,whiletheboxesdenotethesystematic uncertainties.

ingwithdecreasing centralityupto about80%centrality, beyond whichitisclosetozero,andthenevenisnegativeinthehighest centralityclass.AtlowtointermediatepT(within0

.

4–1

.

2 GeV

/

c), theregimewhichisstronglyinfluenced bythehydrodynamic ex-pansion,the RAA exhibitsanotherrise.The slopeextractedinthe pT range0

.

4–1

.

2 GeV

/

c is alsoshown inFig. 4.The RAA atlow andhigh pT isconsistent withbeinglinearlydependenton pT in thechosenfitranges,resulting

χ

2

/

NDF arebelowunity.Whilethe absolutevaluesoftheslopesareverydifferent(notethe normali-sation),theshapeofthecentralitydependenceoftheslopeatlow

pT is remarkablysimilar to that extracted athigh pT. This hints ataclosecorrelationbetweenthesetworegimes,possiblyinduced by thegeometryordensitydependenceofpartonenergylosson

Fig. 4. SlopeofRAAatlowpT(in0.4<pT<1.2 GeV/c)andathighpT(in8<pT<

20 GeV/c)scaledbyfactor15forvisibilityversuscentralitypercentileinPb–Pb collisionsat √sNN=5.02 TeV.Verticalerrorbarsdenotestatisticaluncertainties,

whiletheboxesdenotethesystematicuncertainties.

the one handandcollectiveexpansion on theother hand.In pe-ripheral collisions, in particular above 90% centrality, the low pT slopeisnegative,indicatingthattheveryperipheraleventsare in-creasinglysofter.

In order to studythe shape evolution of RAA in more detail, we compute theratioofadjacentcentralityintervals, asgivenby Eq. (2).Inthiswayalargepartoftheglobaluncertaintiesaswell asofthesystematicuncertainties cancel.Fig.5presents R+1 ver-sus pT forcharged particlesat midrapidityinPb–Pb collisions at

sNN

=

5

.

02 TeVfor5%-widecentralityclasses.AsforRAAthe pe-ripheralcollisionsaredisplayedincolour,withtheircorresponding global uncertainties, whichare significantly smaller than for RAA except for the most peripheral class, denoted around 0.1 on the

Fig. 5. R+1versuspTforchargedparticlesatmidrapidityinPb–Pb collisionsat√sNN=5.02 TeV.R+1isdefinedastheratioofNcollnormalizedspectraforagivencentrality

classrelativetothe5%morecentralclass,seeEq. (2).Thefilled,colouredmarkersareforthe5mostperipheralclasses,withthecorrespondingglobaluncertaintiesdenoted closetopT=0.1 GeV/c onthepT-axis.Verticalerrorbarsdenotestatisticaluncertainties,whiletheboxesdenotethesystematicuncertainties.Forvisibility,theuncertainties

(6)

Fig. 6. AverageR+1for8<pT<20 GeV/c versuscentralitypercentileinPb–Pb

col-lisionsat√sNN=5.02 TeVcomparedtopredictionsfromHG-PYTHIA [38].Vertical

errorbarsdenotestatisticaluncertainties,whilethe boxesdenotethe systematic uncertainties.

Fig. 7. Slope of R+1 at low pT (in 0.4<pT<1.2 GeV/c) and at high pT (in

8<pT<20 GeV/c)versuscentralitypercentileinPb–Pb collisionsat√sNN=5.02

TeV.Verticalerrorbarsdenotestatisticaluncertainties,whiletheboxesdenotethe systematicuncertainties.

abscissa.Theratioisfoundtobenearly identicalfor0–5%central to70–75%peripheralcollisions(14curves)within10%.Inaddition, inthiscentralityrange,theratioisonlyslightly pT-dependent, al-though explained typically by distinct mechanism (radial flow at lowpTandenergylossathighpT).Formoreperipheralcollisions, however,the R+1 changes significantly andreduces toabout 0

.

4 formostperipheralcollisions. While thequenchingpower ofthe medium apparently only gradually changes forabout 75% of the Pb–Pb cross-section,thesuddendropformorethan75%peripheral collisionscanhardlybeexplainedbyanincreaseinquenching.

Theevolutionofthe R+1 athigh pT withcentralityis charac-terizedbytakingthe average R+1 for8

<

pT

<

20 GeV

/

c, shown inFig. 6.The average is about1

.

14,slightly decreasingwith de-creasingcentralityandbeyond75%centralityfallsstrongly,similar topredictionsfromHG-PYTHIA.Anapproximateconstantvaluefor

R+1uptoabout60%centralityimpliesanexponentialdependence oncentrality.

Fig.7showstheslopeofalinearfittothelowmomentum re-gion (0.4–1.2 GeV

/

c) and the high-momentum region (8

<

pT

<

20 GeV

/

c) of R+1. In the chosen fit ranges, the R+1 can be fit-ted by a linear function with

χ

2

/

NDF

<

1. At low momentum, the slope of R+1 exhibits a mild centrality dependence, related to the reduced strength ofradial flow, dropping strongly for pe-ripheralcollisionsabove80%,asexpectedfromorderingevents ac-cordingtomultiplicity.Athighmomentum,theslopeisnon-zero,

0

.

0031

±

0

.

