• Non ci sono risultati.

Spatiotemporal dynamics of attentional orienting and reorienting revealed by fast optical imaging in occipital and parietal cortices

N/A
N/A
Protected

Academic year: 2021

Condividi "Spatiotemporal dynamics of attentional orienting and reorienting revealed by fast optical imaging in occipital and parietal cortices"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Spatiotemporal

dynamics

of

attentional

orienting

and

reorienting

revealed

by

fast

optical

imaging

in

occipital

and

parietal

cortices

Giorgia Parisi

a,b

, Chiara Mazzi

a,b,∗

, Elisabetta Colombari

a,b

, Antonio M. Chiarelli

c

,

Brian A. Metzger

d

, Carlo A. Marzi

a

, Silvia Savazzi

a,b

a Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy

b Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy

c Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti Pescara, Via dei Vestini 31, Chieti, Italy d Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA

a

r

t

i

c

l

e

i

n

f

o

Keywords: Visuospatial attention Orienting Reorienting Optical imaging EROS Granger causality

a

b

s

t

r

a

c

t

Themechanismsofvisuospatialattentionaremediatedbytwodistinctfronto-parietalnetworks:abilateral dor-salnetwork(DAN),involvedinthevoluntaryorientationofvisuospatialattention,andaventralnetwork(VAN), lateralizedtotherighthemisphere,involvedinthereorientingofattentiontounexpected,butrelevant,stimuli. Thepresentstudyconsistedoftwoaims:1)tocharacterizethespatio-temporaldynamicsofattentionand2)to examinethepredictiveinteractionsbetweenandwithinthetwoattentionsystemsalongwithvisualareas,by usingfastopticalimagingcombinedwithGrangercausality.Datawerecollectedfromyounghealthyparticipants performingadiscriminationtaskinaPosner-likeparadigm.Functionalanalysesrevealedbilateraldorsal pari-etal(i.e.dorsalregionsincludedintheDAN)andvisualrecruitmentduringorienting,highlightingarecursive predictiveinterplaybetweenspecificdorsalparietalregionsandvisualcortex.Moreover,wefoundthatboth attentionnetworksareactiveduringreorienting,togetherwithvisualcortex,highlightingamutualinteraction amongdorsalandvisualareas,which,inturn,predictssubsequentventralactivity.Forattentionalreorientingour findingsindicatethatdorsalandvisualareasencodedisengagementofattentionfromtheattendedlocationand triggerreorientationtotheunexpectedlocation.Ventralnetworkactivitycouldinsteadreflectpost-perceptual maintenanceoftheinternalmodeltogenerateandkeepupdatedtask-relatedexpectations.

1. Introduction

Visualattentionconsistsofthosepsychologicalandneuralprocesses whichmediatetheprocessingofbehaviorallyrelevantsensory informa-tion(Capotostoetal.,2012).Sensoryinformationcanbeselectedeither throughvoluntarydeploymentofattentionalcontrol(goal-directed at-tention)orcanbeorientedorreorientedinresponsetonovelor unex-pected,butimportant,stimuli(stimulus-drivenattention).Animportant pointisthatattentioncanbeallocatedinspacenotonlyovertlybutalso covertly,i.e.inabsenceofheadoreyesmovements.Also,covert atten-tioncanbedirectedtowardseitherbehaviorallysignificantlocationsor regionsofspaceincludingunexpectedbutsalientstimuli.Inthecaseof visuospatialattention,goal-directedandstimulus-drivenattention pro-videatypicalsystemofselectionofrelevantinformation:sensory in-putatattendedlocationsisdirectlyenhanced,whereasatunattended positionsareorientingprocessistriggeredtolikelyimportantstimuli (Nataleetal.,2009).

Correspondingauthorat:DepartmentofNeuroscience,BiomedicineandMovementSciences,UniversityofVerona,StradaleGrazie8,I-37134Verona,Italy.

E-mailaddress:chiara.mazzi@univr.it(C.Mazzi).

Psychophysical assessment of covert orienting and reorienting is achievable by meansof spatialcueing paradigms (Posner, 1980) in whichacentralsymboliccue(e.g.anarrow)providesrelevant informa-tionaboutthelocationofanupcomingperipheraltarget.Inthemajority oftrials(75–80%probability),thisinformationiscorrect,i.e.the up-comingtargetispresentedatthecuedlocation(validtrials),whereas, intheminorityoftrials(25–20%ofcases),thecuegivesawrong in-dication(invalidtrials)asthetargetispresentedattheuncued loca-tion(Capotostoetal.,2012;Doricchietal.,2010;Nataleetal.,2009; Vosseletal.,2006).Reactiontime(RT)istypicallyfasterinvalidthan invalidtrialsandthedifference(“validityeffect”)representsanindex ofthetimeneededtodisengageandshiftattentionfromanattendedto anunexpected,behaviorallyrelevantlocation(Posner,1980).

Fromaneuroanatomicalpointofview,visuospatialattention mech-anismshavebeenlinkedtoparietalandfrontalcortices(Corbettaetal., 2008; Corbetta andShulman, 2002; Shomstein, 2012; Vossel et al., 2006).Specifically,ithasbeenproposedthatattentionalorientingand

https://doi.org/10.1016/j.neuroimage.2020.117244

Received3April2020;Receivedinrevisedform5June2020;Accepted3August2020 Availableonline14August2020

1053-8119/© 2020TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

reorientingareregulatedbytwoanatomicallydifferent,though func-tionally interconnected, cortical networks: a bilateral dorsal fronto-parietal (DAN) and a ventral fronto-parietal network (VAN). DAN, whichbecomesactivatedastop-downcuesorientattentiontospecific locations(Corbettaetal.,2000,2008),includestheintraparietal sul-cus(IPS),thesuperiorparietallobule(SPL)andthefrontaleyefields (FEF).Incontrast,reorientingattentiontounattendedlocationsengages VAN.Thisnetworkislateralizedtotherighthemisphereandincludes thetemporo-parietaljunction(TPJ)andtheventralfrontalcortex(VFC) whichmainlyincludesportionsofthemiddlefrontalgyrus(MFG)and theinferiorfrontalgyrus(IFG)(Corbettaetal.,2008).

Itis generally accepted that DANand VANarecharacterized by anatomicalsegregationand functionalspecialization so thateach of themsubservesspecificprocessesofallocationofattention(Vosseletal., 2014).

ThereisstrongevidenceabouttheexclusiveroleofDAN(especially IPSandSPL)intop-downattentionorienting,andthatparietalregions exerttop-downattention-relatedmodulationonstriateandextrastriate visualareas(Bressleretal.,2008;Doesburgetal.,2016;Vosseletal., 2012).Conversely,therelationshipbetweenDANandVANandtheir re-spectivecontributionsinthereorientingprocessarestillnotcompletely clear.Moreprecisely,voluntaryattentionalorientingisthoughtto en-gagethedorsalnetworkonlywhileattentionalreorientingwould re-quireaninteractionbetweenthetwoattentionnetworks,however,the exactnatureofthisinteractionisstilldebated(Corbettaetal.,2008; Vosseletal.,2014).

Infact,previousimagingstudieslookingatvisuospatialattentional reorientinginresponsetoinvalidspatialcueshaverevealedactivityin ventralregionsandbilateralIPS(Vosseletal.,2006,2012),andright SPLaswell(Vosseletal.,2009).Inagreementwiththeseresults, tran-scranial magnetic stimulation(TMS)studies (Capotostoet al., 2012; Chicaetal.,2011)haveshownthecriticalroleofrightIPSwhen atten-tionisspatiallyreorientedtounattendedbutrelevantstimuli.Although thesefindingsstronglysupporttheexistenceofaninterplaybetween theDANandVANduringspatialreorienting,littleisknownaboutthe timingofthisinteraction.Sofar,theexactroleofdorsalandventral regionsinattentionalprocessesremainsuncertain,aswellasthe pre-dictiveconnectionsbetweenthem,especiallyinthedifferentphasesof attentional reorienting(disengaging, shiftingandengaging attention; Posner,1980).

Previous imaging studies have not provided enough information aboutthe time-courseof attentional processing,along withaccurate localizationofspecificallyactivatedcorticalareas.Toaddressthis is-sue,techniqueswith bothgood temporalandspatialresolutionsare needed. Todate, themost widely employedtechniques can achieve highresolutioninjustonedimension(i.e.spaceortime)andtheonly optionhasbeentocombinedifferentmethodologies(Gratton,2010). Unfortunately,becauseoftheoreticandtechnicalmismatchesbetween distincttechniques(Luck,1999),thisoptioncannotfulfillthegoalof providingbothspatialandtemporalinformationonthecognitive pro-cessunderstudy.Toovercomethisproblem,opticalimagingmethods havebeguntobeemployed.Inparticular,arelativelynovelapproach, namedEvent-RelatedOpticalSignal(EROS)orFastOpticalSignal(FOS) (Chiarelli etal.,2013, 2014;Gratton etal., 1995;Gratton and Fabi-ani,2001)representsanappropriatetooltoaddressthisquestion.Its mainadvantageistheabilitytodetectvariations(i.e.fastoptical sig-nals)inopticalscatteringtypicaloftheneuraltissuewhenitisactive, asopposedtowhenitisnot(Gratton,2010).EROS,availingof near-infraredlight(NIR),detectsreductioninthelight-scatteringwhichis associatedwithchangeinmembranepotentialsandwithanincrement ofbrainactivities(Grattonetal.,1995).Thus,itprovidesameasure of neuronalactivitywith ahigh temporallocalizationpowerof less than50ms(Baniquedetal.,2013),whichisclosetowhatcanbe ob-tainedwithelectroencephalography(EEG)and magnetoencephalogra-phy(MEG).Moreover,thankstothegeometryoftheopticalprobes, thediffusionofdetectedNIRlightthatpassedacrossthebrainis

