• Non ci sono risultati.

Search for the X(5568) State Decaying into B-s(0)pi(+/-) in Proton-Proton Collisions at √s=8 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for the X(5568) State Decaying into B-s(0)pi(+/-) in Proton-Proton Collisions at √s=8 TeV"

Copied!
17
0
0

Testo completo

(1)

Search for the Xð5568Þ State Decaying into B

0 s

π



in Proton-Proton Collisions at

p

ffiffi

s

= 8 TeV

A. M. Sirunyanet al.*

(CMS Collaboration)

(Received 17 December 2017; revised manuscript received 19 February 2018; published 18 May 2018) A search for resonancelike structures in the B0sπinvariant mass spectrum is performed using proton-proton collision data collected by the CMS experiment at the LHC atpffiffiffis¼ 8 TeV, corresponding to an integrated luminosity of19.7 fb−1. The B0smesons are reconstructed in the decay chain B0s→ J=ψϕ, with J=ψ → μþμ− and ϕ → KþK−. The B0sπ invariant mass distribution shows no statistically significant peaks for different selection requirements on the reconstructed B0sandπcandidates. Upper limits are set on the relative production rates of the Xð5568Þ and B0s states times the branching fraction of the decay Xð5568Þ→ B0sπ. In addition, upper limits are obtained as a function of the mass and the natural width of possible exotic states decaying into B0sπ.

DOI:10.1103/PhysRevLett.120.202005

The evidence presented by the D0 Collaboration of a new state decaying to B0sπ [1] initiated considerable interest within the exotic hadron community (discussed, e.g., in Refs. [2,3] and references therein) and triggered a similar search by the LHCb Collaboration[4]. The D0 experiment reported an unexpected, narrow structure, named Xð5568Þ, in the B0sπ invariant mass distribution and interpreted it as a hadron composed of four quarks of different flavors (b¯su ¯d; inclusion of charge-conjugate modes is implied throughout this Letter). The measured mass and natural width of this state are5567.8  2.9ðstatÞþ0.9−1.9ðsystÞ MeV and 21.9  6.4ðstatÞþ5.0

−2.5ðsystÞ MeV, respectively [1]. Possible quantum numbers for the state are JP¼ 0þ, if the B0

sπ is produced in an S-wave, or JP¼ 1þ, if the decay proceeds via the chain Xð5568Þ → B0s π, B0s → B0sγ and the photon is not reconstructed. In the latter case, the mass of the new state would be shifted by mB0s − mB0s with respect to

the measured Xð5568Þ mass, where mB0s and mB0s are the

nominal B0s and B0s masses[5].

The LHCb Collaboration searched for the Xð5568Þ state and reported a negative result[4]. Further independent searches are needed either to confirm the Xð5568Þ state or to set stronger limits on its production. In particular, the CMS detector can probe a central kinematic region of B0s candidates similar to that of D0, complementing the LHCb search in the forward region. Recently, the CDF and

ATLAS Collaborations reported independently negative search results for the Xð5568Þ [6,7], while the D0 Collaboration presented additional evidence for the Xð5568Þ by adding B0s mesons reconstructed in semi-leptonic decays[8].

This Letter presents a search for the Xð5568Þ state performed by the CMS Collaboration at the LHC. The data sample corresponds to 19.7 fb−1 of proton-proton (pp) collisions at pffiffiffis¼ 8 TeV collected in 2012. The B0sπ candidates are reconstructed through the decay B0s→ J=ψϕ, with J=ψ → μþμ− and ϕ → KþK−. The relative production rate of Xð5568Þ, with respect to B0s, times the branching fraction of the Xð5568Þ → B0sπ decay is calculated using the relation

ρX≡ σðpp → X þ anythingÞBðX → B0 sπÞ σðpp → B0 sþ anythingÞ ¼ NX ϵrelNB0s ; ð1Þ

where X ¼ Xð5568Þ, NX (NB0s) is the number of

Xð5568ÞðB0sÞ signal candidates reconstructed in data and ϵrel ¼ ϵX=ϵB0s is the relative efficiency. The D0 Collaboration

measured ρX ¼ ð8.6  2.4Þ% and ð8.2  3.1Þ% for pTðB0sÞ > 10 and 15 GeV [1].

The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are detected in the pseudorapidity range jηj < 2.4 in gas-ionization chambers embedded in

*Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

(2)

the steel flux-return yoke outside the solenoid. The main subdetectors used for the present analysis are the silicon tracker and the muon detection system. The silicon tracker measures charged particles within the rangejηj < 2.5. For nonisolated particles with transverse momentum1 < pT< 10 GeV and jηj < 1.4, the track resolutions are typically 1.5% in pT and 25–90 ð45–150Þ μm in the transverse (longitudinal) impact parameter [9]. Matching muons to tracks measured in the silicon tracker results in a relative pT resolution for muons with pT< 10 GeV of 0.8%–3.0% depending onjηj [10]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [11].

Events of interest are selected using a two-tiered trigger system [12]. The first level (L1), composed of custom hardware processors, uses information from the calorim-eters and muon detectors. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing. This analysis uses events collected with HLT algorithms requiring two muons that are consistent with originating from a J=ψ meson decaying at a significant distance from the luminous region.

The reconstruction of the B0s candidates closely follows the procedure described in Ref. [13], where the CP-violating phase ϕs was measured using the same decay chain, B0s→ J=ψϕ, with J=ψ → μþμ− and ϕ → KþK−, reconstructed from the same data set and triggered by the same L1 and HLT algorithms.

The reconstruction requires two muons of opposite charge that must match those that triggered the event readout. The offline muon selection is more restrictive than the trigger requirements and includes pTðμÞ > 4 GeV, jηðμÞj < 2.2, p

Tðμþμ−Þ > 7 GeV, soft muon identification [10], the dimuon vertex χ2 fit probability Pvtxðμþμ−Þ > 10%, and the dimuon mass within the range 3.04–3.15 GeV. The angle αTðμþμ−Þ in the trans-verse plane between ⃗pTðμþμ−Þ and the vector ⃗Dxyðμþμ−Þ from the beam axis to the dimuon vertex is required to satisfy cosαTðμþμ−Þ > 0.9. The dimuon vertex transverse displacement divided by its uncertainty, Dxyðμþμ−Þ= σDxyðμþμ−Þ, must be greater than 3.

The two muons are combined with two other oppositely charged tracks in the event, neither identified as a muon and assumed to be kaons, which must each have pTðKÞ > 0.7 GeV and satisfy high-purity track [9] requirements. The invariant mass of the kaon pair candidate, MðKþK−Þ, is required to be within10 MeV of the known ϕð1020Þ meson mass [5].

The B0s candidates are obtained using a kinematic vertex fit to the two muon and two kaon tracks, with the dimuon candidate mass constrained to the nominal J=ψ meson mass [5] [the mass of the KþK− candidate is not

constrained because the width of the ϕð1020Þ resonance exceeds the mass resolution]. Additional requirements imposed on the B0s candidates include pTðB0sÞ > 10 GeV, PvtxðB0sÞ > 1%, DxyðB0sÞ=σDxyðB0sÞ> 3, and cos αTðB

0 sÞ > 0.99, where DxyðB0sÞ and αTðB0sÞ are analogous to the corresponding dimuon variables and are measured with respect to the primary interaction vertex (PV). The events contain multiple pp collisions from the same or nearby bunch crossings (pileup), with an average of 16 collisions per event. The PV is chosen as the one with the smallest angle between the vector from the collision point to the B0s candidate decay vertex and the B0s candidate momentum. An extended unbinned maximum-likelihood fit to the J=ψKþK− invariant mass, MðJ=ψKþK−Þ, distribution yields49277  278 B0ssignal candidates, where the signal and background components are modeled by a double-Gaussian and an exponential function, respectively, as shown in Fig.1. In the fit, the common mean (μB0

s), the

fraction of the second Gaussian function (f), and the widths (σ1;2) of the two signal Gaussian functions (given in Fig.1), as well as the parameter of the exponential function, are left free. Signal and lower and upper sideband mass regions are defined, respectively, by the intervals½−2σB0

s; þ2σB0s,

½−10σB0s; −4σB0s, and ½4σB0s; 10σB0s around μB0s, as indicated

in Fig. 1. Here, σB0

s ≃ 14 MeV represents the standard

deviation of the double-Gaussian function. In the signal region, the signal purity is about 85% and the number of multiple B0s candidates in a single event is negligible.

The pion candidate from the Xð5568Þ → B0sπdecay is required to be a track used in the PV fit, with pTðπÞ > 0.5 GeV, and satisfy track quality requirements [9]. The average number of B0sπ candidates per event in the B0s signal region is 1.8. Constraints on the angle between the

) [GeV] − K + K ψ M(J/ 5.2 5.3 5.4 5.5 Candidates / 5 MeV 2000 4000 6000 8000 10000 278 ± 277 = 49 s 0 B N MeV 0.06 ± = 5366.54 s 0 B μ MeV 0.18 ± = 8.03 1 σ MeV 0.5 ± = 18.6 2 σ 0.02 ± = 0.47 f Data Fit Signal Background (8 TeV) -1 19.7 fb CMS

FIG. 1. Invariant mass distribution of the B0scandidates with the fit result superimposed. The outermost pairs of dark vertical arrows define the lower and upper B0s sidebands, while the innermost light vertical arrows delimit the signal region.

(3)

momenta of the B0s andπ candidates are not imposed in this analysis, because such requirements sculpt the B0sπ invariant mass distribution in a nontrivial way, as discussed in the Supplemental Material [14]. Motivated by the low momentum of theπ from the signal decay, together with the strong correlation between MðJ=ψKþK−πÞ and MðJ=ψKþK−Þ, the invariant mass of a B0sπ candi-date is defined as MΔðB0sπÞ ¼ MðJ=ψKþK−πÞ− MðJ=ψKþK−Þ þ mB0s. This improves the B

0

sπ mass resolution by a factor of 5, as found in Monte Carlo (MC) simulations.

Simulated MC events are produced with PYTHIAv6.424

[15]. The Xð5568Þ is simulated as a spin-0 particle of mass and width equal to mX≡ 5567.8 MeV and ΓX≡ 21.9 MeV, and is forced to decay to a B0s meson and a π using the phase-space model in EVTGEN 1.3.0

[16]. For the B0s signal generation, EVTGENsimulates the B0s → J=ψϕ, J=ψ → μþμ−, and ϕ → KþK− decays, including the effects from mixing and CP violation. Final-state photon radiation is included in EVTGEN using PHOTOS [17,18]. The events are then passed through a detailed GEANT4-based simulation[19]of the CMS detec-tor with the same trigger and reconstruction algorithms used on data. The simulation includes pileup effects at the same rate as observed in data.

The MΔðB0sπÞ distributions obtained from events in the B0s signal and sideband regions are compared after nor-malization in Fig.2(a), showing no significant differences from threshold near 5.5 GeV up to 5.9 GeV. In particular, no excess is visible near 5568 MeV.