0006,andwithintheuncertaintiesnotdependenton centrality.

5. Summary

Charged-particlespectra atmidrapiditywere measured inPb– Pb collisions at a centre-of-mass energy per nucleon pair of

sNN

=

5

.

02 TeVandpresentedincentralityclassesrangingfrom the most central (0–5%) to the most peripheral (95–100%) colli-sions. Measurementsbeyond the 90% peripheral collisions at the LHC are presented for the first time. For a consistent treatment of themost peripheral collisions the numberof binary collisions was calculated froma Glauber model inintervals of multiplicity ratherthan inimpactparameter (Fig.1).Possible medium effects were quantified by comparing the measured spectra with those from proton–proton collisions normalized by the number of in-dependent nucleon–nucleon collisions obtained from a Glauber model (Fig.2).At largetransversemomenta (8

<

pT

<

20 GeV

/

c), theaverage RAAincreasesfromabout0

.

15 inthe0–5%most cen-tral collisions to a maximum value of about 0

.

8 in the 75–85% peripheral collisions, beyond which it strongly falls off to be-low 0

.

2 for the most peripheral collisions (Fig. 3). Furthermore,

RAA initially exhibits a positive slope asa function of pT in the 8–20 GeV

/

c interval, while for collisions beyond the 80% class the slope is negative (Fig. 4). The shape of the slope extracted atlow pT,within0

.

4–1

.

2 GeV

/

c,isremarkablysimilar,indicating thattheremaybeaclosecorrelationbetweenthesetworegimes. Toreduce uncertainties relatedtoeventselection and normaliza-tion, the ratio of RAA in adjacent centrality intervals was mea-sured (Fig.5). Up to about60% peripheral collisions, thisratio is fairlyconstant,evenasafunctionof pT.Itthenstartstodecrease andfinally,forcentralitiesbeyond75%,itfallsoffstrongly (Fig.6) withitsslopesatlowandhighmomentumvaryingonlymildlyor notatallexceptforthemostperipheralcentralityintervals (Fig.7). The trends observed in peripheral collisions are consistent withasimplePYTHIA-based modelwithoutnuclear modification, demonstratingthat biasescaused bythe eventselection and col-lisiongeometrycanleadtoan apparentsuppressioninperipheral collisions.Thisexplainsthecontradictoryandhardtoreconcile ob-servation that RAA is belowunity inperipheral Pb–Pb, butequal tounityinminimum-biasp–Pb collisionsdespitesimilar charged-particle multiplicities. With a correct treatment of the biases a smooth transition betweenPb–Pb and minimum-bias p–Pb colli-sions isexpectedwithout theneed toinvolvepartonenergyloss inperipheralcollisions.Withoutsuchtreatment,themeasurement and interpretation of RAA in peripheral collisions, in particular above80%centrality,havecomplicationssimilartop–Pb collisions, wheretheobservable wasnamed QpPb[39] todistinguishitfrom theunbiasednuclearmodificationfactor.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers andtechniciansfortheir invaluablecontributions tothe construc-tionoftheexperimentandtheCERNacceleratorteamsforthe

(7)

out-standingperformanceoftheLHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Gridcentres andtheWorldwide LHCComputing Grid(WLCG) collaboration. The ALICE Collaboration acknowledges the follow-ingfundingagenciesfortheirsupportinbuildingandrunningthe ALICEdetector:A.I.AlikhanyanNationalScienceLaboratory (Yere-vanPhysicsInstitute) Foundation(ANSL),State Committee of Sci-enceandWorldFederationofScientists(WFS),Armenia; Austrian AcademyofSciencesandNationalstiftungfürForschung, Technolo-gie und Entwicklung, Austria; Ministry of Communications and High Technologies, NationalNuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Fi-nanciadoradeEstudoseProjetos(Finep)andFundaçãodeAmparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science andEducation, Croatia; Min-istryofEducation,YouthandSportsoftheCzech Republic,Czech Republic; The Danish Council for Independent Research — Natu-ral Sciences, the Carlsberg Foundation and Danish National Re-search Foundation (DNRF), Denmark;Helsinki Institute ofPhysics (HIP),Finland;Commissariatàl’EnergieAtomique(CEA)and Insti-tut Nationalde Physique Nucléaire etde Physique desParticules (IN2P3)and Centre Nationalde laRecherche Scientifique(CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schw-erionenforschung GmbH, Germany; General Secretariat for Re-search andTechnology, Ministryof Education,Research and Reli-gions,Greece;NationalResearchDevelopmentandInnovation Of-fice,Hungary;DepartmentofAtomicEnergy,GovernmentofIndia (DAE),DepartmentofScienceandTechnology,GovernmentofIndia (DST), University GrantsCommission, Governmentof India(UGC) andCouncilofScientific andIndustrial Research(CSIR),India; In-donesian Institute of Sciences, Indonesia; Centro Fermi - Museo StoricodellaFisicaeCentroStudieRicercheEnricoFermiand Isti-tutoNazionalediFisicaNucleare(INFN),Italy;Institutefor Innova-tiveScienceandTechnology,NagasakiInstitute ofAppliedScience (IIST),Japan SocietyforthePromotionofScience (JSPS)KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONA-CYT)yTecnología,throughFondodeCooperaciónInternacionalen Cienciay Tecnología(FONCICYT)andDirección General de Asun-tosdelPersonalAcademico(DGAPA),Mexico;Nederlandse Organ-isatie voorWetenschappelijkOnderzoek(NWO), Netherlands;The ResearchCouncilofNorway,Norway;CommissiononScienceand TechnologyforSustainableDevelopmentintheSouth(COMSATS), Pakistan;PontificiaUniversidadCatólicadelPerú,Peru;Ministryof ScienceandHigherEducationandNationalScienceCentre,Poland; KoreaInstituteofScienceandTechnologyInformationandNational ResearchFoundationofKorea(NRF),RepublicofKorea;Ministryof EducationandScientific Research,Institute ofAtomic Physicsand RomanianNationalAgencyforScience,TechnologyandInnovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of EducationandScienceoftheRussianFederationandNational Re-search Centre Kurchatov Institute, Russia; Ministry of Education, Science,Research andSportofthe Slovak Republic, Slovakia; Na-tionalResearchFoundationofSouthAfrica,SouthAfrica;Centrode AplicacionesTecnológicasyDesarrolloNuclear(CEADEN), Cubaen-ergía,CubaandCentrodeInvestigacionesEnergéticas, Medioambi-entalesyTecnológicas(CIEMAT),Spain;SwedishResearchCouncil (VR)andKnut&AliceWallenbergFoundation(KAW),Sweden; Eu-ropean Organization for Nuclear Research, Switzerland; National Science andTechnology DevelopmentAgency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher

Educa-tionCommissionunderNRUprojectofThailand,Thailand;Turkish Atomic Energy Agency (TAEK), Turkey;National Academy of Sci-encesofUkraine,Ukraine;ScienceandTechnologyFacilities Coun-cil (STFC), United Kingdom; National Science Foundation of the United States ofAmerica (NSF) andUnited StatesDepartment of Energy,OfficeofNuclearPhysics(DOENP),UnitedStatesof Amer-ica.

References

[1]M.Gyulassy,M.Plumer,Jetquenchingindensematter,Phys.Lett.B243(1990) 432–438.

[2]R.Baier,Y.L.Dokshitzer,S.Peigne,D.Schiff,InducedgluonradiationinaQCD medium,Phys.Lett.B345(1995)277–286,arXiv:hep-ph/9411409 [hep-ph]. [3]B.Alver,M.Baker,C.Loizides,P.Steinberg,ThePHOBOSGlauberMonteCarlo,

arXiv:0805.4411 [nucl-ex].

[4]C.Loizides,J.Nagle,P.Steinberg,Improved versionofthePHOBOSGlauber MonteCarlo,SoftwareX1–2(2015)13–18,arXiv:1408.2549 [nucl-ex]. [5]C.Loizides,J.Kamin,D.d’Enterria,PrecisionMonteCarloGlauberpredictions

atpresentandfuturenuclearcolliders,arXiv:1710.07098 [nucl-ex].

[6]ALICECollaboration,B.Abelev,et al.,CentralitydeterminationofPb–Pb col-lisionsat √sNN=2.76 TeV withALICE, Phys.Rev.C88 (4)(2013) 044909, arXiv:1301.4361 [nucl-ex].

[7]PHENIXCollaboration,K.Adcox,etal.,Suppressionofhadronswithlarge trans-versemomentumincentralAu–Au collisionsat√sNN=130 GeV,Phys.Rev. Lett.88(2002)022301,arXiv:nucl-ex/0109003 [nucl-ex].

[8]STARCollaboration,C.Adler,etal.,CentralitydependenceofhighpT hadron suppressioninAu–Au collisionsat√sNN=130 GeV,Phys.Rev.Lett.89(2002) 202301,arXiv:nucl-ex/0206011 [nucl-ex].

[9]PHENIXCollaboration,K.Adcox,etal.,CentralitydependenceofthehighpT chargedhadronsuppressioninAu–Au collisionsat√sNN=130 GeV,Phys.Lett. B561(2003)82–92,arXiv:nucl-ex/0207009 [nucl-ex].

[10]PHENIX Collaboration,S.S. Adler,et al.,Suppressed π0 production at large transversemomentumincentralAu–Au collisionsat√sNN=200 GeV,Phys. Rev.Lett.91(2003)072301,arXiv:nucl-ex/0304022 [nucl-ex].

[11]STARCollaboration,J.Adams,etal.,Transversemomentumandcollision en-ergydependenceofhighpThadronsuppressioninAu–Au collisionsat ultra-relativisticenergies,Phys.Rev.Lett.91(2003)172302,arXiv:nucl-ex/0305015 [nucl-ex].

[12]PHOBOSCollaboration,B.B.Back,etal.,Chargedhadrontransversemomentum distributionsinAu–Au collisionsat√sNN=200 GeV,Phys.Lett.B578(2004) 297–303,arXiv:nucl-ex/0302015 [nucl-ex].

[13]PHOBOSCollaboration,B.Alver,etal.,Systemsizeandcentralitydependenceof chargedhadrontransversemomentumspectrainAu–Au andCu–Cu collisions at√sNN=62.4 GeVand200GeV,Phys.Rev.Lett.96(2006)212301,arXiv: nucl-ex/0512016 [nucl-ex].