re-strictedenoughtoobtainasufficientlylocalizedsignal(ontheorderof cm),obtainingaspatiallocalizationpowersuperiortoEEGandMEG andwhichrevealsactivityfromextensiveareasofthecorticalsurface (Gratton,2010).Thisrelativelynewtechniquehasbeenvalidatedby manystudies(Baniquedetal.,2013;Huangetal.,2013;Sableetal., 2007;Toscanoetal.,2018)supportingitsfeasibilityandreliabilityin investigatingthedynamicsof brainactivationsofspecificcortical re-gionsduringtheperformanceofcognitiveoperations(Grattonetal., 1997, 2000;Rykhlevskaiaetal.,2006;Tseetal.,2013).Inaddition, theadvantagesofthistechniquecanbemaximizedbycombiningEROS analyseswithGrangercausality.Thisassociationallowsustoexplore, notonlythetimingofactivationsofdistinctbrainareasbutalsoto deter-minewhetheractivityinoneseedareaispredictiveofsuccessiveactivity inotherregions.Importantly,Grangercausalitycalculateswhetherdata fromadefinedareaofinterestinaspecifiedtemporalwindowcan pre-dictthevaluesofanotherregionactivatedinasubsequenttimeframe (Roebroecketal.,2005),thusrevealingthedirectionofinfluences be-tweenselectedregionsofinterest(ROIs).Granger’ssuitabilityfor inves-tigatingdirectionalrelationshipsbetweenbrainregionsinhuman cog-nitionhasalreadybeenassessedinpreviousfMRI,EEGandMEGstudies (Bressleretal.,2008;Doesburgetal.,2016;Proulxetal.,2018). Con-sideringthatitisastatisticalmeasureofdirectionalinfluencesbetween ROIsbasedsolelyontheirtemporalprecedence(Roebroecketal.,2005), itsapplicationtoEROS,thathashightemporalandspatiallocalization power,isidealtoimproveourunderstandingabouthowinformationis sharedbetweenbrainregionsengagedinspecificcognitivetasks.

Inthepresentstudy,anendogenousspatialcueingparadigmwas administeredtohealthyparticipants.Inthiskindoftask,processingof valid andinvalidtrialsstarts withtheinterpretation ofthesymbolic cue,followedbyavoluntaryallocationofattentionandacue-related orienting-response.Thisimpliesdifferentoperations:disengagingfrom afixationpoint,shiftingandengagingattentiontothesignaledlocation. Inthecaseofinvalidtrials,themismatchbetweenattendedandactual locationofthetargetrequiresfurtherattentionalmechanisms,namely, disengaging,shiftingandre-engagingattentiontothecorrectlocation (Nataleetal.,2009).

BycouplingthisbehavioralapproachwithEROSandGranger causal-ity,capableofidentifyingthetimingofactivationindefinitebrain re-gionsandtounveilthepredictiverelationshipamongthem,thepresent studyaimsatcharacterizingtheneuralspatio-temporaldynamicsof at-tentionalprocesses.Inparticular,exclusivelyfocusingonparietaland temporalcortices,wesoughttotracethetime-courseofbrainactivations inposteriornodesoftheDANandVANtoclarifythedifferentrolesof dorsalandventralregionsinattentionalorientingandreorienting. 2. Materialandmethods

2.1. Participants

Atotaloftwenty-nineright-handed(asassessedbytheEdinburgh Handedness Inventory,Oldfield, 1971)adults, wererecruitedfor the studyandreceivedcompensationfortheirparticipation.Allreported normalorcorrected-to-normalvisualacuityandnohistoryof neurolog-icalorpsychiatricdisorders.Allbuttwo(authorsG.P.andE.C.)were naïvetothegoalsofthestudy.

Allparticipantsgavetheirwritteninformedconsentbefore partici-patinginthestudy,whichwasconductedinaccordancewiththe2013 declarationofHelsinkiandapprovedbytheEthicsCommitteeofthe Eu-ropeanResearchCouncilandoftheVeronaAziendaOspedaliera Univer-sitariaIntegrata(AOUI).Datafrom8participantswereexcludedfrom theanalysisbecauseoftechnicaldifficultiesduringimagingdata acqui-sition,suchasdigitizationissues(2participants),lowscattering param-etersduetodarkskinandhair(2participants)oraninsufficient num-berofgoodchannelscausedbydetectorovervoltage(4participants). Therateof participants’exclusion,duetoimagingacquisitionissues, appearstobehigherthanthattypicallyfoundinEROSstudies.Inthis

(3)

case,EROSsetupandopticaldatarecordinghaverequiredalittle re-finementduringthefirstperiodofdatacollection,thusengenderinga higherrateofdataexclusionthanusual.

Moreover,datafromother3participantswerediscardedas behav-ioraltaskoutliers.Thefinalsamplewasthuscomposedofeighteen par-ticipants(3males,meanage±standarddeviation:24±3.7).

2.2. Experimentalprocedure

Thewholeexperimentincludedtwosessionsperformedover two separatedays.Thesesessionswereidenticalinsettingandbehavioral conditions(typeoftask,numberofblocksandtrials),exceptforEROS montages(seebelow).Theexperimentwasdividedintotwosessionsin ordertoobtainanadequatenumberoftrialswhileavoidingfatiguefor participants.

Intotal,eachsessionlastedaboutthreeandahalfhours,which in-cludedEROSsetup,opticaldatarecordingduringthebehavioraltask, andco-registrationproceduresconsistingofthedigitizationofoptode scalplocations.

2.3. Behavioraltask

Participantsweretestedinadarktestingroom.Duringthe exper-imentalsessions,theysatinfrontofa17in.LCDmonitor(resolution 1920×1080,refreshrateof144Hz)placedataviewingdistance of 57cm,withheadlayingonanadaptablechinrestsothateyescouldbe alignedwiththecenterofthescreen.

A modified version of an endogenous spatial attention cueing paradigm(Posner,1980),wasemployed(seeFig.1A).

Eachtrial beganwiththepresentationof acentralblackfixation cross,followed500mslaterbyacentralpredictivecuepresentedfor 200msabovethefixationpoint.Afteravariablerandomizedinterval, lastingbetween300and600ms,thecuedisappearedandwas immedi-atelyfollowedbytargetonset(averticalorhorizontal,black-and-white, 2° squaregrating)presentedataneccentricityof2° fromthefixation crosstotheinneredge,alongthehorizontalmeridian.Participantswere instructedtodeploytheir attentiontotheside indicatedbythe cue whilemaintainingtheirgazeonthecentralfixationcrossthroughout theblock.Targetswerepresentedfor150msafterwhich,theywereto discriminateasfastandasaccuratelyaspossibletheorientationofthe targetbypressingoneoftwobuttonsofaresponseboxwiththeindex forhorizontaltargetsorwiththemiddlefingerforverticaltargets.

Ineach block,horizontalandverticalgratingsrandomlyoccurred withthesameprobability.Moreover,trialscouldbevalid(75%),thatis whenthetargetwaspresentedtothecuedvisualhemifield,orinvalid (25%),whenthetargetwaspresentedtotheuncuedvisualhemifield.

Eachexperimentalsessionwascomposedof24blocks(foratotalof 48blocksperparticipant).Thecuedirectionwasconsistentthroughout ablock:inhalfof theblocks(n =12)itpointedtotheright,while, intheotherhalf,totheleftvisualhemifield.Theorderofblockswas alternatedineachexperimentalsession.

Eachblockconsistedof64trialsforatotalof3072trials(2304valid, 768invalid)perparticipant.Participantscouldrestduringinter-block intervalsandcouldinitiatethenextblockbypressingakey.

2.4. Opticalrecording

EROSdatawererecordedfortheentirebehavioralexperiment,using twosynchronizedImagentfrequencydomainsystems(ISS,Inc., Cham-paign,IL).Thirty-twolaserdiodesemittednear-infraredlight(830nm) inatime-multiplexedscheme.Thediodesweremodulatedat110MHz andthelightwasdeliveredintothebrainthrough400μmsilica op-ticfibers.Thediffusedlightwhichexitedfromtheheadwasdetected byeight3-mmfiber-opticbundles,connectedtophotomultipliertubes (PMTs).Sourceanddetectorfibers weresecuredontheparticipant’s headthrough acustom-builthelmet,availableintwodifferent sizes.

ThePMTinputsweremodulatedataslightlydifferentfrequency com-paredtolaserdiodesdeliveringa3125Hzcross-correlationfrequency. FastFouriertransformwasappliedtothePMTsoutputcurrentin or-dertocomputetheDCintensity,ACamplitudeandrelativephasedelay (sourcetodetector)ofthesignal.Inthisstudy,onlychangesinphase delaydata(convertedintopicosecondsdelay)wereanalyzed.

Foreachhelmetsize,twodifferentmontages(seeFig.1C)wereused forthetwosessionsandcombinedduringanalysesprovidingdense cov-erageoftheoccipitalandposteriortemporo-parietalcortices,butnot thefrontalcortex(duetoalimitednumberofavailableoptodes).Each montagewastopermiteachdetectortodetectlightfromupto16 time-multiplexedsources. Ineach montagesourcesanddetectorswere lo-catedinsuchawayasthatasubsetofsourcescouldemitlight simul-taneouslywithoutcausingcross-talk(lightfrommultiplesources simul-taneouslyrecordedatadetector),resultingin128potentialchannels persession(with aminimumandmaximumsource-detectordistance respectivelyof17.5and50mm;Grattonetal.,2000).

Thecyclethrougheachofthe16multiplexedsetsofsourceslasted 25.6ms(eachsourcewasswitchedonfor1.6msandoff for24ms,in afixedsequence)achievingasamplingrateof39.0625Hz.

