• Non ci sono risultati.

Measurement of Z0-boson production at large rapidities in Pb–Pb collisions at sNN=5.02TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of Z0-boson production at large rapidities in Pb–Pb collisions at sNN=5.02TeV"

Copied!
12
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

Z

0

-boson

production

at

large

rapidities

in

Pb–Pb

collisions

at

s

NN

=

5

.

02 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received7December2017

Receivedinrevisedform21February2018 Accepted2March2018

Availableonline6March2018 Editor: L.Rolandi

The productionof Z0 bosonsat large rapidities in Pb–Pb collisions at√sNN=5.02 TeV is reported.

Z0candidatesarereconstructedinthedimuondecaychannel(Z0

μ

+

μ

),basedonmuonsselected

with pseudo-rapidity −4.0<

η

<−2.5 and pT>20 GeV/c. The invariant yield and the nuclear

modificationfactor,RAA,arepresentedasafunctionofrapidityandcollisioncentrality.ThevalueofRAA

for the0–20%central Pb–Pbcollisions is0.67±0.11(stat.)±0.03(syst.)±0.06(corr. syst.), exhibiting

a deviation of 2.6

σ

from unity. The results are well-described by calculations that include nuclear

modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate

fromdataby2.3

σ

inthe0–90%centralityclassandby3

σ

inthe0–20%centralcollisions.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Z0 bosons are weakly interacting probes formed early in the evolution of hadronic collisions (tf

1

/

M



0

.

01 fm/c), with

a typical decay time td

0

.

1 fm/c. Their leptonic decays are of

particularinterestinheavy-ioncollisions,sinceleptons donot in-teractstronglyandtheirin-mediumenergylossbybremsstrahlung isnegligible [1]. Z0-boson productionrates in hadroniccollisions are well-understood, and their measurement via leptonic decays therefore serves as a valuable medium-blind reference for hard processesinheavy-ioncollisions [2,3].

Z0-boson properties have been extensively studied at LEP (CERN),SLC(SLAC),Tevatron(FNAL)andLHC(CERN)ine+e−,pp and pp collisions [4–15]. Z0-boson production in hadronic colli-sions is well-described by perturbative Quantum Chromodynam-ics (pQCD) calculations at next-to-next-to-leading order (NNLO) [16,17], and their comparison with data provides constraints on Parton Distribution Functions (PDFs) [18,19]. In heavy-ion colli-sions,Z0-bosonproductioncan beaffectedby initial-stateeffects. Asaresultofthedifferentbalanceofthenumberofuandd va-lence quarksin protons andin leadnuclei (isospin),the yield of Z0 bosons in Pb–Pb collisions at

sNN

=

5

.

02 TeV is expectedto increase relative to that inpp collisions by 5–8% atlarge rapidi-ties,anddecreaseby3% atcentralrapidities [20].Modificationsof thePDFsinnuclei(nPDFs) [21–27] introducearapidity-dependent changeinyield,withadecreaseinyieldrelativetothatinpp col-lisionsof8–15%atlargerapidities,correspondingtotheBjorken-x

 E-mailaddress:alice-publications@cern.ch.

ranges x1



10−1 and x2



10−3, andan increase by 3% at cen-tralrapidity,correspondingtox1,2

10−2[20,21].Theyieldcould alsodependuponeffectssuchasmultiplescatteringand medium-inducedbremsstrahlungoftheinitialpartonsinlargenuclei [28].

The ATLAS,ALICE, CMSandLHCbcollaborationshavereported measurementsofW±- andZ0-bosonproductioninp–Pbcollisions at

sNN

=

5

.

02TeV [29–33], withcomplementaryrapidity cover-age.Thesemeasurementsarewell-describedbynext-to-leading or-der (NLO)pQCDcalculations [20] andbyNNLOcalculationsusing theFullyExclusiveWandZProductioncode(FEWZ) [34],utilising both nPDFs [32] and vacuumPDFs.Theforward–backward asym-metry ofW±-bosonproduction suggeststhe presence of nuclear modification ofPDFs [31].This sensitivitytonuclear effects indi-catestheneedtoincludethesedatainthefuturenPDFfits.