To verify the reconstruction procedure, the requirement on MðKþK−Þ is removed. This allows the B0→ J=ψKþπ− decay to contribute to the resulting MðJ=ψKþK−Þ distri-bution, but only in the B0s signal and the higher sideband

regions, as verified by simulation. Additional requirements are imposed to reduce the level of background: pTðB0sÞ > 25 GeV, pTðπÞ > 1 GeV, and pTðKÞ > 1 GeV. Figure 2(b) shows the resulting MΔðB0sπÞ distributions for events in the lower and higher sideband and signal regions. Only the latter two distributions have a clear excess around 5.75–5.84 GeV. This excess is consistent with the decays B1ð5721Þþ → B0πþ, B2ð5747Þþ → B0πþ, and B2ð5747Þþ→ B0πþ, where the decay B0→ J=ψKþπ− is misreconstructed as B0s → J=ψKþK−(the photon from the B0→ B0γ decay is not reconstructed). The peaks in the MΔðB0sπÞ distribution corresponding to the decays BðÞþ1;2 → B0πþ are shifted by mB0s− mBðÞ0 with respect

to the nominal masses of the BðÞþ1;2 states [5].

A possible Xð5568Þ signal contribution in the MΔðB0sπÞ spectrum is modeled by a relativistic S-wave Breit–Wigner (BW) function, with mass and width param-eters fixed to mX and ΓX, respectively. The BW is convolved with a triple-Gaussian resolution function whose parameters are obtained from the simulated data (standard deviation of the triple-Gaussian function is about 2.2 MeV in the region of interest). The background shape is approximated by a function of the formðx − x0ÞαPolnðxÞ, where x ¼ MΔðB0sπÞ, x0¼ mB0s þ mπ, with mπ theπ

 mass[5], and PolnðxÞ represents a polynomial function of order n. For the default shape n ¼ 3 is used. The poly-nomial coefficients, as well as the exponentα and the signal and background yields, are obtained from the unbinned extended maximum-likelihood fit shown in Fig. 3(a). The fit returns a signal yield of NX ¼ −85  160 events. The procedure is repeated requiring pTðB0sÞ > 15 GeV, and the fit results displayed in Fig.3(b)give NX ¼ −103  122 events. ) [GeV] ± π s 0 (B Δ M 5.5 5.6 5.7 5.8 5.9 Candidates / 5 MeV 200 400 600 800 (a) signal region s 0 B sidebands s 0 B (8 TeV) -1 19.7 fb CMS ) [GeV] ± π s 0 (B Δ M 5.5 5.6 5.7 5.8 5.9 Candidates / 5 MeV 200 400 600 800 1000 1200 1400 (b) ) − K + No requirement on M(K signal region s 0 B lower sideband s 0 B higher sideband s 0 B (8 TeV) -1 19.7 fb CMS

FIG. 2. (a) The MΔðB0sπÞ distribution for events in the B0ssignal (points) and sideband regions (bands). The latter is normalized to the former. The vertical band indicates the region mX ΓX. (b) The MΔðB0sπÞ distribution for events in the B0ssignal (points) and lower and higher sideband regions (bands), when the requirement on MðKþK−Þ is removed (see text for additional requirements). The three distributions are normalized from the mass threshold up to 5.74 GeV. The excess observed for events in the B0s signal and higher sideband regions is due to BðÞþ1;2 → B0πþ decays.

(4)

Several cross-checks are performed and in all cases the signal yield is consistent with zero. They include repeating the fit with the following variations: the background model parameters are fixed to the values obtained from the fit with the Xð5568Þ signal region excluded; the background model is fixed to the shape obtained from simulated B0s mesons combined with pion candidates from the same simulated event; different kinematic requirements and reconstruction quality criteria are imposed on the B0sπ, B0s, and π candidates; collision events with multiple reconstructed candidates are removed from the data sample, and alter-native background functions and fit regions are used.

An upper limit on ρX, defined in Eq. (1), is computed using the asymptotic CLS [20,21] method developed in Ref. [22]. The limit takes into account the following sources of systematic uncertainty: the uncertainty in the mass and the width of the BW measured by the D0

Collaboration [1]; the uncertainty in NðB0sÞ; the pion tracking efficiency uncertainty of 3.9%[9]; the uncertainty in ϵrel due to the finite number of simulated events; the description of the background by alternative approximation functions, including the shape obtained from simulation; and modifications of the signal function due to variations of the resolution function and the efficiency with respect to MΔðB0sπÞ (both negligible). The measured upper limit is ρX < 1.1% at 95% confidence level (CL) for the baseline selection criteria [pTðB0sÞ > 10 GeV] and ρX< 1.0% at 95% CL for the analysis requiring pTðB0sÞ > 15 GeV. Using simulations of a spin-1 state decaying to B0s π, where B0s → B0sγ and where the mass is shifted by mB0s − mB0s, the upper limits were verified to differ

negli-gibly between either the spin-1 or spin-0 assumption. Upper limits are also obtained for different values of mass and natural width (Γ) of a possible B0sπresonance, as shown in Fig.4. For these limits, no systematic uncertain-ties related to the mass and width of the exotic state are assigned. On the other hand, an additional systematic uncertainty in the relative efficiency of up to 6% is estimated for the extrapolation to high-mass resonances from the low-mass simulation. The limits are obtained for values ofΓ from 10 to 50 MeV in 10 MeV steps, while the mass takes values from mB0s þ mπþ Γ up to

5.9 GeV–1.5 Γ in order to consider a possible exotic state with higher mass decaying to the B0sπ final state[23,24]. No significant excess is found throughout the region considered.

In summary, a search for the Xð5568Þ state is performed by the CMS Collaboration using pp collision data collected at pffiffiffis¼ 8 TeV and corresponding to an integrated lumi-nosity of19.7 fb−1. With about 50 000 B0ssignal candidates, no significant structure in the B0sπinvariant mass spectrum is found around the mass reported by the D0 Collaboration (nor for masses up to 5.9 GeV). The absence of a peak is

Candidates / 5 MeV 200 400 600 800 (a) ) > 10 GeV s 0 (B T p Data Fit (8 TeV) -1 19.7 fb CMS ) [GeV] ± π s 0 (B Δ M 5.5 5.6 5.7 5.8 5.9 Pull −20 2 Candidates / 5 MeV 200 400 600 (b) ) > 15 GeV s 0 (B T p Data Fit (8 TeV) -1 19.7 fb CMS ) [GeV] ± π s 0 (B Δ M 5.5 5.6 5.7 5.8 5.9 Pull −20 2

FIG. 3. The MΔðB0sπÞ distribution for events in the B0ssignal region with the result of the fit superimposed for the baseline selection with pTðB0sÞ > 10 GeV (a) and pTðB0sÞ > 15 GeV (b). The vertical band indicates the region mX ΓX. The lower panels display the pull (difference between the data and the fit result, divided by the statistical uncertainty in the data).

) [GeV] ± π s 0 (B Δ M 5.5 5.6 5.7 5.8 5.9 [%] X ρ 95% CL UL on 0.5 1 1.5 2 2.5 3 = 10 MeV Γ Γ = 20 MeV = 30 MeV Γ Γ = 40 MeV = 50 MeV Γ (8 TeV) -1 19.7 fb CMS

FIG. 4. The 95% CL upper limit (UL) on ρX, Eq. (1), as a function of the mass of a possible exotic state decaying into B0sπ for five different values of the natural width of the state.

(5)

supported by direct comparison with the events in the B0s sidebands, and by fits to the B0sπinvariant mass distribution with a resonant component included, using different kin-ematic selection requirements, as well as variants of the background modeling, fit regions, and quality criteria.

Upper limits on the relative production rates of the Xð5568Þ and B0sstates, multiplied by the unknown branch-ing fraction of the Xð5568Þ→ B0sπdecay, are computed to be

ρX < 1.1% at 95%CL for pTðB0sÞ > 10 GeV and ρX < 1.0% at 95%CL for pTðB0sÞ > 15 GeV:

The upper limits on ρX presented in this Letter are a factor of 2 more stringent than the previous best limits, and do not confirm the existence of the Xð5568Þ state. These limits are also valid for a spin-1 state decaying into B0s π. Additionally, upper limits are set for different values of mass and natural width of a hypothetical exotic resonance decaying into B0sπ.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, Contract No. 675440 (European

Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation `a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS pro-gramme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), Contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/ 13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Russian Ministry of Education and Science, Contracts No. 3.2989.2017 and No. 14.A12.31.0006; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, Contract No. C-1845; and the Weston Havens Foundation (USA).

[1] V. M. Abazov et al. (D0), Evidence for a B0sπState,Phys.

Rev. Lett. 117, 022003 (2016).

[2] T. J. Burns and E. S. Swanson, Interpreting the Xð5568Þ, Phys. Lett. B 760, 627 (2016).

[3] F.-K. Guo, Ulf-G. Meiβner, and B.-S. Zou, How the Xð5568Þ challenges our understanding of QCD,Commun. Theor. Phys. 65, 593 (2016).

[4] LHCb Collaboration, Search for Structure in the B0sπ Invariant Mass Spectrum, Phys. Rev. Lett. 117, 152003 (2016).

[5] C. Patrignani et al. (Particle Data Group), Review of particle physics,Chin. Phys. C 40, 100001 (2016).

[6] T. Aaltonen et al. (CDF Collaboration), following Letter, Search for the Exotic Meson Xð5568Þ with the Collider Detector at Fermilab,Phys. Rev. Lett. 120, 202006 (2018). [7] ATLAS Collaboration, this issue, Search for a Structure in the B0sπInvariant Mass Spectrum with the ATLAS Experi-ment,Phys. Rev. Lett. 120, 202007 (2018).

[8] V. M. Abazov et al. (D0 Collaboration), Study of the Xð5568Þ State with Semileptonic Decays of the B0sMeson,

arXiv:1712.10176.

[9] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014).

[10] CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at pffiffiffis¼ 7 TeV, J. Instrum. 7, P10002 (2012).

(6)

[11] CMS Collaboration, The CMS experiment at the CERN LHC,J. Instrum. 3, S08004 (2008).

[12] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).

[13] CMS Collaboration, Measurement of the CP-violating weak phaseϕs and the decay width differenceΔΓs using the Bffiffiffi 0s→ J=ψϕð1020Þ decay channel in pp collisions at

s

p ¼ 8 TeV,

Phys. Lett. B 757, 97 (2016).

[14] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.120.202005for details on the effect of theΔR requirement on the B0sπinvariant mass distribution.

[15] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual,J. High Energy Phys. 05 (2006) 026. [16] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[17] E. Barberio, B. van Eijk, and Z. Wąs, PHOTOS—A universal Monte Carlo for QED radiative corrections in decays,Comput. Phys. Commun. 66, 115 (1991).