StructuralMRIscanswereobtainedforeachparticipant.Scanning tookplaceina1.5TeslaPhilipsscannerattheBorgoRomaHospital inVerona,usingastandard15-channelheadcoil.Awholebrain high-resolution3DT1-weightedimagewithmagnetization-preparedrapid ac-quisitiongradientecho(MPRAGE)wasacquiredwiththefollowing pa-rameters:phaseencodingdirection=anteriortoposterior,voxelsize= 0.5×0.5×1mm,RepetitionTime=7.7ms,EchoTime=3.5ms,field ofview=250×250mm,flipangle=8°

FollowingeachEROSsessioneverysourceanddetectorholder loca-tiononthehelmet,aswellasfiducialpoints(nasionandpre-auricular points), were digitized using a neuronavigation software (SofTaxic, E.M.S., Bologna,Italy) combinedwitha 3Dopticaldigitizer (Polaris Vicra,NDI,Waterloo,Canada).

The digitized scalp optical locations were co-registered withthe structuralMRimagesusingamethodimplementedinanOCPsoftware package(OptimizedCo-registrationPackage,MATLABcode)developed byChiarelliandcolleagues(Chiarellietal.,2015),andmainlybasedon scalpforcingandfiducialalignmentprocedures(Whalenetal.,2008). Finally,co-registereddataweretransformedtoMNIspaceforthe fol-lowinganalyses.

ContinuousfastopticaldatawerecollectedusingtheISSCorporation “Boxy” programandpreprocessedbymeansofP-POD(Pre-Processing ofOpticalData,MATLABcode)anin-housesoftware.Themeanphase delaywasadjustedtozeroforeach block.Datawerethencorrected forphasewrappingandde-trendedtoremovelow-frequencydriftsand baselinecorrected.Beforearterialpulseartifactwasremoved(45–200 heartbeatrange)byusingaregressionalgorithm(Grattonand Corbal-lis,1995),thephaseofthemodulatedlightwasconvertedintotime de-layofthedetectedphotons,expressedinpicoseconds.Aband-passfilter wasthenappliedtoremovefrequenciesbelow0.5Hzorabove15Hz. Finally,theresultantdataweresegmentedintoepochstime-lockedto thetargetonsetandaveragedseparatelyforeachparticipant,condition, andchannel.ThelengthoftheepochswasdifferentforthethreeEROS contrasts(seebelowSectionEROSanalysis):1484ms(486msbefore tar-getonsetand998msafter)forvalidvs.baselineandinvalidvs.baseline and1535ms(1280msbeforetargetonsetand255msafter)forallvs. baseline.

Opt-3d custom software package (Gratton, 2000) was employed tocomputestatistics onfunctionaldata.Opticalsignalsfrom source-detectorchannelswhosediffusionpathintersectedagivenvoxelwere averaged(Wolfetal.,2014).Phasedelaydatawerebaselinecorrected usingeithera200mspre-targetintervalora200mspre-cueinterval (dependingontheconsideredanalysis,seeDataanalysissection)and spatiallyfilteredwithan8-mmGaussiankernel.Group-levelt-statistics werecomputedacrossparticipantsandthenconvertedtoz-scoresfor eachvoxelateachofthetimepoints.Z-scoremaps,calculatedfromthe

(4)

Fig.1. Methodandbehavioralresults.

(A)Experimentalparadigm.Afixationcrosswaspresentedfor500msfollowedbyacentralinformativecuelasting200ms.Participantswereinstructedtocovertly directattentiontothesideofspacedepictedbythecue.Thetargetstimulusappearedafterarandomintervalrangingfrom300to600msandpresentedfor150ms. Participantswerethengiven1500mstodiscriminatethetargetorientation(i.e.verticallyorhorizontallyorientedgratings).Inthisexample,avalidtrialisshown (i.e.thecuepointstothesamevisualhemifieldinwhichthetargetsubsequentlyoccurs).(B)Behavioralresults.Meanresponsetimes(left)andpercentageofcorrect responses(right)areplottedasafunctionofwhetherthetargetappearedintherightorlefthemifield(x-axis)andasafunctionofwhethertheattentioncuewas validorinvalid(separatelines).Errorbarsrepresentstandarderrors.(C)Opticalmontages.Tworecordingmontageswereusedforeachhelmetsize.Infraredoptical sources(yellowdots)anddetectors(bluedots)wereplacedtomaximizerecordingcoverageoverparietalandoccipitalcortex.Hereweshowsourceanddetector locationsplottedontotheanatomicalscanofarepresentativeparticipant.(D)SelectedROIs.EstimatedboundariesoftheselectedROIsusedforEROSandGranger analyses.ROIsaredisplayedincoronal(visualregions),axial(dorsalregions)andsagittal(ventralregion)viewsasconsideredforstatisticalanalysesandtheir coordinatesarereportedinTable1.

p-valueforeacht-test,werecorrectedformultiplecomparisonsbased onrandomfieldtheory(Kiebeletal.,1999;Worsleyetal.,1995). Subse-quently,Z-scoreswereweightedandorthogonallyprojectedontoimages ofthecoronal,sagittaloraxialsurfaceofatemplateMNIbrain, accord-ingtothephysicalhomogenousmodel(ArridgeandSchweiger,1995; Gratton,2000).SeeSupplementaryMaterial:Fig.1foraschematic rep-resentationofthedifferentstepstocollectandprocessthedata.

ROIs forthe statistical analysiswere selectedboth by inspection ofthefunctionaldataand,moreimportantly,byselectingthoseareas foundselectivelyactivatedintheliteratureonattentional control,in accordancewithareasencompassedbyEROScoverage(Fig.1D).ROIs werethusplacedalongtheposteriorportionofDAN,i.e.leftandright SPL(l/rSPL)andleftandrightIPS(l/rIPS),alongthetemporo-parietal portionofVAN,i.e.leftandrightTPJ(l/rTPJ)andwithintheoccipital lobe,i.e.V1andthedorsalportionofthecuneus.ROIswereidentified relyingonanatomicalcoordinatesofparietal,temporalandoccipital ar-easusedinliterature(e.g.Baniquedetal.,2018)andthecorrespondent

Brodmannareasinwhichtheseregionsareknowntobeincluded(i.e. BA7forSPL,theintersectionofBA7andBA39forIPS,BA39forTPJ, BA17forV1,BA18and19forcuneus).Specifically,theYaleonline search tool (http://sprout022.sprout.yale.edu/mni2tal/mni2tal.html) wasusedtodefineROIsboundariesinordertopreventorreduce over-lap ofdifferent ROIs,giventhattheconsideredareas arecontiguous in thehumanbrain(seeTable1).AlltheROIsweredefinedbya 2-dimensionalbox-shapedstructure(thethirddimensionismissingasthe opticalsignalisprojectedonthebrainsurface).SeeTable1whereonly twodimensionsarelistedforROIsthatwereanalyzedusingseparately axial(x,y),sagittal(y,z)orcoronalprojections(x,z).

2.5. Dataanalysis 2.5.1. Behavioraldata

DatawereprocessedusingMATLAB2013bandanalyzedwithIBM SPSSStatisticsforWindows,version22.

(5)

Table1

MNIcoordinatesofselectedROIs.

Region Projection Coordinates Involved BA

Right SPL Axial x = y = 0 − 84 20 − 64 7 Left SPL Axial x = y = − 20 − 84 0 − 64 7 Right IPS Axial x =

y = 26 − 87 40 − 59 7–39 Left IPS Axial x =

y = − 36 − 87 − 22 − 59 7–39 Right TPJ Sagittal y = z = − 69 21 − 49 41 39 V1 Coronal x = z = − 10 − 4 10 16 17 Cuneus Coronal x = z = − 10 20 10 40 18–19

Foreachparticipant,horizontalandverticaltrialswere systemati-callycollapsed.Meanreactiontimes(RTs),accuracyratesandthe cor-respondingstandarddeviations(SDs) weremeasuredforeachof the fourbehavioralconditions(righttargetvalid– invalid,lefttargetvalid – invalid)acrossparticipants.TrialswithRTsexceeding±3SDsfromthe mean,ineachcondition,wereconsideredasoutliersandremovedfrom theanalyses.

MeanRTsandmeanpercentageofcorrectresponseswerethen en-teredintwoseparaterepeated-measuresanalysesofvariance(ANOVA) withcueside(right/left)andtargetside(right/left)aswithin-subject fac-tors.

2.5.2. Functionaldata

EROSanalysis:thedependentvariableforopticaldataanalyseswas changeinphasedelayfrombaseline,averagedforeachparticipantand condition.One-tailedtestswerecarriedoutonthevoxelwiththe max-imumdelayvalueineachROI,ateachlatency.Significantactivitywas foundifROIpeakZscoresreachedstatisticalsignificance(p<0.05), adjustedformultiplecomparisons(Kiebeletal.,1999;Worsleyetal., 1995).

Trialswithhorizontalandverticalgratingswerecollapsedandthree maincontrastswerechosenforstatisticalanalyses:all(validand in-valid)versusbaseline,validversusbaseline,andinvalidversus base-line.Inthefirstcontrast(allversusbaseline),inwhichlatenciesranging between−332msand0mswereconsidered,alltrialswerecollapsed togetherandcontrastedagainstbaseline(i.e.a200mstimewindow pre-cedingcueonset:from−1024to−819ms).Generally,sinceattentional deploymentprocessesbeginatabout200msaftercuepresentation,and ourcue-targetintervalwasvariablyrandomizedamongtrials(from300 to600ms),inourpre-targetanalysisweselectedthatspecifictime win-dowinorder tobe sureitwasenoughhomogenoustotheorienting response.Intheothertwocontrast(validversusbaselineandinvalid versusbaseline),inwhichfunctionalactivitywasobservedfrom0ms to767ms,validtrialsandinvalidtrialswerecontrastedagainst base-line(the200msprecedingthetargetonset),independentlyfromvisual hemifield.