In Pb–Pb collisions, W±- and Z0-boson measurements at

sNN

=

2

.

76 TeV have been carried out at central rapidity by the ATLAS andCMScollaborations [35–38]. PreliminaryZ0-boson measurements in Pb–Pb collisions at

sNN

=

5

.

02 TeV at cen-tral rapidityhave alsobeenreportedrecentlyby ATLAS [39]. The W±- and Z0-boson nuclear modification factor, RAA, defined as the ratio of the yields in Pb–Pb collisions and the cross-section inppcollisions normalisedbythenuclearoverlapfunction



TAA



, whichrepresentstheeffectiveoverlaparea ofthe twointeracting nuclei [40],ismeasuredtobeconsistentwithunitywithin uncer-tainties,withnocentralitydependence [37–39].

Measurementsathighcollision energyandlargerapidities are sensitive tolow Bjorken-x processes,andare thereforeimportant to furtherconstrain theinitial-stateeffects onelectroweak boson production andtoestablisha referenceformedium-sensitive ob-servables.

https://doi.org/10.1016/j.physletb.2018.03.010

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

This paper presents the first measurement of Z0-boson pro-duction in Pb–Pb collisions at

sNN

=

5

.

02 TeV at large rapidi-ties. Opposite-signmuon pairs from Z0-boson decayswith 2

.

5

<

y

<

4

.

01 are measured with the ALICE detector. The yield of

μ

+

μ

− pairsincludescontributionsfromvirtual-photonprocesses andfromtheir interferenceeffects. Thismeasurementprobes the nPDFsoflarge-x valencequarks(x1



10−1)andlow-x seaquarks (x2



10−3) at Q2

MZ2. The invariant yields and RAA are re-portedasafunctionofrapidityandcollisioncentrality.Theresults arecompared tomodel calculationsincludingnPDFs.These mea-surements complement the measurements in p–Pb collisions at

sNN

=

5

.

02 TeV at large rapidities [32,33], providing increased precision andnew informationon rapidity andcentrality depen-dence.ThecombinationoftheseresultswithfutureW± measure-ments ina similar kinematic interval will provideconstraints on the flavor dependence of nPDFs, in particular the strange quark contribution [21].

Thisletterisorganisedasfollows:theexperimentalsetup and data sample are described in Sect. 2; the analysis procedure is presented inSect. 3; the results are presentedin Sect. 4; and a summaryisgiveninSect.5.

2. Experimentalsetupanddataset

TheALICEdetectorisdescribedindetailinRef. [41].Z0 bosons are reconstructed via their muonic decay with the ALICE muon spectrometer,which provides muontrigger, trackingand identifi-cationin the pseudo-rapidity range

4

.

0

<

η

<

2

.

5. The muon spectrometer,asseenfromtheinteractionpoint,consistsofafront absorberof10 interactionlengths(

λ

int) thickness, whichreduces thecontaminationofhadronsandmuonsfromthedecayoflight particles; five tracking stations; an iron absorber with thickness 7.2

λ

int; and two trigger stations. Each tracking station is com-posed of two planes of multi-wire proportional chambers with cathode-planereadout, whileeach trigger stationconsistsof two planesofresistiveplatechambers.Thethirdtrackingstationis lo-catedinsidethegap ofadipole magnet, whichprovides a3 T

·

m magneticfield integral.Themuonspectrometeriscompletedbya beamshieldsurroundingthebeampipethatprotectsthe appara-tusfromsecondaryparticlesproducedintheinteractionoflarge-

η

primaryparticleswiththepipeitself.

Theinteractionvertexis reconstructedusingthetwo cylindri-callayersoftheSiliconPixelDetector,locatedataradialdistance of3.9 and7.6 cm from the beamaxis andcovering

|

η

|

<

2 and

|

η

|

<

1

.

4,respectively.TheV0detector,consistingoftwoarraysof scintillatorcounterscovering2

.

8

<

η

<

5

.

1 and

3

.

7

<

η

<

1

.