[18] E. Barberio and Z. Wąs, PHOTOS—A universal Monte Carlo for QED radiative corrections: version 2.0, Comput. Phys. Commun. 79, 291 (1994).

[19] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4— A simulation toolkit,Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[20] A. L. Read, Presentation of search results: The CLS tech-nique,J. Phys. G 28, 2693 (2002).

[21] T. Junk, Confidence level computation for combining searches with small statistics,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[22] ATLAS and CMS Collaborations, Technical Report No. ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005, 2011, http:// cdsweb.cern.ch/record/1379837.

[23] A. Esposito, A. Pilloni, and A. D. Polosa, Hybridized tetraquarks,Phys. Lett. B 758, 292 (2016).

[24] A. Ali, L. Maiani, A. D. Polosa, and V. Riquer, Bcdecays into tetraquarks,Phys. Rev. D 94, 034036 (2016).

A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 F. Ambrogi,2 E. Asilar,2 T. Bergauer,2 J. Brandstetter,2 E. Brondolin,2 M. Dragicevic,2 J. Erö,2A. Escalante Del Valle,2M. Flechl,2 M. Friedl,2 R. Frühwirth,2,b V. M. Ghete,2J. Grossmann,2 J. Hrubec,2M. Jeitler,2,bA. König,2N. Krammer,2I. Krätschmer,2D. Liko,2T. Madlener,2I. Mikulec,2E. Pree,2N. Rad,2 H. Rohringer,2J. Schieck,2,bR. Schöfbeck,2M. Spanring,2D. Spitzbart,2W. Waltenberger,2 J. Wittmann,2C.-E. Wulz,2,b M. Zarucki,2V. Chekhovsky,3V. Mossolov,3J. Suarez Gonzalez,3E. A. De Wolf,4D. Di Croce,4X. Janssen,4J. Lauwers,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 S. Abu Zeid,5F. Blekman,5 J. D’Hondt,5I. De Bruyn,5

J. De Clercq,5 K. Deroover,5 G. Flouris,5 D. Lontkovskyi,5 S. Lowette,5 I. Marchesini,5 S. Moortgat,5L. Moreels,5 Q. Python,5K. Skovpen,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5I. Van Parijs,5D. Beghin,6B. Bilin,6H. Brun,6 B. Clerbaux,6G. De Lentdecker,6H. Delannoy,6 B. Dorney,6G. Fasanella,6L. Favart,6 R. Goldouzian,6A. Grebenyuk,6 A. K. Kalsi,6 T. Lenzi,6 J. Luetic,6 T. Maerschalk,6 A. Marinov,6 T. Seva,6 E. Starling,6 C. Vander Velde,6 P. Vanlaer,6

D. Vannerom,6 R. Yonamine,6 F. Zenoni,6 T. Cornelis,7 D. Dobur,7 A. Fagot,7 M. Gul,7 I. Khvastunov,7,c D. Poyraz,7 C. Roskas,7S. Salva,7 M. Tytgat,7 W. Verbeke,7N. Zaganidis,7 H. Bakhshiansohi,8 O. Bondu,8S. Brochet,8G. Bruno,8 C. Caputo,8A. Caudron,8P. David,8S. De Visscher,8C. Delaere,8M. Delcourt,8B. Francois,8A. Giammanco,8M. Komm,8 G. Krintiras,8 V. Lemaitre,8A. Magitteri,8 A. Mertens,8 M. Musich,8 K. Piotrzkowski,8 L. Quertenmont,8 A. Saggio,8 M. Vidal Marono,8S. Wertz,8J. Zobec,8W. L. Aldá Júnior,9F. L. Alves,9G. A. Alves,9L. Brito,9M. Correa Martins Junior,9 C. Hensel,9A. Moraes,9M. E. Pol,9P. Rebello Teles,9E. Belchior Batista Das Chagas,10W. Carvalho,10J. Chinellato,10,d

E. Coelho,10E. M. Da Costa,10G. G. Da Silveira,10,e D. De Jesus Damiao,10S. Fonseca De Souza,10

L. M. Huertas Guativa,10 H. Malbouisson,10M. Melo De Almeida,10C. Mora Herrera,10 L. Mundim,10H. Nogima,10 L. J. Sanchez Rosas,10A. Santoro,10A. Sznajder,10M. Thiel,10E. J. Tonelli Manganote,10,dF. Torres Da Silva De Araujo,10 A. Vilela Pereira,10S. Ahuja,11aC. A. Bernardes,11aT. R. Fernandez Perez Tomei,11aE. M. Gregores,11bP. G. Mercadante,11b

S. F. Novaes,11a Sandra S. Padula,11a D. Romero Abad,11b J. C. Ruiz Vargas,11a A. Aleksandrov,12R. Hadjiiska,12 P. Iaydjiev,12M. Misheva,12M. Rodozov,12M. Shopova,12G. Sultanov,12A. Dimitrov,13L. Litov,13B. Pavlov,13P. Petkov,13

W. Fang,14,f X. Gao,14,f L. Yuan,14M. Ahmad,15 J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15Y. Chen,15 C. H. Jiang,15D. Leggat,15H. Liao,15Z. Liu,15F. Romeo,15S. M. Shaheen,15A. Spiezia,15J. Tao,15C. Wang,15Z. Wang,15

E. Yazgan,15H. Zhang,15 S. Zhang,15J. Zhao,15Y. Ban,16G. Chen,16J. Li,16 Q. Li,16S. Liu,16Y. Mao,16S. J. Qian,16 D. Wang,16Z. Xu,16F. Zhang,16,f Y. Wang,17C. Avila,18A. Cabrera,18L. F. Chaparro Sierra,18C. Florez,18 C. F. González Hernández,18 J. D. Ruiz Alvarez,18M. A. Segura Delgado,18B. Courbon,19N. Godinovic,19D. Lelas,19 I. Puljak,19P. M. Ribeiro Cipriano,19T. Sculac,19Z. Antunovic,20M. Kovac,20V. Brigljevic,21D. Ferencek,21K. Kadija,21 B. Mesic,21A. Starodumov,21,g T. Susa,21M. W. Ather,22A. Attikis,22G. Mavromanolakis,22J. Mousa,22C. Nicolaou,22

(7)

F. Ptochos,22P. A. Razis,22H. Rykaczewski,22M. Finger,23,h M. Finger Jr.,23,hE. Carrera Jarrin,24E. El-khateeb,25,i A. Ellithi Kamel,25,jA. Mahrous,25,kR. K. Dewanjee,26M. Kadastik,26L. Perrini,26M. Raidal,26A. Tiko,26C. Veelken,26

P. Eerola,27H. Kirschenmann,27J. Pekkanen,27M. Voutilainen,27J. Havukainen,28J. K. Heikkilä,28T. Järvinen,28 V. Karimäki,28R. Kinnunen,28T. Lamp´en,28K. Lassila-Perini,28S. Laurila,28S. Lehti,28T. Lind´en,28P. Luukka,28 H. Siikonen,28E. Tuominen,28J. Tuominiemi,28T. Tuuva,29M. Besancon,30F. Couderc,30M. Dejardin,30D. Denegri,30 J. L. Faure,30F. Ferri,30S. Ganjour,30S. Ghosh,30P. Gras,30G. Hamel de Monchenault,30P. Jarry,30I. Kucher,30C. Leloup,30 E. Locci,30M. Machet,30J. Malcles,30G. Negro,30J. Rander,30A. Rosowsky,30M. Ö. Sahin,30M. Titov,30A. Abdulsalam,31

C. Amendola,31 I. Antropov,31S. Baffioni,31F. Beaudette,31 P. Busson,31L. Cadamuro,31C. Charlot,31 R. Granier de Cassagnac,31M. Jo,31S. Lisniak,31A. Lobanov,31 J. Martin Blanco,31M. Nguyen,31C. Ochando,31 G. Ortona,31P. Paganini,31P. Pigard,31R. Salerno,31J. B. Sauvan,31Y. Sirois,31A. G. Stahl Leiton,31T. Strebler,31

Y. Yilmaz,31 A. Zabi,31A. Zghiche,31J.-L. Agram,32,lJ. Andrea,32D. Bloch,32J.-M. Brom,32M. Buttignol,32 E. C. Chabert,32N. Chanon,32C. Collard,32E. Conte,32,lX. Coubez,32 J.-C. Fontaine,32,lD. Gel´e,32U. Goerlach,32 M. Jansová,32A.-C. Le Bihan,32N. Tonon,32P. Van Hove,32S. Gadrat,33S. Beauceron,34C. Bernet,34G. Boudoul,34

R. Chierici,34D. Contardo,34P. Depasse,34H. El Mamouni,34J. Fay,34 L. Finco,34S. Gascon,34M. Gouzevitch,34 G. Grenier,34B. Ille,34F. Lagarde,34I. B. Laktineh,34 M. Lethuillier,34L. Mirabito,34A. L. Pequegnot,34S. Perries,34 A. Popov,34,mV. Sordini,34M. Vander Donckt,34S. Viret,34T. Toriashvili,35,nZ. Tsamalaidze,36,hC. Autermann,37L. Feld,37

M. K. Kiesel,37K. Klein,37M. Lipinski,37M. Preuten,37C. Schomakers,37J. Schulz,37M. Teroerde,37V. Zhukov,37,m A. Albert,38E. Dietz-Laursonn,38D. Duchardt,38M. Endres,38M. Erdmann,38S. Erdweg,38T. Esch,38R. Fischer,38 A. Güth,38M. Hamer,38T. Hebbeker,38C. Heidemann,38K. Hoepfner,38S. Knutzen,38M. Merschmeyer,38A. Meyer,38 P. Millet,38S. Mukherjee,38T. Pook,38M. Radziej,38H. Reithler,38M. Rieger,38F. Scheuch,38D. Teyssier,38S. Thüer,38 G. Flügge,39B. Kargoll,39T. Kress,39A. Künsken,39T. Müller,39A. Nehrkorn,39A. Nowack,39C. Pistone,39O. Pooth,39

A. Stahl,39,o M. Aldaya Martin,40T. Arndt,40C. Asawatangtrakuldee,40K. Beernaert,40O. Behnke,40U. Behrens,40 A. Bermúdez Martínez,40A. A. Bin Anuar,40K. Borras,40,pV. Botta,40A. Campbell,40P. Connor,40 C. Contreras-Campana,40F. Costanza,40C. Diez Pardos,40G. Eckerlin,40D. Eckstein,40T. Eichhorn,40E. Eren,40 E. Gallo,40,qJ. Garay Garcia,40A. Geiser,40 J. M. Grados Luyando,40A. Grohsjean,40P. Gunnellini,40M. Guthoff,40 A. Harb,40J. Hauk,40M. Hempel,40,rH. Jung,40M. Kasemann,40J. Keaveney,40C. Kleinwort,40I. Korol,40D. Krücker,40