Grangercausality:forwardGrangercausalityanalysiswascomputed inorder toexaminethepredictive relationshipamongactivationsin differentareasatdifferenttime-lags.Thisanalysisreliesonthe extrap-olationofameaningfulseedwithinanROIconsistingofatimewindow thatwillbecomparedtoanotherwindowofthesameduration. Specif-ically,thisapproachinvestigateswhethertheactivityoftheseedROI predictstheactivityintheotherROIsatalatertime-lag,onthebasisof thesimilarityindatashape.Inotherwords,usingtwodifferentlinear regressionmodels(therestrictedandtheunrestrictedmodel),Granger causalitycalculatestheimprovementinthepredictionofonebrain re-gion’ssignalresultsfromanothertemporallyearlierregion’ssignal. Im-portantly,thisisdoneattheindividuallevelallowingforvariabilityin timingbetweensubjectsandensuringtheidentificationofcomplex

pat-ternswhichmaynotbeevidentintheacross-participantsconventional EROSanalyses.Theresultingstatisticalmapsarethusbasedonthe av-erageofindividualvaluescalculatedseparatelyperROIandcontrast. Mapswerederivedfromcomputationoftstatisticsandtransformation intoz scores, runningthis procedureforeachlag. Then,acorrection formultiplecomparisonswasappliedwithineachROI,bymeansofthe samerandomfieldtheorytechniques(Worsleyetal.,1995;Kiebeletal., 1999)usedforEROSanalysis.PredictedROIactivitywasobservedin 15time-lagswhichcorrespondtothesametimepointsusedinEROS analyses.Startingfromlag0(correspondingto0ms)alltheotherlags weredividedby25.6ms,namelythesamplingrate,untilreachingthe lastlagwhichcorrespondsto358ms.Ifasignificantpredicted activa-tionataspecificlag(i.e.z-scoreexceededthecriterionvaluep<0.05) wasfound,onthebasisofthatlagandtheselectedseed,thepredicted andsubsequenttimewindowcontainingthepredictedROIpeak acti-vation,wasmeasured.Forvalidandinvalidversusbaselinecontrasts, theconsideredcriticaltimewindowstartedfromtargetonsetonwards, accordingtotheselectedseed.Astotheallversusbaselinecontrast,the timepointscomprisingthe400msbeforetargetonsetweretakeninto account.EventhoughwefirstlyfocalizedonlagsinlinewithourEROS results,wethencarriedoutexploratoryanalysestoprobeeffectsineach lagandROI.

3. Results

3.1. Behavioralresults

Therepeated-measureANOVAconductedonmeanRTsshoweda sig-nificantmaineffectoftargetside(F(1,17)=7.528,p<0.05,ƞp2=0.307),

withparticipantsfasterindiscriminatingthetargetontheright(514ms) thanontheleftsideofthescreen(522ms).Nosignificantdifferenceof cuesidewasfound(F(1,17)=1.163,p=0.296,ƞp2=0.064). Impor-tantly,theinteractionbetweencuesideandtargetsidewassignificant (F(1,17)=101.486,p<0.01,ƞp2=0.857).Tofurtherinvestigatethis

effect,apaired-samples(two-tailed)t-testwascarriedoutbycomparing meanRTsforvalid(499ms)andinvalidtrials(538ms).Thisanalysis reachedstatisticalsignificance(t(17)=−10.074,p<0.01)indicating thatthevalidconditionwasassociatedwithfasterRTs,thusshowingan attentionalorientingbenefitintargetdiscrimination(Fig.1B).

Therepeated-measure ANOVAon meanpercentageof correct re-sponsesshowedsignificantmaineffectsofbothcue(F(1,17)=9.435, p<0.01,ƞp2=0.357)andtarget (F(1,17)= 10.557,p<0.01,ƞp2=

0.383),indicatingthatparticipantsweremoreaccuratewhenthecue pointedtotheleftsideofthescreen(left98.6%,right98.2%)andthe targetwasontheright(left98.2%,right98.6%,),inlinewiththeresults observedintheRTsanalysis.However,theinteractionbetweencueand targetwasnotstatisticallysignificant(F(1,17)=1.077,p=0.314,ƞp2=

0.060).

3.2. Functionalresults 3.2.1. Orientingprocess

Toinvestigatethespatiotemporaldynamicsofattentionalorienting, weconductedtwoEROScontrasts:allversusbaseline(Fig.2A)andvalid versusbaseline(Fig.2B).Intheformer,wefoundasignificantlylarger activationwithintheselectedROIsfrom300mspriortotargetonset.In thelatter,wefoundgreateractivationsyieldedbyvalidtrialscompared tothebaselinecondition,inthetimewindowrangingfromtargetonset to767msposttarget.

Priortotargetonset:wefirstlookedattheallversusbaselinecontrast. Relativetobaseline,wefoundasignificantincreaseofactivationinV1 at204ms(z=2.88;zcrit=2.55)beforetargetonset(Fig.2A).This wasfollowedbysignificantactivityinlSPLatabout−180ms(z=2.35; zcrit=2.29),increasedactivityinrSPL(z=2.78;zcrit=2.76),lSPL (z=2.5;zcrit=2.38),andlIPS(z=2.53;zcrit=2.35)153msbefore targetonset,andfinallygreateractivitywasobservedinlSPLat−76

(6)

Fig.2. EROSorientingeffectsandGrangerresults.

(A)EROSorientingeffectsbeforethetargetonset.Significantstatisticalparametricmapsofthez-scoredifferencebetweenalltrialsandbaseline(correspondingto the200mstimewindowprecedingthecueonset)aredepicted(activationthresholdz-score=2.0uncorrected).Eachmaprepresentsa25.6msinterval,withinthe 384msprecedingtargetonset,inwhichsignificanteffectsoccurredinselectedROIs(greenboxes).ThewhitecrosswithineachROIshowsthepeakvoxel.(B)EROS orientingeffectsaftertargetonset.Significantstatisticalparametricmapsofthez-scoredifferencebetweenvalidtrialsandbaseline(correspondingtothe200ms precedingthetargetonset)aredepicted(activationthresholdz-score=2.0uncorrected).Eachmaprepresentsa25.6msintervalofthe767msaftertargetonset,in whichsignificanteffectsoccurredinselectedROIs(greenboxes).ThewhitecrosswithineachROIshowsthepeakvoxel.(C)Grangercausalityresultsonallversus baselinecontrast,(D)Grangercausalityresultsonvalidversusbaselinecontrast.FortheseanalysesalldorsalandvisualROIswerechosenasseedsatdifferenttime lags.Intheseschemes,eachcoloredboxcorrespondstoaspecificROI.Eacharrowindicatesasignificantpredictivelinkbetweenthestartingbox,representingthe seedROIataprecisetimelag,andthematchedbox,representingthepredictedROIatasubsequenttimelag(seeTable2).Thevaluesreportedonthetimelinerefer tothepeakactivitywithintheconsideredtimeintervalforeachROI.

(z=2.67;zcrit=2.39)and0ms(z=2.67;zcrit=2.42).See Supple-mentaryMaterial:Fig.2Afortimetracesofthemeanactivationofeach ROIinallversusbaselinecontrast.

After target onset: when valid trials were contrasted versus base-line,there wasanincreaseof activationinthedorsal portionofthe cuneusatboth128 (z =2.41;z crit =2.36)and281 ms(z =2.66; zcrit=2.25)aftertargetonset(Fig.2B).Subsequently,rIPSrevealed strongeractivationatalatencyof307ms(z=3.27;zcrit=2.62),while at332ms(z=2.46;zcrit=2.42)asignificantincreaseofactivation waselicitedinlSPL. Finally,greater cuneusactivitywasobserved at 358ms(z=2.5;zcrit=2.31).SeeSupplementaryMaterial:Fig.2Bfor timetracesofthemeanactivationofeachROIinvalidversusbaseline contrast.

Overall,these resultsarein keepingwith evidencethat orienting ofattentionengagesabilateraldorsalsystemalongwithvisualareas. Inthiscontrast,visualareasrevealamore sustainedactivitypattern comparedtothetimeintervalprecedingtargetonset,asitcanbeseen bygreater activationsincuneusatseveral timelags,which,indeed, donotsignificantlyemergeinthepreviousEROScontrastinvestigating activitypriortotargetonset.

Grangercausality-priortotargetonset:weperformedGranger causal-ityanalysestobetterunderstandthepredictiveinterplaybetweenareas. SinceGrangercausalityenablesustodetectalsosignificantactivity pat-ternsnotshownbytypicalEROSanalysis,weintegratedEROSdataby usingasseedsthoseROIswhichactivitywasfoundtobepredictedby activityinotherROIsusedasseedsinearliertimepoints.Inthis man-ner,wecouldhighlightthecascadeofpredictiveactivityamong neu-ralareasbyfollowingthedifferenttimingsoftheirengagement.With Grangercausalityonallversusbaselinecontrast,weassessedthe predic-tiveinteractionsovertimeinthecue-to-targetinterval.Resultsrevealed aconsistentcontinuousreciprocalpatternofpredictionbetweendorsal andvisualareas (Fig.2C). Specifically,activityinrIPS(peak activa-tion−384ms)waspredictiveofactivityinV1anddorsalcuneus(peak activation−204ms),whichinturnwaspredictiveofactivityin dor-salparietalareasincludinglSPL(peakactivation−179),lIPS,andrIPS (peakactivation−153).Thisstreamofpredictiveinfluencesterminates invisualareas(suchasV1andcuneus)andinlSPLinwhichpredicted orientingactivitycorrespondstoapeakat−51,−102and−76ms re-spectively(seeTable2forsignificantlagsandthecorrespondingtime windows).

(7)

Table2

Grangeranalyses– orientingresults.