8, isusedfortriggeringandevaluationofcollisioncentrality.Finally, theZeroDegreeCalorimeter,placedat112.5 mfromthe interac-tionpoint along the beamline, is used toreject electromagnetic interactions [42].

The dataset used in this analysis consists of Pb–Pb events at

sNN

=

5

.

02 TeV selected with a dimuon trigger that requires the coincidence of a minimum-bias (MB) trigger and a pair of tracks with opposite sign in the muon spectrometer, each with

pT



1 GeV/c. The MB trigger is defined by the coincidence of thesignalsfrombotharraysoftheV0.TheMBtriggerisfully ef-ficientforevents within the 0–90% centralityinterval, which are usedinthisanalysis.Themuontriggerefficiencyhasa plateauof about98%for muonswith pT

>

5 GeV/c.The resulting efficiency forpairs ofopposite-sign muons, withmuon pT

>

20 GeV/c and

1 IntheALICEreferenceframethemuonspectrometercoversanegativeηrange and,consequently,anegativey range.However,sincethePb–Pbsystemis symmet-ricinrapidity,apositivey notationisusedtopresenttheresults.

4

.

0

<

η

<

2

.

5,is95%.Afteralleventselectioncuts,thedataset correspondstoanintegratedluminosityofabout225 μb−1.

3. Analysisprocedure

The procedure for Z0-boson signal extraction in this analysis is the same as that used in the analysis of p–Pb collisions at

sNN

=

5

.

02 TeV [32].Tracksarereconstructedinthemuon spec-trometer using the algorithm described in Ref. [43]. Tracks are selectedforanalysisiftheyhavepseudorapidity

4

.

0

<

η

<

2

.

5 and polarangle 170◦

< θ

abs

<

178◦, measured atthe end of the frontabsorber.Thisselectionrejectsparticles thatcrossthe high-densityregionofthefrontabsorber andundergosignificant mul-tiple scattering. Tracks reconstructed in the tracking stations are identified asmuonsifthey matcha tracksegment inthetrigger stations,placeddownstreamtheironwall.Thecontaminationfrom backgroundtracksthatdonotpointtotheinteractionvertexis re-ducedbyutilisingtheproductofthemomentumandthedistance ofclosestapproachtotheinteractionvertex.Thiscutremoves88% ofall tracksforevents inthe0–90% centrality interval,while re-taining all signal candidates with negligible residual background contribution.

Only muons with pT

>

20 GeV/c are used in this analysis. Thisselection reduces thecontribution ofmuonsfromthe decay ofcharm,beautyandlow-mass resonances(seebelow). Z0-boson candidatesareformedbycombiningpairsofopposite-signmuons. The candidatesare further selectedby requiringthat their rapid-ity,calculatedusingthemeasuredinvariantmass,isintheinterval 2

.

5

<

y

<

4

.

0.Fig.1presentsthe

μ

+

μ

− invariant mass distribu-tioninthecentralityintervals0–90% inFig.1(a),0–20%inFig.1(b), and20–90%inFig. 1(c).The distributionforthe0–90% centrality interval is comparedwiththe resultof aMonte Carlo(MC) sim-ulation obtained using the POWHEG [44] event generator paired withPYTHIA 6.4.25 [45] forthepartonshower.Thepropagationof the particles throughthe detectoris simulatedwith theGEANT3 code [46]. The isospin of the Pb-nucleus is accounted for by a weightedaverageofneutronandprotoninteractions,butno mod-ification of the nucleon PDF was applied to account fornuclear effects.The simulations account forvariations inthe detector re-sponsewithtimeandin-situalignmenteffects.Adata-driven de-scriptionofthemuonmomentumresolution isalsoimplemented (seeRef. [32] fordetails).Theshapeofthe

μ

+

μ

−invariant mass distribution, which is mainly affected by the momentum resolu-tion,issimilarindataandMC.