[14]PHENIXCollaboration,S.S.Adler,etal.,Adetailedstudyofhigh-pTneutralpion suppressionandazimuthalanisotropyinAu–Au collisionsat√sNN=200 GeV, Phys.Rev.C76(2007)034904,arXiv:nucl-ex/0611007 [nucl-ex].

[15]PHENIXCollaboration,A.Adare,etal.,Quantitativeconstraintsontheopacity ofhotpartonicmatterfromsemi-inclusivesinglehightransversemomentum pionsuppressioninAu–Au collisions at √sNN=200 GeV, Phys. Rev.C77 (2008)064907,arXiv:0801.1665 [nucl-ex].

[16]PHENIXCollaboration,A.Adare,etal., Neutralpionproductionwithrespect tocentralityandreactionplaneinAu–Au collisionsat√sNN=200 GeV,Phys. Rev.C87 (3)(2013)034911,arXiv:1208.2254 [nucl-ex].

[17]ALICECollaboration,K.Aamodt,etal.,Suppressionofchargedparticle produc-tionatlargetransversemomentumincentralPb–Pb collisionsat√sNN=2.76 TeV,Phys.Lett.B696(2011)30–39,arXiv:1012.1004 [nucl-ex].

[18]ALICECollaboration,B.Abelev,etal.,Centralitydependenceofchargedparticle productionatlargetransversemomentuminPb–Pb collisionsat√sNN=2.76 TeV,Phys.Lett.B720(2013)52–62,arXiv:1208.2711 [hep-ex].

[19]CMSCollaboration,S.Chatrchyan,etal.,Studyofhigh-pTchargedparticle sup-pressioninPb–Pb comparedtoppcollisionsat√sNN=2.76 TeV,Eur.Phys.J. C72(2012)1945,arXiv:1202.2554 [nucl-ex].

[20]ATLASCollaboration,G.Aad,etal.,Measurementofcharged-particlespectrain Pb–Pb collisionsat√sNN=2.76 TeVwiththeATLASdetectorattheLHC,J. HighEnergyPhys.09(2015)050,arXiv:1504.04337 [hep-ex].

[21]CMSCollaboration,V.Khachatryan,etal.,Charged-particlenuclearmodification factorsinPb–Pb andp–Pb collisionsat√sNN=5.02 TeV,J.HighEnergyPhys. 04(2017)039,arXiv:1611.01664 [nucl-ex].

[22]ALICECollaboration,S.Acharya,etal.,Transversemomentumspectraand nu-clearmodificationfactorsofchargedparticlesinpp,p-PbandPb-Pbcollisions attheLHC,J.HighEnergyPhys.11(2018)013,arXiv:1802.09145 [nucl-ex]. [23]BRAHMS Collaboration, I. Arsene, et al., Transverse momentum spectra in

Au–Au andd–Au collisions at√sNN=200 GeVand thepseudorapidity de-pendenceofhigh pT suppression, Phys.Rev.Lett.91(2003)072305, arXiv: nucl-ex/0307003 [nucl-ex].

(8)

[24]STARCollaboration,J.Adams,etal.,Evidencefromd–Au measurementsfor fi-nalstatesuppressionofhighpT hadronsinAu–Au collisionsatRHIC,Phys. Rev.Lett.91(2003)072304,arXiv:nucl-ex/0306024 [nucl-ex].

[25]ALICECollaboration,B.Abelev,etal.,Transversemomentumdistributionand nuclearmodificationfactorofchargedparticlesinp–Pb collisionsat√sNN= 5.02 TeV,Phys.Rev.Lett.110 (8)(2013)082302,arXiv:1210.4520 [nucl-ex]. [26]ALICECollaboration,B.B.Abelev,etal.,Transversemomentumdependenceof

inclusiveprimary charged-particleproduction inp–Pb collisionsat √sNN= 5.02 TeV,Eur.Phys.J.C74 (9)(2014)3054,arXiv:1405.2737 [nucl-ex]. [27]CMSCollaboration,V.Khachatryan,etal.,Nucleareffectsonthetransverse

mo-mentumspectraofchargedparticlesinp–Pb collisionsat√sNN=5.02 TeV, Eur.Phys.J.C75 (5)(2015)237,arXiv:1502.05387 [nucl-ex].

[28]ATLASCollaboration,G.Aad,etal.,Transversemomentum,rapidity,and cen-tralitydependenceofinclusivecharged-particleproductionin√sNN=5.02 TeV p–Pb collisionsmeasuredbytheATLASexperiment,Phys.Lett.B763(2016) 313–336,arXiv:1605.06436 [hep-ex].

[29]CMSCollaboration,S.Chatrchyan,etal.,StudyofZbosonproductioninPb–Pb collisionsat√sNN=2.76 TeV,Phys.Rev.Lett.106(2011)212301,arXiv:1102. 5435 [nucl-ex].

[30]PHENIXCollaboration,S.Afanasiev,etal.,Measurementofdirectphotonsin Au–Au collisionsat√sNN=200 GeV,Phys.Rev.Lett.109(2012)152302,arXiv: 1205.5759 [nucl-ex].