Seed ROI Seed Interval (ms) Peak Activity (ms) Predicted ROI(s) (PR) PR Interval (ms) PR Peak Activity (ms) Sig. Lag Statistics Prior target onset

rIPS 512 - 332 384 V1 307 - 128 204 179 z = 3.14 z crit = 2.68 Cuneus 256 - 102 204 127 z = 2.49 z crit = 2.38 Cuneus 256 - 102 204 V1 307 - 128 204 25 z = 3.48 z crit = 2.65 lIPS 204 - 76 153 25 z = 2.72 z crit = 2.57 lSPL 153 - 25 76 25 z = 3.38 z crit = 2.56 V1 307 - 128 204 lSPL 179 25 z = 3.83 z crit = 2.55 rIPS 230 - 102 153 25 z = 3.02 z crit = 2.74 lIPS 204 - 76 153 V1 179 - 76 128 25 z = 2.88 z crit = 2.65 lSPL 153 - 25 76 25 z = 3.97 z crit = 2.69 rSPL 230 - 102 153 Cuneus 153 - 51 102 76 z = 2.90 z crit = 2.73 lSPL 153 - 25 76 25 z = 2.90 z crit = 2.58

rIPS 230 - 102 153 Cuneus 153 - 51 102 76 z = 2.90 z crit = 2.73

lSPL 153 - 25 76 25 z = 2.90 z crit = 2.58

V1 179 - 76 51 25 z = 3.12 z crit = 2.68

After target onset

rIPS 51 - 204 127 V1 230 - 358 281 76 z = 3.24 z crit = 3.11 Cuneus 25 - 179 127 lSPL 204 - 307 256 204 z = 3.24 z crit = 3.11 lSPL 281 - 384 332 230 z = 3.31 z crit = 3.19 Cuneus 204 - 332 281 lSPL 281 - 384 332 76 z = 3.27 z crit = 3.12 lIPS 409 - 537 486 230 z = 3.40 z crit = 3.01 rIPS 255 - 383 307 lSPL 281 - 384 332 25 z = 3.10 z crit = 3.02 lSPL 281 - 384 332 Cuneus 307 - 409 358 25 z = 4.22 z crit = 3.19

Grangercausality-aftertargetonset:Grangercausalityconductedon validversusbaselinecontrast(analyzingthetimewindowaftertarget onset)revealedasimilar recurrentactivationpatternin whichdorsal andvisualareasmutuallypredicteachother(Fig.2D).Inparticular, ear-lierintime,activityinrIPSandcuneus(peakactivation127ms)were predictiveofactivityinV1andlSPL(peakactivation256and281ms, respectively).Givenpeakactivationof281incuneus,thispredictspeak activationfirstlyinlSPL(at332mspost-targetonset),which,inturn, predictspeakactivationincuneus(at358mspost-targetonset),and sec-ondly,inlIPSatalaterlag(at486mspost-targetonset;seeTable2for significantlags,thecorrespondingtimewindows,andstatistics).

Overall,ourfindingssuggestaclearinvolvementofabilateraldorsal systemalongwithvisualareasinattentionalorienting.Specifically,our dataindicateatwo-waypredictiverelationshipamongdorsalandvisual areasactivations,mainlyinvolvingarecursivepredictiverelationship betweenrIPSandV1activationsinbothcontrasts,andbetweencuneus andlSPL,especiallyinthevalidversusbaselinecontrast.

3.2.2. Reorientingprocess

Toinvestigatethespatio-temporaldynamicsofattentional reorient-ing,wecontrastedinvalidtrialsversusbaseline,inwhichtheanalysis timeframerangedfromtargetonset(i.e.0ms)to767mspost-target.

Wefoundgreateractivityincuneusat102(z=2.83;zcrit=2.37) and128ms(z=2.78;zcrit=2.14),inbilateralIPSat204ms(lIPS: z=2.7;zcrit=2.46;rIPS:z=2.36;zcrit=2.13)andinV1at358ms (z=2.68;zcrit=2.65),aftertargetonset(Fig.3A).Moreover,rTPJ andthecuneusrevealedgreateractivityat409(z=2.81;zcrit=2.56) and435ms(z=3.2;zcrit=2.58).Wealsoobservedgreateractivityin rIPSat435(z=2.79;zcrit=2.73),486(z=2.57;zcrit=2.38),537 (z=2.6;zcrit=2.5),and563ms(z=2.9;zcrit=2.55).Finally,we foundsignificantactivityinrTPJactivationat588(z=2.8;zcrit=2.52) and767ms(z=2.64;zcrit=2.43)aftertargetonset.See Supplemen-taryMaterial:Fig.2C fortimetracesofthemeanactivationof each ROIininvalidversusbaselinecontrast.Thesefindingssuggestbilateral recruitmentofdorsalregionsinattentionalreorienting,togetherwith aninvolvementofrightventralandvisualareas.Giventhewell-known importanceattributedtorTPJinattentionalreorienting,wecarriedout anadditionalanalysisinwhichwedirectlycontrastedinvalidagainst validtrials,observingitsfunctionalactivityinthesametimewindow (0–767msposttarget).WefoundsignificantactivationinrTPJat409 (z=3.21;zcrit=2.47),435(z=3.42;zcrit=2.58),588(z=2.47;z

crit=2.4),742(z=2.7;zcrit=2.66)and767ms(z=2.59;zcrit=2.46), inlinewiththeactivationsfoundintheinvalidversusbaselinecontrast. WeusedGrangerCausalityanalysistostudythepredictive connec-tionsamongdorsal,ventralandvisualareas.Followingthesamelogic asthatadoptedforpreviousGrangercausalityanalyses,weselected dif-ferentrelevantseeds,whethersignificantlyactivatedinEROSanalysis, ornot.Datashowedananalogouspatternofpredictiontothatshown inorientingGrangercausality:visualareaspredictactivityindorsal ar-easandvice-versa.Specifically,aseedidentifiedincuneusatarange between51and179ms(peakactivation102ms),predictsactivityin rSPLcorrespondingtoapeakat409ms,whiledorsalregions,suchas lIPS,lSPL,andrIPS(peakactivation204ms)predictreorientingprocess incuneusattwolaterlagsinferringpeaksat307and409ms(Fig.3B). Themostimportantdifferencerespecttotheorientingcontrastsisthe comingintoplayofrTPJ,whichis,instead,absentinorienting process-ing.Indeed,severalseedareas(cuneus,lIPS,lSPL,rSPL,andV1)predict activityinrTPJwithapeakactivationat435ms,which,inturn, pre-dictsactivityinV1andlIPS,bothatthesamelaterlag(peakactivation 486ms;seeTable3forsignificantlags,thecorrespondingtimewindows andstatistics).

Taken together,thesefindings underline,for attentional reorient-ing,amutuallypredictiverelationshipbetweendorsalandvisualareas, whichoccursearlierinourtimewindow.Thislinkbetweendorsaland visualareasisfollowedbyaninvolvementofventralareas,specifically rTPJ,predictedbybothdorsalandvisualregions.

4. Discussion

This study aimed at uncovering thespatio-temporal dynamics of visuospatial attentional orienting and reorienting by means of non-invasiveopticalimagingi.e.atechniquethatcombinesagoodtemporal andspatiallocalizationability,thusrepresentinganidealtooltogather informationonthetime-courseofactivationsof localizedcortical ar-easduringspecificcognitivetasks.Additionally,inordertoassessthe predictiverelationshipsbetweenactivebrainareasatdistinctstagesof attentionalprocessing,weadoptedaGrangercausalityapproachthat enabledustoexplainthepredictiveinterplayamongdifferentregions bystatisticallypredictingdirectedattentionaleffectsofoneROIto an-other,subsequentintime.

Orientingandreorientingofattentionarethoughttobesubservedby distinctneuralsystemsconnectedtosensoryregionsandmainlysituated

(8)

Fig.3. ReorientingEROSeffectsandGrangerresults.

(A)EROSreorientingeffectafterthetargetonset.Significantstatisticalparametricmapsofthez-scoredifferencebetweeninvalidtrialsandbaseline(corresponding tothe200msprecedingthetargetonset)aredepicted(activationthresholdz-score=2.0uncorrected).Eachmaprepresentsa25.6msintervalofthe767msafter targetonset,inwhichsignificanteffectsoccurredinselectedROIs(greenboxes).ThewhitecrosswithineachROIshowsthepeakvoxel.(B)Grangercausalityresults oninvalidversusbaselinecontrast.Predictiveconnectionsamongdorsal,visualandventralROIsareillustrated.Again,eacharrowindicatesasignificantpredictive linkbetweenthestartingbox,representingtheseedROIataprecisetimelag,andthematchedbox,representingthepredictedROIatasubsequenttimelag(see

Table3).ThevaluesreportedonthetimelinerefertothepeakactivitywithintheconsideredtimeintervalforeachROI.

Table3

Grangeranalyses– reorientingresults.

Seed ROI Seed Interval (ms) Peak Activity (ms) Predicted ROI(s) (PR) PR Interval (ms) PR Peak Activity(ms) Sig. Lag Statistics

Cuneus 51 - 179 102 rSPL 332 - 486 409 255 z = 3.31 z crit = 3.13

rTPJ 358 - 511 435 255 z = 3.30 z crit = 3.25

lIPS 153 - 281 204 Cuneus 204 - 383 307 25 z = 3.19 z crit = 2.99

rTPJ 358 - 511 435 281 z = 3.27 z crit = 3.12

lSPL 153 - 281 204 Cuneus 204 - 383 307 25 z = 3.19 z crit = 2.99

rTPJ 358 - 511 435 281 z = 3.27 z crit = 3.12

rIPS 127 - 255 204 Cuneus 332 - 511 409 204 z = 3.74 z crit = 3.10

rIPS 307 - 486 409 255 z = 3.68 z crit = 3.09 lIPS 409 - 537 486 358 z = 3.33 z crit = 3.22 V1 230 - 435 358 Cuneus 332 - 511 409 25 z = 4.04 z crit = 2.95 rTPJ 358 - 511 435 25 z = 4.08 z crit = 3.03 rSPL 332 - 486 409 rTPJ 358 - 511 435 25 z = 3.87 z crit = 3.08 rTPJ 358 - 511 435 lIPS 409 - 537 486 51 z = 3.16 z crit = 3.11 V1 435 - 563 486 76 z = 3.22 z crit = 3.04

(9)

intheparietalcortex:abilateraldorsalandarightventralnetwork. Althoughthereisstrongevidenceabouttheinteractionbetweenthese systemsduringattentionaltasks(Shomstein,2012),acentralbutstill unresolvedquestionistofindouthowthisinteractionoccursandhow visualareasareinvolved.