Various background sources contribute to the

μ

+

μ

− invari-antmassdistribution.Contaminationfromthedecayoftt (tt

−→

μ

+

μ

X )and

τ

(Z0

−→

τ τ

−→

μ

+

μ

X )pairsisestimatedwith POWHEGsimulations [10,44,47] andfoundtobesmallerthan0.5% ofthesignalyield,whichisconsideredasasystematicuncertainty. Thecontributionofopposite-signmuonpairsfromthedecayofcc (cc

−→

μ

+

μ

X )andbb (bb

−→

μ

+

μ

X ) pairswas studied in p–Pb collisions [32] andfound to be smaller thanthat of tt and

τ

pairs.InPb–Pb collisions,the presenceofhigh-pT muonsfrom thedecayofheavy-flavourpairsisexpectedtobefurtherreduced duetothein-mediumenergylossofheavy quarks.This contribu-tion was therefore neglected. Finally,the combinatorial contribu-tionfromtherandom pairingofmuonsintheeventisevaluated vialike-signmuonpairs(

μ

±

μ

±).Thiscombinatorialcontribution isfoundtobesmall(onecandidateinthe20–90% centrality inter-val)andissubtractedfromthesignalestimate.

ThenumberofZ0 candidatesisestimatedusingtheprocedure described in Ref. [32], by countingthe entries in the

μ

+

μ

− in-variant mass interval 60

<

Mμμ

<

120 GeV/c2 after subtracting the contribution from like-sign pairs for each centrality and ra-pidity interval. A total of 64 candidates is found in the 0–90%

(3)

Fig. 1. Invariantmassdistributionofμ+μ−pairsforPb–Pbcollisionsat√sNN=5.02 TeV,reconstructedusingmuonswith−4.0<η<−2.5 andpT>20 GeV/c (black points).Thepanelspresentthedistributionindifferentcentralityintervals.Theerrorbarsareofstatisticaloriginonly.Theinvariantmassdistributionoflike-signmuonpairs isalsoshown(redopenpoints).Onlyonelike-signcandidateisfoundinthe20–90%centralityinterval.ThesolidbluelinedrawninFig.1(a)representsthedistribution fromaPOWHEGsimulationforPb–PbcollisionswithoutnuclearmodificationofPDFs(seetextfordetails).(Forinterpretationofthecoloursinthefigure(s),thereaderis referredtothewebversionofthisarticle.)

centrality bin, of which 37 are in the 0–20% bin and 27 in the 20–90% bin.Asafunctionofrapidity,33candidatesareinthe in-terval2

.

5

<

y

<

3

.

0,and31areintheinterval 3

.

0

<

y

<

4

.

0.The raw yields are corrected for the detector acceptance and for re-construction andselection efficiency( A

·

ε

). The value of A

·

ε

is 75% for events in the 0–90% centrality interval, estimated using the POWHEG [44] simulations described previously. The depen-denceof theefficiency on thedetector occupancy was evaluated byembeddingthegeneratedZ0 signalinrealMBPb–Pbdata.The

A

·

ε

termis constantas afunction of centralityfromperipheral tosemi-centraleventsanddecreasesinthemostcentralcollisions. Thevalueof A

·

ε

is78%inthe20–90%centralityintervaland74% inthe0–20%interval, withcentrality-independent systematic un-certaintyof5%,asdiscussedbelow.

To evaluate the invariant yields (dN

/

d y), the raw dimuon-triggered mass distribution must be normalised by the factor

Fi

μ-trig/MB, which is the inverse of the probability to observe a dimuon pair in a MB event for the centrality class i. The value of Fμi-trig/MB iscalculated in two different ways, by applyingthe dimuonselectioncriteriontoMBevents,andbytherelative count-ing rate of the two triggers [48]. The variation in Fi

μ-trig/MB de-termined by these two methods is 0.5% and contributes to the systematicuncertainty.

ThenuclearmodificationfactorRAArequiresthedetermination ofthecollisioncentrality,whichistypicallyquantifiedbythe aver-agenumberofnucleonsparticipatingintheinteractionforagiven

Table 1

Valuesoftheaveragenuclearoverlapfunction,TAA,thenumberofparticipating nucleons,Npart,andthenumberofbinarynucleon–nucleoncollisions,Ncoll,for eachcentralityinterval.Theaveragenumberofparticipantsasweightedbythe av-eragenumberofcollisions,NpartNcoll,isalsoreported.