[31]CMSCollaboration,S.Chatrchyan,etal.,Measurementofisolatedphoton pro-ductioninppandPb–Pb collisionsat√sNN=2.76 TeV,Phys.Lett.B710(2012) 256–277,arXiv:1201.3093 [nucl-ex].

[32]CMSCollaboration,S.Chatrchyan,etal.,StudyofW bosonproductioninPb–Pb andppcollisionsat√sNN=2.76 TeV,Phys.Lett.B715(2012)66–87,arXiv: 1205.6334 [nucl-ex].

[33]ATLASCollaboration,G.Aad,etal.,Centrality,rapidityandtransverse momen-tumdependenceofisolatedpromptphotonproductioninlead-leadcollisions at √sNN=2.76 TeVmeasuredwiththeATLAS detector,Phys.Rev.C93 (3) (2016)034914,arXiv:1506.08552 [hep-ex].

[34]A.Dainese,C.Loizides,G.Paic,Leading-particlesuppressioninhighenergy nucleus-nucleuscollisions,Eur.Phys. J.C38(2005)461–474,arXiv:hep-ph/ 0406201 [hep-ph].

[35]X.Zhang,J.Liao,JetquenchinganditsazimuthalanisotropyinÅandpossibly highmultiplicityp–A andd–Au collisions,arXiv:1311.5463 [nucl-th]. [36]K.Tywoniuk,Istherejetquenchinginp–Pb?,Nucl.Phys.A926(2014)85–91. [37]C.Shen,C.Park,J.-F.Paquet,G.S.Denicol,S.Jeon,C.Gale,Directphoton

produc-tionandjetenergy-lossinsmallsystems,Nucl.Phys.A956(2016)741–744, arXiv:1601.03070 [hep-ph].

[38]C.Loizides,A.Morsch,Absenceofjetquenchinginperipheralnucleus–nucleus collisions,Phys.Lett.B773(2017)408–411,arXiv:1705.08856 [nucl-ex]. [39]ALICECollaboration,J.Adam,etal.,Centralitydependenceofparticle

produc-tioninp–Pb collisionsat√sNN=5.02 TeV,Phys.Rev.C91 (6)(2015)064905, arXiv:1412.6828 [nucl-ex].

[40]ALICECollaboration,J.Adam,etal.,Measurementofjetquenchingwith semi-inclusivehadron-jetdistributionsincentralPb–Pb collisionsat √sNN=2.76 TeV,J.HighEnergyPhys.09(2015)170,arXiv:1506.03984 [nucl-ex]. [41]ALICE Collaboration,S.Acharya, etal.,Constraintsonjet quenchinginp-Pb

collisionsat√sNN=5.02 TeVmeasuredbytheevent-activitydependenceof semi-inclusivehadron-jetdistributions,Phys.Lett.B783(2018)95–113,arXiv: 1712.05603 [nucl-ex].

[42]J.Jia,Influenceofthenucleon-nucleoncollisiongeometryonthedetermination of thenuclear modificationfactor for nucleon-nucleusand nucleus-nucleus collisions,Phys.Lett.B681(2009)320–325,arXiv:0907.4175 [nucl-th]. [43]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC,

J.Instrum.3(2008)S08002.

[44]ALICECollaboration,B.B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].

[45]ALICECollaboration,K.Aamodt,etal.,AlignmentoftheALICEinnertracking systemwithcosmic-raytracks,J.Instrum.5(2010)P03003,arXiv:1001.0502 [physics.ins-det].

[46]J.Alme,etal.,TheALICETPC,alarge3-dimensionaltrackingdevicewithfast readoutforultra-highmultiplicityevents,Nucl.Instrum.MethodsA622(2010) 316–367,arXiv:1001.1950 [physics.ins-det].

[47]ALICECollaboration,E.Abbas,etal.,PerformanceoftheALICEVZEROsystem, J.Instrum.8(2013)P10016,arXiv:1306.3130 [nucl-ex].

[48] ALICECollaboration,TheALICEdefinitionofprimaryparticles,https://cds.cern. ch/record/2270008.

[49]T.Sjostrand,S.Mrenna,P.Z.Skands,PYTHIA6.4physicsandmanual,J.High EnergyPhys.05(2006)026,arXiv:hep-ph/0603175 [hep-ph].

[50]X.-N.Wang,M.Gyulassy,HIJING:aMonteCarlomodelformultiplejet produc-tioninpp,p–A andÅcollisions,Phys.Rev.D44(1991)3501–3516. [51]R.Brun,F.Carminati,S.Giani,GEANTDetectorDescriptionandSimulationTool,

CERNProgramLibraryLongWrite-up,W5013,1994.

[52]ALICECollaboration,S.Acharya,etal.,Transversemomentumspectraand nu-clearmodificationfactorsofchargedparticlesinXe-Xecollisionsat√sNN= 5.44 TeV,arXiv:1805.04399 [nucl-ex].