4.1. Orienting

Inthepresentwork,attentionalendogenousorienting(i.e. volun-taryallocationof attention)wasinvestigatedbymeansoftwoEROS contrasts.Thefirst,inwhichalltrials(independentlyfromvalidity con-dition)werecomparedwithbaseline,wasintendedtomonitorthe tim-ingofactivationofspecificbrainareasduringdeploymentofattention betweencueonsetandtargetonset.Thesecond,inwhichacomparison betweenvalidtrialsandbaselinewasperformed,wasintendedtostudy thespatio-temporaldynamicsrelatedtovoluntaryattentionalorienting followingtargetonset.Resultsfromthetwoanalyseswerejointlytaken intoaccounttoachieveamoreexhaustivecomprehensionofthe orient-ingandreorientingprocesses.Ourfindingsarelargelycongruentwith theliterature(Chicaetal.,2011;Corbettaetal.,2008;Kincadeetal., 2005)byexhibitinganexclusiveinvolvementofbilateraldorsalregions inendogenousorienting.Theventralnetworkdidnotshowany signif-icantactivationinthisprocesswhilevisualareas(BA17,18,19)were activelyinvolved,especiallyaftertargetonset.Withrespecttothe ex-ploredcue-targetintervalwhichprovidesinsight intotheattentional engagementtothecuedspatiallocation,wefoundearlyactivationof V1followedbybilateraldorsalparietalactivation.Thesefindings sug-gestthattheattentionalengagementtothecuedlocationiscarriedout bybilateraldorsalregions,whichpre-activateV1beforethevisual tar-getappears.Neuralactivityisdetectedagaininbilateraldorsalregions andincuneusaftertargetonset.

Thecontributionsofdorsalparietalandvisualareasduring atten-tionalorientingcanbebetterexplainedbytheirpredictiveconnections. PreviousfMRI(Bressleretal.,2008;Lauritzenetal.,2009)andEROS experiments(Parksetal.,2015)havestudiedtheconnectivitybetween parietalandvisualregionsrevealingatop-downinfluencefromparietal (especiallyIPS)toearlyvisualareas duringsustained attention. Our Grangercausalityresults areinaccordancewiththese findings high-lightingsimilarpredictivepatterns.Specifically,wefoundarecurrent tendency,fordorsalandvisualareastointeractbothinthecue-target andinthepost-targetperiod,inwhich,startingfromrIPS,dorsaland visualregionsmutuallypredicteachother.Thus,thepresentevidence isinfavoroftheproposalofVosselandcolleagues(2012).Byapplying DynamicCausalModeling(DCM)tofMRIdatatheauthorssuggesteda reciprocalcausalinfluencefrombilateralIPStothecorresponding bi-lateralvisualareas.Inlinewiththistheoreticalaccountderivedfrom modeltesting,thecontinuousmutualpredictionbetweenrIPSandV1 isthemoreconsistenttrendemergingfromouranalyses.Interestingly, IPShasbeenshown(Jerdeetal.,2012)tocompriseprioritizedmaps ofspacewhichareorganizedinaretinaltopographicmanner,thus sug-gestingIPSasareliablecandidateinmaintainingattentioncovertly.Itis highlyplausiblethat,thankstothiscommonretinotopicorganizationof IPSandV1,thepredictivecommunicationbetweentheseareasandthe top-downinfluenceexertedbyIPSonV1couldbethoughtastheneural markersofsustaineddeploymentofattentiontowardapreviouslycued location.Moreover,theothertwoareas,lSPLandcuneus,havebeen foundtopredictoneanother’sactivityatdifferenttime-lagsaftertarget onset.Thisisinlinewithpreviousevidenceaboutthecriticalroleof cuneusinvisuospatialattentioncontrol(Doesburgetal.,2016), accord-ingtowhichthecuneusappearstobethetargetofatop-downattention informationflowderivingfromareasimplicatedintheorientingprocess (includingdorsalareas).

Therefore,we suggestthattwo mainflows ofinformation areat workduringthe orientingprocess: one,subserving theinterplay be-tweenIPSandV1codesattentionalorientinginaretinotopicmanner andanother,subservingtheinterplaybetweenSPLandthedorsal

por-tionofthecuneus(BA18and19)codesorientinginamorespatiotopic manner,toprovideinformationforthevisuo-motorbehaviorelicitedby thepresentationofthetarget.

Takentogether,ourresultssuggestapredictivepatternbetween dor-salandvisualregionsthatpersistsinboththeanalyzedfunctional con-trasts,substantiatingtheexistenceofadorsalandvisualnetwork in-volvedinthesupervisionandelaborationofdifferentprocessesof at-tentionalorienting.

4.2. Reorienting

Inthepresentexperiment,wealsoinvestigatedattentional endoge-nousreorienting,i.e.thecognitiveprocessbywhichspatialattention isredirectedtouncuedlocationwherebehaviorallyrelevanteventsare presented.Inordertoanalyzeandseparatetheneuraldynamics under-lyingattentionalendogenousreorientingweimplementedafunctional contrastinwhichinvalidtrialswerecomparedtothebaselineina post-targettimewindow.Ourresultsareinkeepingwithpriorstudies indi-catingarecruitmentofboththedorsalandventralattentionalnetworks (Capotostoetal.,2012;Doricchietal.,2010; Vosseletal., 2009)in conjunctionwithvisualareas.However,whilethereisrobustevidence foraninterplaybetweenthetwoattentionalsystemsin the reorient-ingprocess(Vosseletal.,2014),itremainsunclearhowtheyinterface witheachother.Inthecurrentstudy,weendeavoredtoshedlighton thisissuebyestimatingtheexacttimingofactivityinbrainareas pos-tulatedtobecriticalinattentionalreorienting.Moreover,wesoughtto understandthepredictiverolesoftheseareasdependingonthe differ-entreorientingsub-processes.Dorsalandvisualactivationduring atten-tionalreorientingappearstofollowapathalongvisual(BA17,18,19) anddorsalregions(bilateralIPS)whichshowsignificantactivationsin alternatingtimeintervals.Ventralactivityduringattentional reorient-ingshowedgreateractivityinrTPJoccurringatseveraltime-lags,quite laterintime.Thesefindingscouldbeexplainedbyreferringtodifferent functionsinendogenousreorienting:dorsalandvisualareasareengaged inearlierreorientingsub-processes(e.g.detectingamismatchbetween cuedandtargetlocation)whilerTPJisresponsibleforprocessesthat occurlaterintime,thusnotinvolvedintriggeringreorientingitself.

Toextenduponthefunctionalresults,weappliedGrangercausality toourEROSreorientinganalyses.Atfirstglance,wenoticedasimilar activitypatterncomparedtothatfoundwithEROS:earlyintime,visual (BA17,18,19)anddorsalregions(bilateralIPSandSPL)show signif-icantactivityalternatinginsubsequenttimewindows.Inaddition,the datasuggestafunctionallinksuchthatvisualanddorsal regions in-fluenceeachotherinapost-targettimewindowrangingbetween100 and400ms.Withrespecttothepredictiverelationshipwithactivity in rTPJ,almostallactivatedareas (withtheexceptionof rIPS)exert predictiveeffectsonrTPJ,whichitselfpredictsactivityinvisualand dorsalregions.Thesedataarepartiallyinlinewiththepreviouslycited fMRIstudybyVosselandcolleagues(2012).Forattentionalreorienting, theseauthors,bymeansofDCM,havereportedsignificantconnectivity fromvisualareastorTPJandfromrTPJtorIPS.Ontheonehand,we concurwithVosseletal’sresultsaboutthedisappearanceofthe recur-siverelationshipbetweenV1andrIPSfoundtobefundamentalinthe orientingprocessandthegeneraltrendofconnections.Ontheother, Vosselandcolleagues(2012)havenothighlightedanearlierfunctional linkbetweenvisualanddorsalregionsbuthaveproposedan interpre-tationoftheroleofrTPJnamely,toinformthedorsalnetworkofthe violatedtop-downexpectancy,whichdoesnotfitwithourresults.In theliterature,thereis astrongdebate onthepreciseroleplayedby rTPJwithregardtoitsinteractionwiththedorsalnetworkin endoge-nousattentionalreorienting.Anearlytheoryofhowthetwonetworks interactduringattentionalreorientingcomesfromCorbettaand Shul-man(2002)anddescribesrTPJasacircuitbreaker,interruptingthe ongoingselectioninthedorsalnetworkwhich,inturn,reorients atten-tiontotheunexpected,butrelevantinformation.Ifthatwerethecase, fast-latencysignalsfromtheventralnetworkshouldbesenttotheDAN

(10)

toreorientattention.However,thereislittleevidenceintheliterature offast-latencyresponsesintheVANprecedingresponsesfromtheDAN (Corbetta etal., 2008).Onthecontrary,duringattentional reorient-ingthesignalfromrTPJtendstoariselaterintimecomparedtothat ofdorsalregions(GengandVossel,2013).Importantly,rTPJismainly correlatedwiththeP3b,asub-componentoftheP300,which gener-allyoccursinalatepost-targettimewindow(300–500ms).Moreover, P3bisusuallyelicitedbyunexpected,butimportant,task-relatedevents, corroboratingtheproposedlinkbetweenP3bandrTPJ.Byextension, anotherfunctionalsignificancehasbeenascribedtoP3b,namelythat of“contextualupdating” (DonchinandColes,1998;Polich,2007). Ac-cordingtothistheory,rTPJshouldperformanupdatingoftheinternal modelofthecurrentenvironmentalcontextasafunctionofincoming novelandunexpectedinformation.Thisthesisfitswithevidenceabout rTPJactivityinPosnerattentionaltasksinwhichinvalidtargets(strictly connectedwithrTPJactivation),beingtypicallyinfrequentand unex-pected,yieldtheupdatingoftarget-responsepatternrelatedtothe like-lihoodofoccurringofthesubsequenttargets(GengandVossel,2013). Ourresultsareinfavorofthispost-perceptualinterpretationofrTPJ, rulingouttheideaoftheventralsystemasa“circuit-breaker” ora trig-gerofreorientingprocess.Infact,thefirstsignificantEROSactivationof rTPJduringattentionalreorientingwasfoundlaterintimethanvisual anddorsalactivations.Moreover,withGrangercausality,werealized thatallvisualanddorsalregionspredictrTPJ,likelycodingthe occur-renceofsomethingunexpected.Fromthesedata,itappearsthatthe pre-dictiveandmutualinterplaybetweenvisualanddorsalareasoccurring earlierintimecodesthemismatchbetweenexpectancyandrealityand, atthesametime,promotesthesubsequentdisengagementofattention fromthecuedlocationbytriggeringreorientationtotheunexpected tar-getlocation.rTPJ,predictedbyvisualanddorsalregions,doesnottake partinthisreorientingprocessbyemerginglaterintime.Rather,it initi-atesapost-perceptualevaluationoftargetinformationintegratingnovel informationwiththepreexistinginternalmodel.Thisinterpretationof theroleoftherTPJiscorroboratedbyevidenceshowingthatitis re-peatedlyactivatedatlatertimeframes.Actually,thelastsignificantrTPJ EROSactivationsoccurabout600msaftertargetonset,thus support-ingthecontextualupdatingtheory,andsuggestingthatrTPJterminates theupdatingprocessatthosetime-lagsbymodifyingfuturetask-related expectations.