W. Lange,40A. Lelek,40T. Lenz,40J. Leonard,40K. Lipka,40W. Lohmann,40,r R. Mankel,40I.-A. Melzer-Pellmann,40 A. B. Meyer,40G. Mittag,40 J. Mnich,40A. Mussgiller,40E. Ntomari,40 D. Pitzl,40A. Raspereza,40M. Savitskyi,40 P. Saxena,40R. Shevchenko,40N. Stefaniuk,40G. P. Van Onsem,40R. Walsh,40Y. Wen,40K. Wichmann,40C. Wissing,40 O. Zenaiev,40R. Aggleton,41S. Bein,41V. Blobel,41M. Centis Vignali,41T. Dreyer,41E. Garutti,41D. Gonzalez,41J. Haller,41 A. Hinzmann,41M. Hoffmann,41A. Karavdina,41R. Klanner,41R. Kogler,41 N. Kovalchuk,41S. Kurz,41T. Lapsien,41

D. Marconi,41M. Meyer,41M. Niedziela,41D. Nowatschin,41F. Pantaleo,41,oT. Peiffer,41A. Perieanu,41C. Scharf,41 P. Schleper,41A. Schmidt,41S. Schumann,41J. Schwandt,41J. Sonneveld,41H. Stadie,41G. Steinbrück,41F. M. Stober,41 M. Stöver,41H. Tholen,41D. Troendle,41E. Usai,41A. Vanhoefer,41B. Vormwald,41M. Akbiyik,42C. Barth,42M. Baselga,42 S. Baur,42E. Butz,42R. Caspart,42T. Chwalek,42F. Colombo,42W. De Boer,42A. Dierlamm,42N. Faltermann,42B. Freund,42 R. Friese,42M. Giffels,42M. A. Harrendorf,42F. Hartmann,42,oS. M. Heindl,42U. Husemann,42F. Kassel,42,oS. Kudella,42

H. Mildner,42M. U. Mozer,42Th. Müller,42M. Plagge,42G. Quast,42K. Rabbertz,42M. Schröder,42 I. Shvetsov,42 G. Sieber,42H. J. Simonis,42R. Ulrich,42S. Wayand,42M. Weber,42T. Weiler,42S. Williamson,42C. Wöhrmann,42R. Wolf,42

G. Anagnostou,43G. Daskalakis,43T. Geralis,43A. Kyriakis,43D. Loukas,43I. Topsis-Giotis,43G. Karathanasis,44 S. Kesisoglou,44A. Panagiotou,44N. Saoulidou,44K. Kousouris,45I. Evangelou,46C. Foudas,46P. Gianneios,46 P. Katsoulis,46 P. Kokkas,46S. Mallios,46N. Manthos,46 I. Papadopoulos,46E. Paradas,46J. Strologas,46F. A. Triantis,46

D. Tsitsonis,46M. Csanad,47 N. Filipovic,47G. Pasztor,47O. Surányi,47G. I. Veres,47,s G. Bencze,48C. Hajdu,48 D. Horvath,48,tÁ. Hunyadi,48F. Sikler,48V. Veszpremi,48N. Beni,49S. Czellar,49J. Karancsi,49,uA. Makovec,49J. Molnar,49 Z. Szillasi,49M. Bartók,50,sP. Raics,50Z. L. Trocsanyi,50B. Ujvari,50S. Choudhury,51J. R. Komaragiri,51S. Bahinipati,52,v S. Bhowmik,52P. Mal,52K. Mandal,52A. Nayak,52,wD. K. Sahoo,52,vN. Sahoo,52S. K. Swain,52S. Bansal,53S. B. Beri,53 V. Bhatnagar,53 R. Chawla,53N. Dhingra,53A. Kaur,53M. Kaur,53S. Kaur,53R. Kumar,53P. Kumari,53A. Mehta,53 J. B. Singh,53G. Walia,53Ashok Kumar,54Aashaq Shah,54A. Bhardwaj,54S. Chauhan,54B. C. Choudhary,54R. B. Garg,54 S. Keshri,54A. Kumar,54S. Malhotra,54M. Naimuddin,54K. Ranjan,54R. Sharma,54R. Bhardwaj,55R. Bhattacharya,55 S. Bhattacharya,55U. Bhawandeep,55S. Dey,55S. Dutt,55S. Dutta,55S. Ghosh,55N. Majumdar,55A. Modak,55K. Mondal,55

(8)

S. Mukhopadhyay,55S. Nandan,55 A. Purohit,55A. Roy,55S. Roy Chowdhury,55S. Sarkar,55M. Sharan,55S. Thakur,55 P. K. Behera,56R. Chudasama,57D. Dutta,57 V. Jha,57V. Kumar,57A. K. Mohanty,57,oP. K. Netrakanti,57L. M. Pant,57

P. Shukla,57A. Topkar,57T. Aziz,58 S. Dugad,58 B. Mahakud,58S. Mitra,58G. B. Mohanty,58N. Sur,58B. Sutar,58 S. Banerjee,59S. Bhattacharya,59 S. Chatterjee,59P. Das,59M. Guchait,59Sa. Jain,59S. Kumar,59M. Maity,59,x G. Majumder,59K. Mazumdar,59T. Sarkar,59,xN. Wickramage,59,y S. Chauhan,60 S. Dube,60V. Hegde,60A. Kapoor,60

K. Kothekar,60 S. Pandey,60A. Rane,60S. Sharma,60S. Chenarani,61,zE. Eskandari Tadavani,61S. M. Etesami,61,z M. Khakzad,61M. Mohammadi Najafabadi,61M. Naseri,61S. Paktinat Mehdiabadi,61,aa F. Rezaei Hosseinabadi,61 B. Safarzadeh,61,bb M. Zeinali,61M. Felcini,62M. Grunewald,62M. Abbrescia,63a,63bC. Calabria,63a,63b A. Colaleo,63a D. Creanza,63a,63c L. Cristella,63a,63b N. De Filippis,63a,63c M. De Palma,63a,63b F. Errico,63a,63bL. Fiore,63a G. Iaselli,63a,63c

S. Lezki,63a,63bG. Maggi,63a,63c M. Maggi,63a G. Miniello,63a,63b S. My,63a,63b S. Nuzzo,63a,63bA. Pompili,63a,63b G. Pugliese,63a,63c R. Radogna,63aA. Ranieri,63aG. Selvaggi,63a,63b A. Sharma,63a L. Silvestris,63a,o R. Venditti,63a P. Verwilligen,63aG. Abbiendi,64aC. Battilana,64a,64bD. Bonacorsi,64a,64bL. Borgonovi,64a,64bS. Braibant-Giacomelli,64a,64b

R. Campanini,64a,64bP. Capiluppi,64a,64b A. Castro,64a,64bF. R. Cavallo,64a S. S. Chhibra,64aG. Codispoti,64a,64b M. Cuffiani,64a,64b G. M. Dallavalle,64a F. Fabbri,64a A. Fanfani,64a,64bD. Fasanella,64a,64b P. Giacomelli,64a C. Grandi,64a L. Guiducci,64a,64bS. Marcellini,64aG. Masetti,64aA. Montanari,64aF. L. Navarria,64a,64bA. Perrotta,64aA. M. Rossi,64a,64b

T. Rovelli,64a,64bG. P. Siroli,64a,64b N. Tosi,64a S. Albergo,65a,65bS. Costa,65a,65bA. Di Mattia,65a F. Giordano,65a,65b R. Potenza,65a,65bA. Tricomi,65a,65b C. Tuve,65a,65bG. Barbagli,66aK. Chatterjee,66a,66bV. Ciulli,66a,66b C. Civinini,66a R. D’Alessandro,66a,66bE. Focardi,66a,66b P. Lenzi,66a,66b M. Meschini,66a S. Paoletti,66a L. Russo,66a,cc G. Sguazzoni,66a D. Strom,66aL. Viliani,66aL. Benussi,67S. Bianco,67F. Fabbri,67D. Piccolo,67F. Primavera,67,oV. Calvelli,68a,68bF. Ferro,68a F. Ravera,68a,68bE. Robutti,68aS. Tosi,68a,68bA. Benaglia,69aA. Beschi,69bL. Brianza,69a,69bF. Brivio,69a,69bV. Ciriolo,69a,69b,o M. E. Dinardo,69a,69bS. Fiorendi,69a,69bS. Gennai,69a A. Ghezzi,69a,69bP. Govoni,69a,69bM. Malberti,69a,69bS. Malvezzi,69a R. A. Manzoni,69a,69bD. Menasce,69aL. Moroni,69aM. Paganoni,69a,69bK. Pauwels,69a,69bD. Pedrini,69aS. Pigazzini,69a,69b,dd S. Ragazzi,69a,69bT. Tabarelli de Fatis,69a,69bS. Buontempo,70a N. Cavallo,70a,70c S. Di Guida,70a,70d,o F. Fabozzi,70a,70c

F. Fienga,70a,70bA. O. M. Iorio,70a,70bW. A. Khan,70a L. Lista,70a S. Meola,70a,70d,oP. Paolucci,70a,o C. Sciacca,70a,70b F. Thyssen,70a P. Azzi,71a N. Bacchetta,71a L. Benato,71a,71bD. Bisello,71a,71bA. Boletti,71a,71b R. Carlin,71a,71b A. Carvalho Antunes De Oliveira,71a,71bP. Checchia,71a M. Dall’Osso,71a,71bP. De Castro Manzano,71aT. Dorigo,71a U. Dosselli,71a A. Gozzelino,71a S. Lacaprara,71a P. Lujan,71a M. Margoni,71a,71bA. T. Meneguzzo,71a,71bM. Passaseo,71a N. Pozzobon,71a,71bP. Ronchese,71a,71bR. Rossin,71a,71bF. Simonetto,71a,71bE. Torassa,71aM. Zanetti,71a,71bP. Zotto,71a,71b G. Zumerle,71a,71bA. Braghieri,72a A. Magnani,72a P. Montagna,72a,72bS. P. Ratti,72a,72bV. Re,72a M. Ressegotti,72a,72b C. Riccardi,72a,72bP. Salvini,72a I. Vai,72a,72bP. Vitulo,72a,72bL. Alunni Solestizi,73a,73b M. Biasini,73a,73bG. M. Bilei,73a C. Cecchi,73a,73bD. Ciangottini,73a,73bL. Fanò,73a,73bR. Leonardi,73a,73bE. Manoni,73aG. Mantovani,73a,73bV. Mariani,73a,73b

M. Menichelli,73a A. Rossi,73a,73b A. Santocchia,73a,73bD. Spiga,73a K. Androsov,74a P. Azzurri,74a,o G. Bagliesi,74a T. Boccali,74aL. Borrello,74aR. Castaldi,74aM. A. Ciocci,74a,74bR. Dell’Orso,74aG. Fedi,74aL. Giannini,74a,74cA. Giassi,74a