ALICECollaboration

S. Acharya

139

,

F.T. Acosta

20

,

D. Adamová

93

,

J. Adolfsson

80

,

M.M. Aggarwal

98

,

G. Aglieri Rinella

34

,

M. Agnello

31

,

N. Agrawal

48

,

Z. Ahammed

139

,

S.U. Ahn

76

,

S. Aiola

144

,

A. Akindinov

64

,

M. Al-Turany

104

,

S.N. Alam

139

,

D.S.D. Albuquerque

121

,

D. Aleksandrov

87

,

B. Alessandro

58

,

R. Alfaro Molina

72

,

Y. Ali

15

,

A. Alici

10

,

27

,

53

,

A. Alkin

2

,

J. Alme

22

,

T. Alt

69

,

L. Altenkamper

22

,

I. Altsybeev

111

,

M.N. Anaam

6

,

C. Andrei

47

,

D. Andreou

34

,

H.A. Andrews

108

,

A. Andronic

142

,

104

,

M. Angeletti

34

,

V. Anguelov

102

,

C. Anson

16

,

T. Antiˇci ´c

105

,

F. Antinori

56

,

P. Antonioli

53

,

R. Anwar

125

,

N. Apadula

79

,

L. Aphecetche

113

,

H. Appelshäuser

69

,

S. Arcelli

27

,

R. Arnaldi

58

,

O.W. Arnold

103

,

116

,

I.C. Arsene

21

,

M. Arslandok

102

,

A. Augustinus

34

,

R. Averbeck

104

,

M.D. Azmi

17

,

A. Badalà

55

,

Y.W. Baek

60

,

40

,

S. Bagnasco

58

,

R. Bailhache

69

,

R. Bala

99

,

A. Baldisseri

135

,

M. Ball

42

,

R.C. Baral

85

,

A.M. Barbano

26

,

R. Barbera

28

,

F. Barile

52

,

L. Barioglio

26

,

G.G. Barnaföldi

143

,

L.S. Barnby

92

,

V. Barret

132

,

P. Bartalini

6

,

K. Barth

34

,

E. Bartsch

69

,

N. Bastid

132

,

S. Basu

141

,

G. Batigne

113

,

B. Batyunya

75

,

P.C. Batzing

21

,

J.L. Bazo Alba

109

,

I.G. Bearden

88

,

H. Beck

102

,

C. Bedda

63

,

N.K. Behera

60

,

I. Belikov

134

,

F. Bellini

34

,

H. Bello Martinez

44

,

R. Bellwied

125

,

L.G.E. Beltran

119

,

V. Belyaev

91

,

G. Bencedi

143

,

S. Beole

26

,

A. Bercuci

47

,

Y. Berdnikov

96

,

D. Berenyi

143

,

R.A. Bertens

128

,

D. Berzano

34

,

58

,

L. Betev

34

,

P.P. Bhaduri

139

,

A. Bhasin

99

,

I.R. Bhat

99

,

H. Bhatt

48

,

B. Bhattacharjee

41

,

J. Bhom

117

,

A. Bianchi

26

,

L. Bianchi

125

,

N. Bianchi

51

,

J. Bielˇcík

37

,

J. Bielˇcíková

93

,

A. Bilandzic

116

,

103

,

G. Biro

143

,

R. Biswas

3

,

S. Biswas

3

,

J.T. Blair

118

,

D. Blau

87

,

C. Blume

69

,

G. Boca

137

,

F. Bock

34

,

A. Bogdanov

91

,

L. Boldizsár

143

,

M. Bombara

38

,

G. Bonomi

138

,

M. Bonora

34

,

H. Borel

135

,

A. Borissov

142

,

M. Borri

127

,

E. Botta

26

,

C. Bourjau

88

,

L. Bratrud

69

,

P. Braun-Munzinger

104

,

M. Bregant

120

,

T.A. Broker

69

,

M. Broz

37

,

E.J. Brucken

43

,

E. Bruna

58

,

G.E. Bruno

34

,

33

,

D. Budnikov

106

,

H. Buesching

69

,

S. Bufalino

31

,

P. Buhler

112

,

P. Buncic

34

,

O. Busch

131

,

i

,

Z. Buthelezi

73

,

J.B. Butt

15

,

J.T. Buxton

95

,

J. Cabala

115

,

D. Caffarri

89

,

H. Caines

144

,

A. Caliva

104

,

(9)