5. Conclusions

Thenoveltyofthepresentpaperreliesonthemethodusedfor in-vestigatingthedynamicsunderlyingattentionalprocesses.The combi-nationofEROSandGrangercausalityallowedustounravelfunctional relationshipsamongspecificbrainareas,dependingontheirexact tim-ingofactivationintheprocessesofendogenousorientingand reorient-ing.Withrespecttoattentionalorienting,ourresultssuggestapredictive patterninvolvingdorsalandvisualregionsbothbeforeandaftertarget onset,suggestingtheexistenceofadorsalandvisualnetworkengagedin thesupervisionandmanipulationofthevariousorientingsub-processes. Astoreorienting,ourresultssupportamutualinteractionbetween vi-sualanddorsalareaswhich,afterencodingofthemismatchbetween expectationandreality,disengageattentionfromthecuedlocationby triggeringreorientationtotheunexpectedtarget.Incontrast,the ven-tralnetworkplays apost-perceptualroleinupdating thepreexisting internalmodelasafunctionofnovelincominginformationonthe unex-pectedtargetposition,promotingadjustmentsaboutfuturetask-related expectations.Inconclusion,ourfindingsrefineandextendtheexisting knowledgeoftheneuralbasesofattentionalprocesses.

Thepresentstudyislimitedbytheextentoftheinvestigatedareas: ourEROSmontages,becauseof thenumberof sourcesanddetectors atourdisposal,werenotsufficienttocoverthefrontalcortexnot per-mittingtoexaminetheactivityofFEFandVFC,whichareembedded inDANandVAN,respectively.Evidenceabouttheirrelevancein at-tentionalprocessesandtheirconnectiontoparietalregions,provides

furtherdetailsintheunderstandingoforientingandreorienting mech-anisms.Inparticular,FEFisgenerallyconsideredtocooperatewithIPS intransmittingtop-downmodulationtothevisualcortexduring atten-tionalorienting(Bressleretal.,2008;Vosseletal.,2012),althoughthe effectivedirectionofthiscooperationremainsunclear.Asforthe contri-butionoffrontalregionstoattentionalreorienting,rightMFGandright IFGemergetobeactivatedbyinvalidtrialsonly(Vosseletal.,2006). Moreover, imaging evidence, revealed spontaneous activity in right MFGlinkedtobothdorsalandventralregions,showingthepresence ofneuronalpopulationsrelatedtobothattentionalnetworks(Foxetal., 2006)andprovidingfurtherinputtoexplainthefunctionalinteraction betweensystemsunderlyingvisuospatialattention.

Future studiesshould thus try toextend EROSmontage tosuch frontalareasinordertoinvestigatetheirroleinbothorientingand re-orientingprocessesandtorevealtheirpossiblepredictiverolein trigger-ingorientingresponsestowardsotherareasalongthedorsalandventral networks,alsotakingintoaccountthepossibilitytocombineEROSand Grangercausalitywithotherneuroimagingtechniques(Tseetal.,2018; Xiaoetal.,2020).

DeclarationofCompetingInterest

Theauthorsdeclarethattheresearchwasconductedintheabsence ofanycommercialorfinancialconflictofinterest.

CRediTauthorshipcontributionstatement

Giorgia Parisi: Software, Formal analysis, Investigation, Writing -originaldraft.ChiaraMazzi:Conceptualization,Methodology, Soft-ware,Formalanalysis,Writing-review&editing,Project administra-tion.ElisabettaColombari:Software,Formalanalysis,Investigation, Writing-review&editing.AntonioM.Chiarelli:Software,Writing -review&editing.BrianA.Metzger:Conceptualization,Methodology, Software,Formalanalysis,Writing-review&editing.CarloA.Marzi: Conceptualization, Methodology, Writing - review & editing. Silvia Savazzi: Conceptualization,Methodology,Software,Formal analysis, Writing-review&editing,Supervision,Projectadministration. Funding

This study was supported by European Research Council (ERC) [Grantnumber339939"PerceptualAwareness"P.I.CAM].Thefunders hadno rolein thecollection,analysis,andinterpretationof data,in thewritingofthereportandinthedecisiontosubmitthearticlefor publication.

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.neuroimage.2020.117244. References

Arridge, S.R., Schweiger, M., 1995. lt;title&gt;Sensitivity to prior knowledge in op- tical tomographic reconstruction&lt;/title&gt. In: Chance, B., Alfano, R.R. (Eds.). In: Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, 2389. SPIE, pp. 378–388. doi: 10.1117/12.209988 .

Baniqued, P.L., Low, K.A., Fabiani, M., Gratton, G., 2013. Frontoparietal traffic signals: a fast optical imaging study of preparatory dynamics in response mode switching. J. Cogn. Neurosci. 25 (6), 887–902. doi: 10.1162/jocn_a_00341 .

Baniqued, P.L., Low, K.A., Fletcher, M.A., Gratton, G., Fabiani, M., 2018. Shedding light on gray(ing) areas: connectivity and task switching dynamics in aging. Psychophysiology 55 (3), e12818. doi: 10.1111/psyp.12818 .

Bressler, S.L., Tang, W., Sylvester, C.M., Shulman, G.L., Corbetta, M., 2008. Top- down control of human visual cortex by frontal and parietal cortex in anticipa- tory visual spatial attention. J. Neurosci. 28 (40), 10056–10061. doi: 10.1523/JNEU- ROSCI.1776-08.2008 .

Capotosto, P., Babiloni, C., Romani, G.L., Corbetta, M., 2012. Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG- rTMS study. Cereb. Cortex 22 (2), 446–454. doi: 10.1093/cercor/bhr127 .

(11)

Chiarelli, A.M., Di Vacri, A., Romani, G.L., Merla, A., 2013. Fast optical signal in visual cortex: improving detection by general linear convolution model. Neuroimage 66, 194–202. doi: 10.1016/j.neuroimage.2012.10.047 .

Chiarelli, A.M., Maclin, E.L., Low, K.A., Fabiani, M., Gratton, G., 2015. Comparison of pro- cedures for co-registering scalp-recording locations to anatomical magnetic resonance images. J. Biomed. Opt. 20 (1), 016009. doi: 10.1117/1.jbo.20.1.016009 . Chiarelli, A.M., Romani, G.L., Merla, A., 2014. Fast optical signals in the sensorimotor

cortex: general linear convolution model applied to multiple source-detector distance- based data. Neuroimage 85, 245–254. doi: 10.1016/j.neuroimage.2013.07.021 . Chica, A.B., Bartolomeo, P., Valero-Cabré, A., 2011. Dorsal and ventral parietal contri-

butions to spatial orienting in the human brain. J. Neurosci. 31 (22), 8143–8149. doi: 10.1523/JNEUROSCI.5463-10.2010 .

Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P., Shulman, G.L., 2000. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3 (3), 292–297. doi: 10.1038/73009 .

Corbetta, M., Patel, G., Shulman, G.L., 2008. The reorienting system of the hu- man brain: from environment to theory of mind. Neuron 58 (Issue 3), 306–324. doi: 10.1016/j.neuron.2008.04.017 , Cell Press.

Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3 (3), 201–215. doi: 10.1038/nrn755 .

Doesburg, S.M., Bedo, N., Ward, L.M., 2016. Top-down alpha oscillatory network interactions during visuospatial attention orienting. Neuroimage 132, 512–519. doi: 10.1016/j.neuroimage.2016.02.076 .

Donchin, E., Coles, M.G.H., 1998. Context updating and the P300. Behav. Brain Sci. 21 (1), 152–154. doi: 10.1017/s0140525x98230950 .

Doricchi, F., Macci, E., Silvetti, M., Macaluso, E., 2010. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cereb. Cortex 20 (7), 1574–1585. doi: 10.1093/cercor/bhp215 . Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., & Raichle, M.E. (2006). Sponta-

neous Neuronal Activity Distinguishes Human Dorsal and Ventral Attention System s . www.pnas.orgcgidoi10.1073pnas.0604187103

Geng, J.J., Vossel, S., 2013. Re-evaluating the role of TPJ in attentional con- trol: contextual updating? Neurosci. Biobehav. Rev. 37 (Issue 10), 2608–2620. doi: 10.1016/j.neubiorev.2013.08.010 , Pergamon.

Gratton, G. , 2000. “Opt-cont ” and “opt-3D ”: a software suite for the analysis and 3D re- construction of the event-related optical signal (EROS). Psychophysiology 37 . Gratton, G., 2010. Fast optical imaging of human brain function. Front. Hum. Neurosci.