M. T. Grippo,74a,ccF. Ligabue,74a,74c T. Lomtadze,74aE. Manca,74a,74cG. Mandorli,74a,74c A. Messineo,74a,74b F. Palla,74a A. Rizzi,74a,74bA. Savoy-Navarro,74a,eeP. Spagnolo,74aR. Tenchini,74a G. Tonelli,74a,74bA. Venturi,74a P. G. Verdini,74a L. Barone,75a,75b F. Cavallari,75a M. Cipriani,75a,75b N. Daci,75aD. Del Re,75a,75b,o E. Di Marco,75a,75b M. Diemoz,75a S. Gelli,75a,75bE. Longo,75a,75bF. Margaroli,75a,75bB. Marzocchi,75a,75bP. Meridiani,75aG. Organtini,75a,75bR. Paramatti,75a,75b

F. Preiato,75a,75b S. Rahatlou,75a,75bC. Rovelli,75a F. Santanastasio,75a,75b N. Amapane,76a,76b R. Arcidiacono,76a,76c S. Argiro,76a,76bM. Arneodo,76a,76c N. Bartosik,76a R. Bellan,76a,76b C. Biino,76a N. Cartiglia,76a F. Cenna,76a,76b M. Costa,76a,76b R. Covarelli,76a,76bA. Degano,76a,76b N. Demaria,76a B. Kiani,76a,76bC. Mariotti,76a S. Maselli,76a E. Migliore,76a,76bV. Monaco,76a,76bE. Monteil,76a,76bM. Monteno,76aM. M. Obertino,76a,76bL. Pacher,76a,76bN. Pastrone,76a

M. Pelliccioni,76a G. L. Pinna Angioni,76a,76b A. Romero,76a,76bM. Ruspa,76a,76c R. Sacchi,76a,76b K. Shchelina,76a,76b V. Sola,76aA. Solano,76a,76bA. Staiano,76aP. Traczyk,76a,76bS. Belforte,77aM. Casarsa,77aF. Cossutti,77aG. Della Ricca,77a,77b A. Zanetti,77aD. H. Kim,78G. N. Kim,78M. S. Kim,78J. Lee,78S. Lee,78S. W. Lee,78C. S. Moon,78Y. D. Oh,78S. Sekmen,78 D. C. Son,78Y. C. Yang,78A. Lee,79H. Kim,80D. H. Moon,80G. Oh,80J. A. Brochero Cifuentes,81J. Goh,81T. J. Kim,81 S. Cho,82S. Choi,82Y. Go,82D. Gyun,82S. Ha,82B. Hong,82Y. Jo,82Y. Kim,82K. Lee,82K. S. Lee,82S. Lee,82J. Lim,82 S. K. Park,82Y. Roh,82J. Almond,83J. Kim,83J. S. Kim,83H. Lee,83K. Lee,83K. Nam,83S. B. Oh,83B. C. Radburn-Smith,83 S. h. Seo,83U. K. Yang,83H. D. Yoo,83G. B. Yu,83H. Kim,84J. H. Kim,84J. S. H. Lee,84I. C. Park,84Y. Choi,85C. Hwang,85

(9)

F. Mohamad Idris,87,ggW. A. T. Wan Abdullah,87M. N. Yusli,87Z. Zolkapli,87R Reyes-Almanza,88G. Ramirez-Sanchez,88 M. C. Duran-Osuna,88H. Castilla-Valdez,88E. De La Cruz-Burelo,88I. Heredia-De La Cruz,88,hh R. I. Rabadan-Trejo,88

R. Lopez-Fernandez,88J. Mejia Guisao,88M. Ramírez García,88A. Sanchez-Hernandez,88S. Carrillo Moreno,89 C. Oropeza Barrera,89F. Vazquez Valencia,89J. Eysermans,90I. Pedraza,90H. A. Salazar Ibarguen,90C. Uribe Estrada,90

A. Morelos Pineda,91 D. Krofcheck,92P. H. Butler,93A. Ahmad,94M. Ahmad,94Q. Hassan,94H. R. Hoorani,94 A. Saddique,94 M. A. Shah,94 M. Shoaib,94M. Waqas,94H. Bialkowska,95M. Bluj,95 B. Boimska,95T. Frueboes,95 M. Górski,95M. Kazana,95 K. Nawrocki,95 M. Szleper,95P. Zalewski,95K. Bunkowski,96A. Byszuk,96,ii K. Doroba,96 A. Kalinowski,96M. Konecki,96J. Krolikowski,96M. Misiura,96M. Olszewski,96A. Pyskir,96M. Walczak,96P. Bargassa,97 C. Beirão Da Cruz E Silva,97A. Di Francesco,97P. Faccioli,97B. Galinhas,97M. Gallinaro,97J. Hollar,97N. Leonardo,97 L. Lloret Iglesias,97M. V. Nemallapudi,97J. Seixas,97G. Strong,97O. Toldaiev,97D. Vadruccio,97J. Varela,97I. Golutvin,98 V. Karjavin,98I. Kashunin,98V. Korenkov,98 G. Kozlov,98A. Lanev,98A. Malakhov,98V. Matveev,98,jj,kkV. V. Mitsyn,98 V. Palichik,98V. Perelygin,98S. Shmatov,98N. Skatchkov,98V. Smirnov,98V. Trofimov,98B. S. Yuldashev,98,llA. Zarubin,98 V. Zhiltsov,98Y. Ivanov,99V. Kim,99,mmE. Kuznetsova,99,nn P. Levchenko,99V. Murzin,99V. Oreshkin,99I. Smirnov,99 D. Sosnov,99 V. Sulimov,99L. Uvarov,99 S. Vavilov,99A. Vorobyev,99Yu. Andreev,100 A. Dermenev,100 S. Gninenko,100

N. Golubev,100A. Karneyeu,100 M. Kirsanov,100 N. Krasnikov,100A. Pashenkov,100D. Tlisov,100 A. Toropin,100 V. Epshteyn,101 V. Gavrilov,101 N. Lychkovskaya,101V. Popov,101I. Pozdnyakov,101G. Safronov,101 A. Spiridonov,101 A. Stepennov,101M. Toms,101E. Vlasov,101A. Zhokin,101T. Aushev,102A. Bylinkin,102,kkR. Chistov,103,ooM. Danilov,103,oo

P. Parygin,103D. Philippov,103 S. Polikarpov,103 E. Tarkovskii,103E. Zhemchugov,103 V. Andreev,104M. Azarkin,104,kk I. Dremin,104,kkM. Kirakosyan,104,kk A. Terkulov,104A. Baskakov,105A. Belyaev,105E. Boos,105 M. Dubinin,105,pp L. Dudko,105A. Ershov,105A. Gribushin,105V. Klyukhin,105O. Kodolova,105I. Lokhtin,105I. Miagkov,105S. Obraztsov,105 S. Petrushanko,105V. Savrin,105A. Snigirev,105V. Blinov,106,qqD. Shtol,106,qqY. Skovpen,106,qqI. Azhgirey,107I. Bayshev,107 S. Bitioukov,107 D. Elumakhov,107 A. Godizov,107V. Kachanov,107 A. Kalinin,107 D. Konstantinov,107P. Mandrik,107 V. Petrov,107R. Ryutin,107A. Sobol,107S. Troshin,107N. Tyurin,107A. Uzunian,107A. Volkov,107P. Adzic,108,rrP. Cirkovic,108 D. Devetak,108M. Dordevic,108J. Milosevic,108V. Rekovic,108 J. Alcaraz Maestre,109I. Bachiller,109M. Barrio Luna,109 M. Cerrada,109N. Colino,109B. De La Cruz,109A. Delgado Peris,109C. Fernandez Bedoya,109J. P. Fernández Ramos,109

J. Flix,109M. C. Fouz,109 O. Gonzalez Lopez,109S. Goy Lopez,109J. M. Hernandez,109 M. I. Josa,109D. Moran,109 A. P´erez-Calero Yzquierdo,109J. Puerta Pelayo,109A. Quintario Olmeda,109I. Redondo,109L. Romero,109M. S. Soares,109

A. Álvarez Fernández,109 C. Albajar,110 J. F. de Trocóniz,110M. Missiroli,110J. Cuevas,111C. Erice,111 J. Fernandez Menendez,111I. Gonzalez Caballero,111 J. R. González Fernández,111E. Palencia Cortezon,111 S. Sanchez Cruz,111P. Vischia,111J. M. Vizan Garcia,111I. J. Cabrillo,112A. Calderon,112B. Chazin Quero,112E. Curras,112

J. Duarte Campderros,112M. Fernandez,112 J. Garcia-Ferrero,112 G. Gomez,112 A. Lopez Virto,112J. Marco,112 C. Martinez Rivero,112P. Martinez Ruiz del Arbol,112F. Matorras,112J. Piedra Gomez,112T. Rodrigo,112A. Ruiz-Jimeno,112

L. Scodellaro,112N. Trevisani,112I. Vila,112 R. Vilar Cortabitarte,112 D. Abbaneo,113B. Akgun,113E. Auffray,113 P. Baillon,113A. H. Ball,113 D. Barney,113 J. Bendavid,113M. Bianco,113P. Bloch,113A. Bocci,113 C. Botta,113

T. Camporesi,113 R. Castello,113M. Cepeda,113 G. Cerminara,113E. Chapon,113Y. Chen,113 D. d’Enterria,113 A. Dabrowski,113V. Daponte,113A. David,113M. De Gruttola,113A. De Roeck,113N. Deelen,113M. Dobson,113T. du Pree,113 M. Dünser,113N. Dupont,113A. Elliott-Peisert,113P. Everaerts,113F. Fallavollita,113G. Franzoni,113J. Fulcher,113W. Funk,113 D. Gigi,113A. Gilbert,113 K. Gill,113F. Glege,113D. Gulhan,113 P. Harris,113 J. Hegeman,113 V. Innocente,113 A. Jafari,113 P. Janot,113 O. Karacheban,113,rJ. Kieseler,113V. Knünz,113A. Kornmayer,113M. J. Kortelainen,113 M. Krammer,113,b C. Lange,113P. Lecoq,113C. Lourenço,113M. T. Lucchini,113L. Malgeri,113M. Mannelli,113A. Martelli,113F. Meijers,113

J. A. Merlin,113S. Mersi,113E. Meschi,113P. Milenovic,113,ss F. Moortgat,113M. Mulders,113 H. Neugebauer,113 J. Ngadiuba,113S. Orfanelli,113 L. Orsini,113 L. Pape,113E. Perez,113 M. Peruzzi,113A. Petrilli,113G. Petrucciani,113 A. Pfeiffer,113M. Pierini,113D. Rabady,113A. Racz,113T. Reis,113G. Rolandi,113,ttM. Rovere,113H. Sakulin,113C. Schäfer,113

C. Schwick,113M. Seidel,113 M. Selvaggi,113 A. Sharma,113P. Silva,113 P. Sphicas,113,uu A. Stakia,113J. Steggemann,113 M. Stoye,113 M. Tosi,113D. Treille,113 A. Triossi,113A. Tsirou,113V. Veckalns,113,vv M. Verweij,113W. D. Zeuner,113