E. Calvo Villar

109

,

R.S. Camacho

44

,

P. Camerini

25

,

A.A. Capon

112

,

F. Carena

34

,

W. Carena

34

,

F. Carnesecchi

27

,

10

,

J. Castillo Castellanos

135

,

A.J. Castro

128

,

E.A.R. Casula

54

,

C. Ceballos Sanchez

8

,

S. Chandra

139

,

B. Chang

126

,

W. Chang

6

,

S. Chapeland

34

,

M. Chartier

127

,

S. Chattopadhyay

139

,

S. Chattopadhyay

107

,

A. Chauvin

103

,

116

,

C. Cheshkov

133

,

B. Cheynis

133

,

V. Chibante Barroso

34

,

D.D. Chinellato

121

,

S. Cho

60

,

P. Chochula

34

,

T. Chowdhury

132

,

P. Christakoglou

89

,

C.H. Christensen

88

,

P. Christiansen

80

,

T. Chujo

131

,

S.U. Chung

18

,

C. Cicalo

54

,

L. Cifarelli

10

,

27

,

F. Cindolo

53

,

J. Cleymans

124

,

F. Colamaria

52

,

D. Colella

65

,

52

,

A. Collu

79

,

M. Colocci

27

,

M. Concas

58

,

ii

,

G. Conesa Balbastre

78

,

Z. Conesa del Valle

61

,

J.G. Contreras

37

,

T.M. Cormier

94

,

Y. Corrales Morales

58

,

P. Cortese

32

,

M.R. Cosentino

122

,

F. Costa

34

,

S. Costanza

137

,

J. Crkovská

61

,

P. Crochet

132

,

E. Cuautle

70

,

L. Cunqueiro

142

,

94

,

T. Dahms

103

,

116

,

A. Dainese

56

,

S. Dani

66

,

M.C. Danisch

102

,

A. Danu

68

,

D. Das

107

,

I. Das

107

,

S. Das

3

,

A. Dash

85

,

S. Dash

48

,

S. De

49

,

A. De Caro

30

,

G. de Cataldo

52

,

C. de Conti

120

,

J. de Cuveland

39

,

A. De Falco

24

,

D. De Gruttola

10

,

30

,

N. De Marco

58

,

S. De Pasquale

30

,

R.D. De Souza

121

,

H.F. Degenhardt

120

,

A. Deisting

104

,

102

,

A. Deloff

84

,

S. Delsanto

26

,

C. Deplano

89

,

P. Dhankher

48

,

D. Di Bari

33

,

A. Di Mauro

34

,

B. Di Ruzza

56

,

R.A. Diaz

8

,

T. Dietel

124

,

P. Dillenseger

69

,

Y. Ding

6

,

R. Divià

34

,

Ø. Djuvsland

22

,

A. Dobrin

34

,

D. Domenicis Gimenez

120

,

B. Dönigus

69

,

O. Dordic

21

,

L.V.R. Doremalen

63

,

A.K. Dubey

139

,

A. Dubla

104

,

L. Ducroux

133

,

S. Dudi

98

,

A.K. Duggal

98

,

M. Dukhishyam

85

,

P. Dupieux

132

,

R.J. Ehlers

144

,

D. Elia

52

,

E. Endress

109

,

H. Engel

74

,

E. Epple

144

,

B. Erazmus

113

,

F. Erhardt

97

,

M.R. Ersdal

22

,

B. Espagnon

61

,

G. Eulisse

34

,

J. Eum

18

,

D. Evans

108

,

S. Evdokimov

90

,

L. Fabbietti

103

,

116

,

M. Faggin

29

,

J. Faivre

78

,

A. Fantoni

51

,

M. Fasel

94

,

L. Feldkamp

142

,

A. Feliciello

58

,

G. Feofilov

111

,

A. Fernández Téllez

44

,

A. Ferretti

26

,

A. Festanti

34

,

V.J.G. Feuillard

102

,

J. Figiel

117

,

M.A.S. Figueredo

120

,

S. Filchagin

106

,

D. Finogeev

62

,

F.M. Fionda

22

,

G. Fiorenza

52

,

F. Flor

125

,

M. Floris

34

,

S. Foertsch

73

,

P. Foka

104

,

S. Fokin

87

,

E. Fragiacomo

59

,

A. Francescon

34

,

A. Francisco

113

,

U. Frankenfeld

104

,

G.G. Fronze

26

,

U. Fuchs

34

,

C. Furget

78

,

A. Furs

62

,

M. Fusco Girard

30

,

J.J. Gaardhøje

88

,

M. Gagliardi

26

,

A.M. Gago

109

,

K. Gajdosova

88

,

M. Gallio

26

,

C.D. Galvan

119

,

P. Ganoti

83

,

C. Garabatos

104

,

E. Garcia-Solis

11

,

K. Garg

28

,

C. Gargiulo

34

,

P. Gasik

116

,

103

,

E.F. Gauger

118

,

M.B. Gay Ducati

71

,

M. Germain

113

,

J. Ghosh

107

,

P. Ghosh

139

,

S.K. Ghosh

3

,

P. Gianotti

51

,

P. Giubellino

104

,

58

,

P. Giubilato

29

,

P. Glässel

102

,

D.M. Goméz Coral

72

,

A. Gomez Ramirez

74

,

V. Gonzalez

104

,

P. González-Zamora

44

,

S. Gorbunov

39

,

L. Görlich

117

,

S. Gotovac

35

,

V. Grabski

72

,

L.K. Graczykowski

140

,

K.L. Graham

108

,

L. Greiner

79

,

A. Grelli

63

,

C. Grigoras

34

,

V. Grigoriev

91

,

A. Grigoryan

1

,

S. Grigoryan

75

,

J.M. Gronefeld

104

,

F. Grosa

31

,

J.F. Grosse-Oetringhaus

34

,

R. Grosso

104

,

R. Guernane

78

,

B. Guerzoni

27

,

M. Guittiere

113

,

K. Gulbrandsen

88

,

T. Gunji

130

,

A. Gupta

99

,

R. Gupta

99

,

I.B. Guzman

44

,

R. Haake

34

,

M.K. Habib

104

,

C. Hadjidakis

61

,

H. Hamagaki

81

,

G. Hamar

143