4, 52. doi: 10.3389/fnhum.2010.00052 .

Gratton, G., Corballis, P.M., 1995. Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal. Psychophysiology 32 (3), 292–299. doi: 10.1111/j.1469-8986.1995.tb02958.x .

Gratton, G., Corballis, P.M., Cho, E., Fabiani, M., Hood, D.C., 1995. Shades of gray mat- ter: noninvasive optical images of human brain reponses during visual stimulation. Psychophysiology 32 (5), 505–509. doi: 10.1111/j.1469-8986.1995.tb02102.x . Gratton, G., Fabiani, M., 2001. The event-related optical signal: a new tool

for studying brain function. Int. J. Psychophysiol. 42 (2), 109–121. doi: 10.1016/S0167-8760(01)00161-1 .

Gratton, G., Fabiani, M., Corballis, P.M., Hood, D.C., Goodman-Wood, M.R., Hirsch, J., Kim, K., Friedman, D., Gratton, E., 1997. Fast and localized event-related optical sig- nals(EROS) in the human occipital cortex: comparisons with the visual evoked poten- tial and fMRI. Neuroimage 6 (3), 168–180. doi: 10.1006/nimg.1997.0298 . Gratton, G., Sarno, A., Maclin, E., Corballis, P.M., Fabiani, M., 2000. Toward non-

invasive 3-D imaging of the time course of cortical activity: investigation of the depth of the event-related optical signal. Neuroimage 11 (5 I), 491–504. doi: 10.1006/nimg.2000.0565 .

Huang, J., Wang, S., Jia, S., Mo, D., Chen, H.C., 2013. Cortical dynamics of semantic pro- cessing during sentence comprehension: evidence from event-related optical signals. PLoS ONE 8 (8). doi: 10.1371/journal.pone.0070671 .

Jerde, T.A., Merriam, E.P., Riggall, A.C., Hedges, J.H., Curtis, C.E., 2012. Prioritized maps of space in human frontoparietal cortex. J. Neurosci. 32 (48), 17382–17390. doi: 10.1523/JNEUROSCI.3810-12.2012 .

Kiebel, S.J., Poline, J.B., Friston, K.J., Holmes, A.P., Worsley, K.J., 1999. Robust smooth- ness estimation in statistical parametric maps using standardized residuals from the general linear model. Neuroimage 10 (6), 756–766. doi: 10.1006/nimg.1999.0508 . Kincade, J.M., Abrams, R.A., Astafiev, S.V., Shulman, G.L., Corbetta, M., 2005. An event-

related functional magnetic resonance imaging study of voluntary and stimulus- driven orienting of attention. J. Neurosci. 25 (18), 4593–4604. doi: 10.1523/JNEU- ROSCI.0236-05.2005 .

Lauritzen, T.Z., D’Esposito, M., Heeger, D.J., Silver, M.A., 2009. Top-down flow of visual spatial attention signals from parietal to occipital cortex. J. Vis. 9 (13). doi: 10.1167/9.13.18 , 18–18.

Luck, S.J., 1999. Direct and indirect integration of event-related potentials, functional magnetic resonance images, and single-unit recordings. Hum. Brain Mapp. 8 (2–3), 115–120. doi: 10.1002/(SICI)1097-0193(1999)8:2/3 < 115::AID-HBM8>3.0.CO;2-3 . Natale, E., Marzi, C.A., Macaluso, E., 2009. FMRI correlates of visuo-spatial reorienting

investigated with an attention shifting double-cue paradigm. Hum. Brain Mapp. 30 (8), 2367–2381. doi: 10.1002/hbm.20675 .

Parks, N.A., Mazzi, C., Tapia, E., Savazzi, S., Fabiani, M., Gratton, G., Beck, D.M., 2015. The influence of posterior parietal cortex on extrastriate visual activity: a concurrent TMS and fast optical imaging study. Neuropsychologia 78, 153–158. doi: 10.1016/j.neuropsychologia.2015.10.002 .

Polich, J., 2007. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118 (Issue 10), 2128–2148. doi: 10.1016/j.clinph.2007.04.019 , Elsevier.

Posner, M.I., 1980. Orienting of attention. Q. J. Exp. Psychol. 32 (1), 3–25. doi: 10.1080/00335558008248231 .

Proulx, N., Samadani, A.A., Chau, T., 2018. Quantifying fast optical signal and event- related potential relationships during a visual oddball task. Neuroimage 178, 119– 128. doi: 10.1016/j.neuroimage.2018.05.031 .

Roebroeck, A., Formisano, E., Goebel, R., 2005. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25 (1), 230–242. doi: 10.1016/j.neuroimage.2004.11.017 .

Rykhlevskaia, E., Fabiani, M., Gratton, G., 2006. Lagged covariance structure models for studying functional connectivity in the brain. Neuroimage 30 (4), 1203–1218. doi: 10.1016/j.neuroimage.2005.11.019 .

Sable, J.J., Low, K.A., Whalen, C.J., Maclin, E.L., Fabiani, M., Gratton, G., 2007. Optical imaging of temporal integration in human auditory cortex. Eur. J. Neurosci. 25 (1), 298–306. doi: 10.1111/j.1460-9568.2006.05255.x .

Shomstein, S., 2012. Cognitive functions of the posterior parietal cortex: top-down and bottom-up attentional control. Front. Integr. Neurosci. 6. doi: 10.3389/fnint.2012.00038 , (JULY 2012), 38.

Toscano, J.C., Anderson, N.D., Fabiani, M., Gratton, G., Garnsey, S.M., 2018. The time- course of cortical responses to speech revealed by fast optical imaging. Brain Lang. 184, 32–42. doi: 10.1016/j.bandl.2018.06.006 .

Tse, C.Y., Rinne, T., Ng, K.K., Penney, T.B., 2013. The functional role of the frontal cortex in pre-attentive auditory change detection. Neuroimage 83, 870–879. doi: 10.1016/j.neuroimage.2013.07.037 .

Tse, C.Y., Yip, L.Y., Lui, T.K.Y., Xiao, X.Z., Wang, Y., Chu, W.C.W., Parks, N.A., Chan, S.S.M., Neggers, S.F.W., 2018. Establishing the functional connectivity of the frontotemporal network in pre-attentive change detection with transcranial magnetic stimulation and event-related optical signal. Neuroimage 179, 403–413. doi: 10.1016/j.neuroimage.2018.06.053 .

Vossel, S., Geng, J.J., Fink, G.R., 2014. Dorsal and ventral attention systems: distinct neu- ral circuits but collaborative roles. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psy- chiatry 20 (2), 150–159. doi: 10.1177/1073858413494269 .

Vossel, S., Thiel, C.M., Fink, G.R., 2006. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage 32 (3), 1257–1264. doi: 10.1016/j.neuroimage.2006.05.019 .

Vossel, S., Weidner, R., Driver, J., Friston, K.J., Fink, G.R., 2012. Deconstructing the ar- chitecture of dorsal and ventral attention systems with dynamic causal modeling. J. Neurosci. 32 (31), 10637–10648. doi: 10.1523/JNEUROSCI.0414-12.2012 . Vossel, S., Weidner, R., Thiel, C.M., Fink, G.R., 2009. What is “Odd ” in Posner’s location-

cueing paradigm? Neural responses to unexpected location and feature changes com- pared. J. Cogn. Neurosci. 21 (1), 30–41. doi: 10.1162/jocn.2009.21003 .

Whalen, C., Maclin, E.L., Fabiani, M., Gratton, G., 2008. Validation of a method for coreg- istering scalp recording locations with 3D structural MR images. Hum. Brain Mapp. 29 (11), 1288–1301. doi: 10.1002/hbm.20465 .

Wolf, U., Wolf, M., Toronov, V., Michalos, A., Paunescu, L.A., Gratton, E., 2014. Detect- ing cerebral functional slow and fast signals by frequency-domain near-infrared spec- troscopy using two different sensors. Biomedical Optical Spectroscopy and Diagnostics (2000). Paper TuF10 doi: 10.1364/bosd.2000.tuf10 .

Worsley, K.J., Poline, J.B., Vandal, A.C., Friston, K.J., 1995. Tests for distributed, nonfocal brain activations. Neuroimage 2 (3), 183–194. doi: 10.1006/nimg.1995.1024 . Xiao, X., Shum, Y., Lui, T.K. ‐Y., Wang, Y., Cheung, A.T. ‐C., Chu, W.C.W., Neggers, S.F.W.,

Chan, S.S. ‐M., Tse, C., 2020. Functional connectivity of the frontotemporal net- work in preattentive detection of abstract changes: perturbs and observes with tran- scranial magnetic stimulation and event ‐related optical signal. Hum. Brain Mapp. doi: 10.1002/hbm.24984 , hbm.24984.

Figura

Fig. 1. Method and behavioral results.
Fig. 2. EROS orienting effects and Granger results.
Table 3 ). The values reported on the timeline refer to the peak activity within the considered time interval for each ROI.

Riferimenti

Documenti correlati

P-H diagram, representation of an inverse cycle with subcooling (area in pink). Basic version of a direct expansion SAHP. Plant scheme of the SAHP analyzed in [31]. Basic version of

With exclusive governance structures, coordination occurs by means of authority and command-and- control mechanisms, whilst the power to define the firm's strategic direction

Photodestruction rates for acetic acid and methyl formate were derived by Crovisier (1994) using old laboratory absorption data published by Suto, Wang &amp; Lee (1988), while the

of job control is a central tenet of the demand‐control model, it has not been consistently supported 

The results of the analysis do not allow for a refusal of the cultural hypothesis for the industrial revolution: the role of France, and in particular Paris, as the pulsing hearth

Finally, Figure 4 shows the color-stellar mass diagram for cluster members, highlighting that, as expected, optically blue galaxies are typically restricted to low stellar masses,

Come abbiamo già esposto nella sezione “Scopo della ricerca”, intento di questo lavoro è quello di evidenziare eventuali correlazioni tra il polimorfismo dei cinque