W. Bertl,114,a L. Caminada,114,wwK. Deiters,114 W. Erdmann,114R. Horisberger,114Q. Ingram,114H. C. Kaestli,114 D. Kotlinski,114 U. Langenegger,114T. Rohe,114 S. A. Wiederkehr,114 M. Backhaus,115L. Bäni,115P. Berger,115 L. Bianchini,115 B. Casal,115 G. Dissertori,115M. Dittmar,115M. Doneg`a,115 C. Dorfer,115 C. Grab,115C. Heidegger,115

(10)

M. T. Meinhard,115 D. Meister,115F. Micheli,115 P. Musella,115 F. Nessi-Tedaldi,115F. Pandolfi,115 J. Pata,115 F. Pauss,115 G. Perrin,115L. Perrozzi,115M. Quittnat,115M. Reichmann,115D. A. Sanz Becerra,115M. Schönenberger,115L. Shchutska,115

V. R. Tavolaro,115 K. Theofilatos,115 M. L. Vesterbacka Olsson,115 R. Wallny,115 D. H. Zhu,115T. K. Aarrestad,116 C. Amsler,116,xxM. F. Canelli,116A. De Cosa,116R. Del Burgo,116S. Donato,116C. Galloni,116T. Hreus,116B. Kilminster,116 D. Pinna,116G. Rauco,116 P. Robmann,116D. Salerno,116 K. Schweiger,116C. Seitz,116Y. Takahashi,116A. Zucchetta,116 V. Candelise,117Y. H. Chang,117 K. y. Cheng,117T. H. Doan,117Sh. Jain,117 R. Khurana,117 C. M. Kuo,117W. Lin,117

A. Pozdnyakov,117S. S. Yu,117 Arun Kumar,118P. Chang,118Y. Chao,118K. F. Chen,118P. H. Chen,118F. Fiori,118 W.-S. Hou,118 Y. Hsiung,118Y. F. Liu,118 R.-S. Lu,118 E. Paganis,118 A. Psallidas,118 A. Steen,118 J. f. Tsai,118 B. Asavapibhop,119 K. Kovitanggoon,119 G. Singh,119N. Srimanobhas,119 A. Bat,120F. Boran,120S. Cerci,120,yy S. Damarseckin,120Z. S. Demiroglu,120C. Dozen,120I. Dumanoglu,120S. Girgis,120G. Gokbulut,120Y. Guler,120I. Hos,120,zz E. E. Kangal,120,aaaO. Kara,120A. Kayis Topaksu,120U. Kiminsu,120M. Oglakci,120G. Onengut,120,bbbK. Ozdemir,120,ccc D. Sunar Cerci,120,yy B. Tali,120,yy U. G. Tok,120 S. Turkcapar,120 I. S. Zorbakir,120C. Zorbilmez,120G. Karapinar,121,ddd K. Ocalan,121,eeeM. Yalvac,121M. Zeyrek,121E. Gülmez,122M. Kaya,122,fffO. Kaya,122,gggS. Tekten,122E. A. Yetkin,122,hhh

M. N. Agaras,123S. Atay,123A. Cakir,123K. Cankocak,123 I. Köseoglu,123 B. Grynyov,124L. Levchuk,125F. Ball,126 L. Beck,126J. J. Brooke,126D. Burns,126 E. Clement,126 D. Cussans,126O. Davignon,126H. Flacher,126J. Goldstein,126

G. P. Heath,126 H. F. Heath,126L. Kreczko,126 D. M. Newbold,126,iii S. Paramesvaran,126 T. Sakuma,126 S. Seif El Nasr-storey,126D. Smith,126V. J. Smith,126 K. W. Bell,127A. Belyaev,127,jjjC. Brew,127R. M. Brown,127 L. Calligaris,127D. Cieri,127D. J. A. Cockerill,127J. A. Coughlan,127K. Harder,127S. Harper,127J. Linacre,127E. Olaiya,127

D. Petyt,127C. H. Shepherd-Themistocleous,127A. Thea,127 I. R. Tomalin,127T. Williams,127G. Auzinger,128 R. Bainbridge,128J. Borg,128S. Breeze,128O. Buchmuller,128A. Bundock,128S. Casasso,128 M. Citron,128D. Colling,128 L. Corpe,128P. Dauncey,128G. Davies,128A. De Wit,128M. Della Negra,128R. Di Maria,128A. Elwood,128Y. Haddad,128 G. Hall,128G. Iles,128T. James,128R. Lane,128C. Laner,128L. Lyons,128A.-M. Magnan,128S. Malik,128L. Mastrolorenzo,128

T. Matsushita,128 J. Nash,128 A. Nikitenko,128,gV. Palladino,128M. Pesaresi,128 D. M. Raymond,128 A. Richards,128 A. Rose,128E. Scott,128C. Seez,128A. Shtipliyski,128S. Summers,128A. Tapper,128K. Uchida,128M. Vazquez Acosta,128,kkk T. Virdee,128,o N. Wardle,128D. Winterbottom,128 J. Wright,128 S. C. Zenz,128 J. E. Cole,129 P. R. Hobson,129 A. Khan,129 P. Kyberd,129I. D. Reid,129L. Teodorescu,129S. Zahid,129A. Borzou,130K. Call,130J. Dittmann,130 K. Hatakeyama,130

H. Liu,130N. Pastika,130C. Smith,130 R. Bartek,131 A. Dominguez,131 A. Buccilli,132 S. I. Cooper,132 C. Henderson,132 P. Rumerio,132C. West,132D. Arcaro,133A. Avetisyan,133T. Bose,133 D. Gastler,133D. Rankin,133 C. Richardson,133 J. Rohlf,133L. Sulak,133D. Zou,133G. Benelli,134D. Cutts,134A. Garabedian,134M. Hadley,134J. Hakala,134U. Heintz,134

J. M. Hogan,134 K. H. M. Kwok,134E. Laird,134G. Landsberg,134J. Lee,134Z. Mao,134M. Narain,134J. Pazzini,134 S. Piperov,134S. Sagir,134 R. Syarif,134D. Yu,134 R. Band,135C. Brainerd,135 R. Breedon,135 D. Burns,135 M. Calderon De La Barca Sanchez,135M. Chertok,135J. Conway,135R. Conway,135P. T. Cox,135R. Erbacher,135C. Flores,135

G. Funk,135W. Ko,135R. Lander,135C. Mclean,135M. Mulhearn,135D. Pellett,135 J. Pilot,135S. Shalhout,135M. Shi,135 J. Smith,135D. Stolp,135K. Tos,135M. Tripathi,135Z. Wang,135M. Bachtis,136C. Bravo,136R. Cousins,136A. Dasgupta,136 A. Florent,136 J. Hauser,136 M. Ignatenko,136N. Mccoll,136S. Regnard,136D. Saltzberg,136C. Schnaible,136V. Valuev,136 E. Bouvier,137K. Burt,137R. Clare,137J. Ellison,137J. W. Gary,137S. M. A. Ghiasi Shirazi,137G. Hanson,137J. Heilman,137

G. Karapostoli,137 E. Kennedy,137F. Lacroix,137O. R. Long,137 M. Olmedo Negrete,137M. I. Paneva,137W. Si,137 L. Wang,137 H. Wei,137S. Wimpenny,137B. R. Yates,137J. G. Branson,138S. Cittolin,138M. Derdzinski,138R. Gerosa,138

D. Gilbert,138 B. Hashemi,138 A. Holzner,138D. Klein,138G. Kole,138 V. Krutelyov,138J. Letts,138M. Masciovecchio,138 D. Olivito,138S. Padhi,138M. Pieri,138M. Sani,138V. Sharma,138M. Tadel,138A. Vartak,138S. Wasserbaech,138,lllJ. Wood,138 F. Würthwein,138A. Yagil,138G. Zevi Della Porta,138N. Amin,139R. Bhandari,139J. Bradmiller-Feld,139C. Campagnari,139 A. Dishaw,139V. Dutta,139M. Franco Sevilla,139L. Gouskos,139R. Heller,139J. Incandela,139A. Ovcharova,139H. Qu,139 J. Richman,139D. Stuart,139I. Suarez,139J. Yoo,139D. Anderson,140A. Bornheim,140J. M. Lawhorn,140H. B. Newman,140 T. Nguyen,140 C. Pena,140M. Spiropulu,140 J. R. Vlimant,140S. Xie,140Z. Zhang,140R. Y. Zhu,140M. B. Andrews,141

T. Ferguson,141T. Mudholkar,141M. Paulini,141J. Russ,141M. Sun,141 H. Vogel,141 I. Vorobiev,141 M. Weinberg,141 J. P. Cumalat,142W. T. Ford,142F. Jensen,142A. Johnson,142M. Krohn,142S. Leontsinis,142T. Mulholland,142K. Stenson,142 S. R. Wagner,142J. Alexander,143J. Chaves,143J. Chu,143S. Dittmer,143K. Mcdermott,143N. Mirman,143J. R. Patterson,143 D. Quach,143 A. Rinkevicius,143A. Ryd,143L. Skinnari,143L. Soffi,143S. M. Tan,143Z. Tao,143 J. Thom,143 J. Tucker,143 P. Wittich,143 M. Zientek,143S. Abdullin,144M. Albrow,144 M. Alyari,144 G. Apollinari,144A. Apresyan,144A. Apyan,144

(11)

S. Banerjee,144L. A. T. Bauerdick,144A. Beretvas,144J. Berryhill,144P. C. Bhat,144G. Bolla,144,a K. Burkett,144 J. N. Butler,144A. Canepa,144G. B. Cerati,144 H. W. K. Cheung,144F. Chlebana,144 M. Cremonesi,144 J. Duarte,144 V. D. Elvira,144 J. Freeman,144Z. Gecse,144E. Gottschalk,144L. Gray,144 D. Green,144 S. Grünendahl,144 O. Gutsche,144 R. M. Harris,144S. Hasegawa,144J. Hirschauer,144Z. Hu,144B. Jayatilaka,144S. Jindariani,144M. Johnson,144U. Joshi,144 B. Klima,144B. Kreis,144S. Lammel,144D. Lincoln,144R. Lipton,144M. Liu,144T. Liu,144R. Lopes De Sá,144J. Lykken,144 K. Maeshima,144N. Magini,144 J. M. Marraffino,144D. Mason,144P. McBride,144P. Merkel,144S. Mrenna,144 S. Nahn,144 V. O’Dell,144K. Pedro,144O. Prokofyev,144G. Rakness,144L. Ristori,144B. Schneider,144E. Sexton-Kennedy,144A. Soha,144 W. J. Spalding,144L. Spiegel,144S. Stoynev,144 J. Strait,144 N. Strobbe,144L. Taylor,144 S. Tkaczyk,144 N. V. Tran,144