,

M. Hamid

6

,

J.C. Hamon

134

,

R. Hannigan

118

,

M.R. Haque

63

,

A. Harlenderova

104

,

J.W. Harris

144

,

A. Harton

11

,

H. Hassan

78

,

D. Hatzifotiadou

53

,

10

,

S. Hayashi

130

,

S.T. Heckel

69

,

E. Hellbär

69

,

H. Helstrup

36

,

A. Herghelegiu

47

,

E.G. Hernandez

44

,

G. Herrera Corral

9

,

F. Herrmann

142

,

K.F. Hetland

36

,

T.E. Hilden

43

,

H. Hillemanns

34

,

C. Hills

127

,

B. Hippolyte

134

,

B. Hohlweger

103

,

D. Horak

37

,

S. Hornung

104

,

R. Hosokawa

131

,

78

,

J. Hota

66

,

P. Hristov

34

,

C. Huang

61

,

C. Hughes

128

,

P. Huhn

69

,

T.J. Humanic

95

,

H. Hushnud

107

,

N. Hussain

41

,

T. Hussain

17

,

D. Hutter

39

,

D.S. Hwang

19

,

J.P. Iddon

127

,

S.A. Iga Buitron

70

,

R. Ilkaev

106

,

M. Inaba

131

,

M. Ippolitov

87

,

M.S. Islam

107

,

M. Ivanov

104

,

V. Ivanov

96

,

V. Izucheev

90

,

B. Jacak

79

,

N. Jacazio

27

,

P.M. Jacobs

79

,

M.B. Jadhav

48

,

S. Jadlovska

115

,

J. Jadlovsky

115

,

S. Jaelani

63

,

C. Jahnke

120

,

116

,

M.J. Jakubowska

140

,

M.A. Janik

140

,

C. Jena

85

,

M. Jercic

97

,

O. Jevons

108

,

R.T. Jimenez Bustamante

104

,

M. Jin

125

,

P.G. Jones

108

,

A. Jusko

108

,

P. Kalinak

65

,

A. Kalweit

34

,

J.H. Kang

145

,

V. Kaplin

91

,

S. Kar

6

,

A. Karasu Uysal

77

,

O. Karavichev

62

,

T. Karavicheva

62

,

P. Karczmarczyk

34

,

E. Karpechev

62

,

U. Kebschull

74

,

R. Keidel

46

,

D.L.D. Keijdener

63

,

M. Keil

34

,

B. Ketzer

42

,

Z. Khabanova

89

,

A.M. Khan

6

,

S. Khan

17

,

S.A. Khan

139

,

A. Khanzadeev

96

,

Y. Kharlov

90

,

A. Khatun

17

,

A. Khuntia

49

,

M.M. Kielbowicz

117

,

B. Kileng

36

,

B. Kim

131

,

D. Kim

145

,

D.J. Kim

126

,

E.J. Kim

13

,

H. Kim

145

,

J.S. Kim

40

,

J. Kim

102

,

M. Kim

60

,

102

,

S. Kim

19

,

T. Kim

145

,

T. Kim

145

,

S. Kirsch

39

,

I. Kisel

39

,

S. Kiselev

64

,

A. Kisiel

140

,

J.L. Klay

5

,

C. Klein

69

,

J. Klein

34

,

58

,

C. Klein-Bösing

142

,

S. Klewin

102

,

A. Kluge

34

,

M.L. Knichel

34

,

A.G. Knospe

125

,

C. Kobdaj

114

,

M. Kofarago

143

,

M.K. Köhler

102

,

T. Kollegger

104

,

N. Kondratyeva

91

,

E. Kondratyuk

90

,

A. Konevskikh

62

,

P.J. Konopka

34

,

M. Konyushikhin

141

,

O. Kovalenko

84

,

V. Kovalenko

111

,

M. Kowalski

117

,

I. Králik

65

,

A. Kravˇcáková

38

,

L. Kreis

104

,

M. Krivda

65

,

108

,

F. Krizek

93

,

M. Krüger

69

,

E. Kryshen

96

,

M. Krzewicki

39

,

A.M. Kubera

95

,

V. Kuˇcera

93

,

60

,

C. Kuhn

134

,

P.G. Kuijer

89

,

J. Kumar

48

,

L. Kumar

98

,

S. Kumar

48

,

Riferimenti

Documenti correlati

Figure 1: Spine X-ray showed disc calcifications in D8-D9 and D11-D12 as oval radiopaque spots in the rear part of intervertebral spaces (a) Adjacent vertebral body

Molto probabilmente il modello che sta alla base dell’esperimento della prova non ` e lineare, cio` e mettendo in un grafico i dati sperimentali che avete misurato vi aspettate

Finally, to preliminary check the simulation results we have performed a measurement of the axial shielding factor in the detector zone by a flux gate magnetometer: a HP Clip on

Sense of community was measured, in the school sample only, with four items on a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree). Results suggest good

Le due dime utilizzate dal fornitore per il controllo del profilo di taglio dei carter anteriore e posteriore dei due modelli di montascale, RPsp e Supra, e introdotte in seguito

Un aumento di tale superficie fino ad un valore massimo vincolato allo sfruttamento locale della biomassa consente quindi di incrementare la redditività dell’investimento stesso; iii

The experimental applications related to the fouling phenomenon and the consequent results are affected by numerous problems, summarized as follows: (i) actual conditions

The model was based on the identification of the energy needs and consumptions from micro (single spaces) to macro scale (macro-area) and was then tested for each