L. Uplegger,144E. W. Vaandering,144C. Vernieri,144 M. Verzocchi,144 R. Vidal,144 M. Wang,144H. A. Weber,144 A. Whitbeck,144D. Acosta,145P. Avery,145P. Bortignon,145D. Bourilkov,145A. Brinkerhoff,145A. Carnes,145M. Carver,145 D. Curry,145R. D. Field,145I. K. Furic,145 S. V. Gleyzer,145B. M. Joshi,145J. Konigsberg,145A. Korytov,145K. Kotov,145 P. Ma,145K. Matchev,145H. Mei,145G. Mitselmakher,145K. Shi,145D. Sperka,145N. Terentyev,145L. Thomas,145J. Wang,145

S. Wang,145J. Yelton,145Y. R. Joshi,146 S. Linn,146 P. Markowitz,146 J. L. Rodriguez,146A. Ackert,147 T. Adams,147 A. Askew,147S. Hagopian,147V. Hagopian,147K. F. Johnson,147T. Kolberg,147G. Martinez,147T. Perry,147H. Prosper,147

A. Saha,147 A. Santra,147V. Sharma,147 R. Yohay,147M. M. Baarmand,148V. Bhopatkar,148 S. Colafranceschi,148 M. Hohlmann,148D. Noonan,148T. Roy,148F. Yumiceva,148M. R. Adams,149L. Apanasevich,149D. Berry,149R. R. Betts,149 R. Cavanaugh,149X. Chen,149O. Evdokimov,149C. E. Gerber,149D. A. Hangal,149D. J. Hofman,149K. Jung,149J. Kamin,149

I. D. Sandoval Gonzalez,149M. B. Tonjes,149 H. Trauger,149N. Varelas,149 H. Wang,149Z. Wu,149 J. Zhang,149 B. Bilki,150,mmmW. Clarida,150K. Dilsiz,150,nnnS. Durgut,150 R. P. Gandrajula,150M. Haytmyradov,150V. Khristenko,150

J.-P. Merlo,150H. Mermerkaya,150,oooA. Mestvirishvili,150 A. Moeller,150 J. Nachtman,150 H. Ogul,150,ppp Y. Onel,150 F. Ozok,150,qqqA. Penzo,150C. Snyder,150E. Tiras,150 J. Wetzel,150 K. Yi,150B. Blumenfeld,151A. Cocoros,151 N. Eminizer,151D. Fehling,151 L. Feng,151A. V. Gritsan,151 P. Maksimovic,151J. Roskes,151U. Sarica,151M. Swartz,151 M. Xiao,151 C. You,151A. Al-bataineh,152P. Baringer,152A. Bean,152 S. Boren,152J. Bowen,152J. Castle,152S. Khalil,152

A. Kropivnitskaya,152 D. Majumder,152W. Mcbrayer,152M. Murray,152 C. Royon,152 S. Sanders,152 E. Schmitz,152 J. D. Tapia Takaki,152Q. Wang,152A. Ivanov,153 K. Kaadze,153Y. Maravin,153A. Mohammadi,153 L. K. Saini,153 N. Skhirtladze,153 F. Rebassoo,154 D. Wright,154C. Anelli,155A. Baden,155O. Baron,155 A. Belloni,155 S. C. Eno,155 Y. Feng,155C. Ferraioli,155N. J. Hadley,155S. Jabeen,155G. Y. Jeng,155R. G. Kellogg,155J. Kunkle,155A. C. Mignerey,155 F. Ricci-Tam,155Y. H. Shin,155A. Skuja,155S. C. Tonwar,155D. Abercrombie,156B. Allen,156V. Azzolini,156R. Barbieri,156 A. Baty,156 R. Bi,156S. Brandt,156W. Busza,156I. A. Cali,156M. D’Alfonso,156 Z. Demiragli,156G. Gomez Ceballos,156 M. Goncharov,156 D. Hsu,156M. Hu,156 Y. Iiyama,156G. M. Innocenti,156M. Klute,156D. Kovalskyi,156Y.-J. Lee,156 A. Levin,156P. D. Luckey,156B. Maier,156A. C. Marini,156C. Mcginn,156 C. Mironov,156 S. Narayanan,156 X. Niu,156 C. Paus,156C. Roland,156G. Roland,156J. Salfeld-Nebgen,156G. S. F. Stephans,156K. Tatar,156D. Velicanu,156J. Wang,156

T. W. Wang,156 B. Wyslouch,156A. C. Benvenuti,157R. M. Chatterjee,157A. Evans,157P. Hansen,157J. Hiltbrand,157 S. Kalafut,157 Y. Kubota,157Z. Lesko,157J. Mans,157 S. Nourbakhsh,157 N. Ruckstuhl,157R. Rusack,157J. Turkewitz,157 M. A. Wadud,157J. G. Acosta,158S. Oliveros,158E. Avdeeva,159K. Bloom,159D. R. Claes,159C. Fangmeier,159F. Golf,159 R. Gonzalez Suarez,159 R. Kamalieddin,159 I. Kravchenko,159 J. Monroy,159J. E. Siado,159 G. R. Snow,159B. Stieger,159 J. Dolen,160A. Godshalk,160C. Harrington,160I. Iashvili,160D. Nguyen,160A. Parker,160S. Rappoccio,160B. Roozbahani,160

G. Alverson,161E. Barberis,161C. Freer,161 A. Hortiangtham,161A. Massironi,161 D. M. Morse,161T. Orimoto,161 R. Teixeira De Lima,161D. Trocino,161T. Wamorkar,161B. Wang,161 A. Wisecarver,161D. Wood,161 S. Bhattacharya,162

O. Charaf,162 K. A. Hahn,162 N. Mucia,162 N. Odell,162M. H. Schmitt,162 K. Sung,162M. Trovato,162M. Velasco,162 R. Bucci,163N. Dev,163M. Hildreth,163 K. Hurtado Anampa,163C. Jessop,163D. J. Karmgard,163N. Kellams,163 K. Lannon,163 W. Li,163 N. Loukas,163N. Marinelli,163 F. Meng,163 C. Mueller,163 Y. Musienko,163,jj M. Planer,163 A. Reinsvold,163R. Ruchti,163P. Siddireddy,163 G. Smith,163 S. Taroni,163 M. Wayne,163 A. Wightman,163M. Wolf,163 A. Woodard,163J. Alimena,164L. Antonelli,164 B. Bylsma,164L. S. Durkin,164 S. Flowers,164B. Francis,164A. Hart,164 C. Hill,164 W. Ji,164B. Liu,164W. Luo,164 B. L. Winer,164 H. W. Wulsin,164 S. Cooperstein,165O. Driga,165 P. Elmer,165 J. Hardenbrook,165P. Hebda,165S. Higginbotham,165A. Kalogeropoulos,165D. Lange,165J. Luo,165D. Marlow,165K. Mei,165 I. Ojalvo,165J. Olsen,165C. Palmer,165P. Pirou´e,165D. Stickland,165C. Tully,165S. Malik,166S. Norberg,166A. Barker,167

V. E. Barnes,167S. Das,167 S. Folgueras,167 L. Gutay,167M. K. Jha,167M. Jones,167 A. W. Jung,167 A. Khatiwada,167 D. H. Miller,167N. Neumeister,167C. C. Peng,167H. Qiu,167J. F. Schulte,167J. Sun,167F. Wang,167R. Xiao,167W. Xie,167

(12)

T. Cheng,168N. Parashar,168J. Stupak,168Z. Chen,169 K. M. Ecklund,169 S. Freed,169 F. J. M. Geurts,169 M. Guilbaud,169 M. Kilpatrick,169W. Li,169B. Michlin,169B. P. Padley,169 J. Roberts,169 J. Rorie,169W. Shi,169Z. Tu,169J. Zabel,169 A. Zhang,169A. Bodek,170P. de Barbaro,170R. Demina,170Y. t. Duh,170T. Ferbel,170M. Galanti,170A. Garcia-Bellido,170 J. Han,170O. Hindrichs,170A. Khukhunaishvili,170K. H. Lo,170P. Tan,170M. Verzetti,170R. Ciesielski,171K. Goulianos,171 C. Mesropian,171A. Agapitos,172J. P. Chou,172Y. Gershtein,172T. A. Gómez Espinosa,172E. Halkiadakis,172M. Heindl,172 E. Hughes,172 S. Kaplan,172R. Kunnawalkam Elayavalli,172S. Kyriacou,172A. Lath,172 R. Montalvo,172 K. Nash,172 M. Osherson,172 H. Saka,172S. Salur,172S. Schnetzer,172D. Sheffield,172 S. Somalwar,172 R. Stone,172 S. Thomas,172 P. Thomassen,172M. Walker,172A. G. Delannoy,173J. Heideman,173G. Riley,173K. Rose,173 S. Spanier,173 K. Thapa,173

O. Bouhali,174,rrrA. Castaneda Hernandez,174,rrrA. Celik,174 M. Dalchenko,174M. De Mattia,174A. Delgado,174 S. Dildick,174R. Eusebi,174J. Gilmore,174 T. Huang,174 T. Kamon,174,sss R. Mueller,174 Y. Pakhotin,174R. Patel,174 A. Perloff,174L. Perni`e,174D. Rathjens,174A. Safonov,174A. Tatarinov,174K. A. Ulmer,174N. Akchurin,175J. Damgov,175 F. De Guio,175P. R. Dudero,175J. Faulkner,175E. Gurpinar,175S. Kunori,175K. Lamichhane,175S. W. Lee,175T. Libeiro,175 T. Mengke,175S. Muthumuni,175 T. Peltola,175 S. Undleeb,175I. Volobouev,175Z. Wang,175 S. Greene,176A. Gurrola,176 R. Janjam,176W. Johns,176C. Maguire,176A. Melo,176H. Ni,176K. Padeken,176P. Sheldon,176S. Tuo,176J. Velkovska,176 Q. Xu,176 M. W. Arenton,177P. Barria,177 B. Cox,177R. Hirosky,177 M. Joyce,177A. Ledovskoy,177 H. Li,177 C. Neu,177 T. Sinthuprasith,177Y. Wang,177E. Wolfe,177F. Xia,177R. Harr,178P. E. Karchin,178N. Poudyal,178J. Sturdy,178P. Thapa,178 S. Zaleski,178M. Brodski,179J. Buchanan,179C. Caillol,179S. Dasu,179L. Dodd,179S. Duric,179B. Gomber,179M. Grothe,179

M. Herndon,179A. Herv´e,179 U. Hussain,179 P. Klabbers,179 A. Lanaro,179A. Levine,179K. Long,179R. Loveless,179 T. Ruggles,179A. Savin,179N. Smith,179 W. H. Smith,179 D. Taylor,179and N. Woods179

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik, Wien, Austria 3Institute for Nuclear Problems, Minsk, Belarus

4

Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6

Universit´e Libre de Bruxelles, Bruxelles, Belgium 7Ghent University, Ghent, Belgium 8

Universit´e Catholique de Louvain, Louvain-la-Neuve, Belgium 9Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 10

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 11aUniversidade Estadual Paulista, São Paulo, Brazil

11b

Universidade Federal do ABC, São Paulo, Brazil

12Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria 13

University of Sofia, Sofia, Bulgaria 14

Beihang University, Beijing, China 15

Institute of High Energy Physics, Beijing, China 16

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Tsinghua University, Beijing, China 18

Universidad de Los Andes, Bogota, Colombia 19

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 20

University of Split, Faculty of Science, Split, Croatia 21

Institute Rudjer Boskovic, Zagreb, Croatia 22

University of Cyprus, Nicosia, Cyprus 23

Charles University, Prague, Czech Republic 24

Universidad San Francisco de Quito, Quito, Ecuador 25

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

26

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 27

Department of Physics, University of Helsinki, Helsinki, Finland 28

Helsinki Institute of Physics, Helsinki, Finland 29

Lappeenranta University of Technology, Lappeenranta, Finland 30

(13)

31Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Universit´e Paris-Saclay, Palaiseau, France 32

Universit´e de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

33Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 34

Universit´e de Lyon, Universit´e Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucl´eaire de Lyon, Villeurbanne, France 35Georgian Technical University, Tbilisi, Georgia

36

Tbilisi State University, Tbilisi, Georgia

37RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 38

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 39RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

40

Deutsches Elektronen-Synchrotron, Hamburg, Germany 41University of Hamburg, Hamburg, Germany 42

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

43Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 44

National and Kapodistrian University of Athens, Athens, Greece 45National Technical University of Athens, Athens, Greece

46

University of Ioánnina, Ioánnina, Greece

47MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary 48

Wigner Research Centre for Physics, Budapest, Hungary 49Institute of Nuclear Research ATOMKI, Debrecen, Hungary 50

Institute of Physics, University of Debrecen, Debrecen, Hungary 51Indian Institute of Science (IISc), Bangalore, India 52

National Institute of Science Education and Research, Bhubaneswar, India 53Panjab University, Chandigarh, India

54

University of Delhi, Delhi, India

55Saha Institute of Nuclear Physics, HBNI, Kolkata, India 56

Indian Institute of Technology Madras, Madras, India 57Bhabha Atomic Research Centre, Mumbai, India 58

Tata Institute of Fundamental Research-A, Mumbai, India 59Tata Institute of Fundamental Research-B, Mumbai, India 60

Indian Institute of Science Education and Research (IISER), Pune, India 61Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

62

University College Dublin, Dublin, Ireland 63aINFN Sezione di Bari, Politecnico di Bari, Bari, Italy

63b

Universit `a di Bari, Politecnico di Bari, Bari, Italy 63cPolitecnico di Bari, Politecnico di Bari, Bari, Italy

64a

INFN Sezione di Bologna, Bologna, Italy 64bUniversit `a di Bologna, Bologna, Italy 65a

INFN Sezione di Catania, Catania, Italy 65bUniversit `a di Catania, Catania, Italy 66a

INFN Sezione di Firenze, Firenze, Italy 66bUniversit `a di Firenze, Firenze, Italy 67

INFN Laboratori Nazionali di Frascati, Frascati, Italy 68aINFN Sezione di Genova, Genova, Italy

68b

Universit`a di Genova, Genova, Italy 69aINFN Sezione di Milano-Bicocca

69b

Universit `a di Milano-Bicocca 70aINFN Sezione di Napoli, Napoli, Italy 70b

Universit `a di Napoli’Federico II’, Napoli, Italy 70cUniversit `a della Basilicata, Potenza, Italy

70d

Universit`a G. Marconi, Roma, Italy 71aINFN Sezione di Padova, Padova, Italy

71b

Universit `a di Padova, Padova, Italy 71cUniversit `a di Trento, Trento, Italy 72a

INFN Sezione di Pavia, Pavia, Italy 72bUniversit `a di Pavia, Pavia, Italy 73a

INFN Sezione di Perugia, Perugia, Italy 73bUniversit `a di Perugia, Perugia, Italy

74a

INFN Sezione di Pisa, Pisa, Italy 74bUniversit `a di Pisa, Pisa, Italy 74c

(14)

75aINFN Sezione di Roma, Rome, Italy 75b

Sapienza Universit `a di Roma, Rome, Italy 76aINFN Sezione di Torino, Torino, Italy

76b

Universit `a di Torino, Torino, Italy 76cUniversit `a del Piemonte Orientale, Novara, Italy

77a

INFN Sezione di Trieste, Trieste, Italy 77bUniversit `a di Trieste, Trieste, Italy 78

Kyungpook National University, Daegu, Korea 79Chonbuk National University, Jeonju, Korea 80

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 81Hanyang University, Seoul, Korea

82

Korea University, Seoul, Korea 83Seoul National University, Seoul, Korea

84

University of Seoul, Seoul, Korea 85Sungkyunkwan University, Suwon, Korea

86

Vilnius University, Vilnius, Lithuania

87National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 88

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 89Universidad Iberoamericana, Mexico City, Mexico

90

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 91Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

92

University of Auckland, Auckland, New Zealand 93University of Canterbury, Christchurch, New Zealand 94

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 95National Centre for Nuclear Research, Swierk, Poland

96

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 97Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

98

Joint Institute for Nuclear Research, Dubna, Russia

99Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 100

Institute for Nuclear Research, Moscow, Russia

101Institute for Theoretical and Experimental Physics, Moscow, Russia 102

Moscow Institute of Physics and Technology, Moscow, Russia

103National Research Nuclear University’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia 104

P.N. Lebedev Physical Institute, Moscow, Russia

105Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 106

Novosibirsk State University (NSU), Novosibirsk, Russia

107State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 108

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 109Centro de Investigaciones Energ´eticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

110

Universidad Autónoma de Madrid, Madrid, Spain 111Universidad de Oviedo, Oviedo, Spain 112

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 113CERN, European Organization for Nuclear Research, Geneva, Switzerland

114

Paul Scherrer Institut, Villigen, Switzerland

115ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland 116

Universität Zürich, Zurich, Switzerland 117National Central University, Chung-Li, Taiwan 118

National Taiwan University (NTU), Taipei, Taiwan

119Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand 120

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey 121Middle East Technical University, Physics Department, Ankara, Turkey

122

Bogazici University, Istanbul, Turkey 123Istanbul Technical University, Istanbul, Turkey 124

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine 125National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

126

University of Bristol, Bristol, United Kingdom 127Rutherford Appleton Laboratory, Didcot, United Kingdom

128

Imperial College, London, United Kingdom 129Brunel University, Uxbridge, United Kingdom

130

(15)

131Catholic University of America, Washington, DC, USA 132

The University of Alabama, Tuscaloosa, Alabama, USA 133Boston University, Boston, Massachusetts, USA 134

Brown University, Providence, Rhode Island, USA 135University of California, Davis, Davis, California, USA

136

University of California, Los Angeles, California, USA 137University of California, Riverside, Riverside, California, USA 138

University of California, San Diego, La Jolla, California, USA 139University of California, Santa Barbara, Santa Barbara, California, USA

140

California Institute of Technology, Pasadena, California, USA 141Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

142

University of Colorado Boulder, Boulder, Colorado, USA 143Cornell University, Ithaca, New York, USA 144

Fermi National Accelerator Laboratory, Batavia, Illinois, USA 145University of Florida, Gainesville, Florida, USA 146

Florida International University, Miami, Florida, USA 147Florida State University, Tallahassee, Florida, USA 148

Florida Institute of Technology, Melbourne, Florida, USA 149University of Illinois at Chicago (UIC), Chicago, Illinois, USA

150

The University of Iowa, Iowa City, Iowa, USA 151Johns Hopkins University, Baltimore, Maryland, USA

152

The University of Kansas, Lawrence, USA 153Kansas State University, Manhattan, USA 154

Lawrence Livermore National Laboratory, Livermore, California, USA 155University of Maryland, College Park, Maryland, USA 156

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 157University of Minnesota, Minneapolis, Minnesota, USA

158

University of Mississippi, Oxford, Mississippi, USA 159University of Nebraska-Lincoln, Lincoln, Nebraska, USA 160

State University of New York at Buffalo, Buffalo, New York, USA 161Northeastern University, Boston, Massachusetts, USA

162

Northwestern University, Evanston, Illinois, USA 163University of Notre Dame, Notre Dame, Indiana, USA

164

The Ohio State University, Columbus, Ohio, USA 165Princeton University, Princeton, New Jersey, USA 166

University of Puerto Rico, Mayaguez, Puerto Rico 167Purdue University, West Lafayette, Indiana, USA 168

Purdue University Northwest, Hammond, Indiana, USA 169Rice University, Houston, Texas, USA

170

University of Rochester, Rochester, New York, USA 171The Rockefeller University, New York, New York, USA 172

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA 173University of Tennessee, Knoxville, Tennessee, USA

174

Texas A&M University, College Station, Maryland, USA 175Texas Tech University, Lubbock, Texas, USA 176

Vanderbilt University, Nashville, Tennessee, USA 177University of Virginia, Charlottesville, Virginia, USA

178

Wayne State University, Detroit, Michigan, USA 179University of Wisconsin—Madison, Madison, Wisconsin, USA

a

Deceased.

bAlso at Vienna University of Technology, Vienna, Austria. c

Also at IRFU, CEA, Universit´e Paris-Saclay, Gif-sur-Yvette, France.

dAlso at Universidade Estadual de Campinas, Campinas, Brazil. e

Also at Universidade Federal de Pelotas, Pelotas, Brazil.

fAlso at Universit´e Libre de Bruxelles, Bruxelles, Belgium. g

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

hAlso at Joint Institute for Nuclear Research, Dubna, Russia. i

Also at Ain Shams University, Cairo, Egypt.

Riferimenti

Documenti correlati

Through a case study analysis we would describe the emergence of a new logic in the Italian cultural heritage field and we attempt to analyse how participants in the

illuminate è ravvisabile in diversi aspetti nella maggior parte degli eruditi dell'epoca, alcune scelte di forma restarono ancora strettamente legate alla

This new information could be channeled to address what seem to be the three major hallmarks for the immune control of cancer progression: effective procedures to activate

The anti-inflammatory effects of compound 4 were evaluated in LPS-stimulated THP-1 (ACC-16, DSMZ) in which the canonical NF-κB signaling pathway controls the expression of

Dianzani, Inhibition of c-myc expression induced by 4-hydroxynonenal, a product of lipid peroxidation, in theHL-60 human leukemic cell line, Biochem.. Fazio

Jedin dressa le récit d’une Eglise catholique qui, depuis le Moyen- Âge, avait entamé un processus de réforme aussi bien dans la sphère pastorale, que dans celle de la doctrine ;

Dose-response curves are shown for (left) untreated cells and (right) cells treated with 20 nM cAMP pulses. In both cases, cells were tested after 4–5 hours starvation. White

When compared to the covalent reference inhibitors JZL-184 and CAY10499, compounds 16b-18b showed similar activity profiles, and compound 16b demonstrated an even