Centrality TAA (mb−1) Npart Ncoll NpartNcoll

0–90% 6.2±0.2 126±2 435±41 263±3 0–20% 18.8±0.6 311±3 1318±130 322±3 20–90% 2.61±0.09 73±1 183±15 141±2

centralitybin,Npart.However,therateofhardprocessesisknown to scale with the average number of nucleon–nucleon collisions

Ncoll. The average centrality for hard processes is therefore pre-sentedastheaveragenumberofparticipantnucleonsweightedby thenumberofcollisions



Npart

N

coll.Table1showstheestimatesof theaveragenuclearoverlapfunction



TAA



,thenumberof partici-patingnucleons



Npart



andthenumberofbinarynucleon–nucleon collisions



Ncoll



, which are obtained via a Glauber model fit of thesignal amplitudeinthetwoarraysoftheV0detector [49,50]. The resulting



Npart

N

coll is also shown. The classification of the events in givencentrality intervalshas an associated uncertainty of1.5–2.3%(centralitydependent),thatwasestimatedby compar-ing the number of candidates selected by varying the centrality rangesby

±

0

.

5%,toaccountforthecentralityresolution [49,50].

The sources of systematicuncertainties in the yields and RAA aresummarisedinTable2.Thesystematicuncertaintyinthe

(4)

track-Table 2

RelativesystematicuncertaintiesintheyieldsandRAA.TherangesquotedforTAA andthecentralitylimits, representtheuncertaintyvariationwithcentrality.The centrality-dependentcorrelateduncertaintiesaremarkedbythesymbol(),while theuncertaintysourcesthatarecorrelatedasafunctionofrapidityareindicated by ( ).

Source Relative systematic uncertainty Background contamination <1.0% Tracking efficiency 3.0% () Trigger efficiency 1.5% () Tracker/trigger matching 1.0% () Alignment 3.5% () -trig/MB 0.5% ( ) σpp 4.5% () TAA 3.2–3.5% ( ) Centrality limits 1.5–2.3% ( )

ingefficiencyis3%,obtainedfromthecomparisonoftheefficiency estimated in data and MC by exploiting the redundancy of the trackingchamber information [51]. The systematicuncertaintyof thedimuontriggerefficiencyis1

.

5%,evaluatedbypropagatingthe uncertaintyof the efficiency of the detection elements, which is estimated from data using the redundancy of the trigger cham-ber information. In addition, the choice of the

χ

2 cut used to match the tracker and trigger tracks introduces 1% uncertainty, obtainedfromthe difference betweendata andsimulation when applyingdifferent

χ

2 cuts. The uncertainties inthe track resolu-tion andalignment are estimated by comparing the A

·

ε

values obtainedwithtwodifferentsimulations.Inthefullsimulation,the alignmentismeasuredusingtheMILLEPEDE [52] packageandthe residualmisalignmentistakenintoaccount.Inthefastsimulation, thetracker response is basedon a parameterisation of the mea-suredresolution ofthe clustersassociatedwith a track [32]. The resultingsystematicuncertaintyis3.5%.

Thetotal systematicuncertainty in theyield and RAA are de-termined by summing in quadrature the uncertainty from each source,listedinTable2.Alluncertaintiesexceptthosedueto



TAA



andthecentralitybinboundariesareindependentofcollision cen-trality.Correlationsincentralityorrapidityoftheuncertaintiesof differentsources areindicated inTable 2.The relative systematic uncertaintyintheproton–protonreference

σ

pp,whichaffectsthe

RAA,correspondsto4.5%andisestimatedbyvaryingthe factoriza-tionandrenormalisationscales andaccountingforthe uncertain-tiesinthePDFs [20].

4. Results

Theinvariantyieldof

μ

+

μ

− fromZ0 bosons in2

.

5

<

y

<

4

.

0, divided by



TAA



, is 6

.

11

±

0

.

76

(

stat

.)

±

0

.

38

(

syst

.)

pb for the 0–90% centralityinterval. The comparisonwith theoretical calcu-lationsatNLOisshowninFig.2.TheCT14 [53] predictionutilises free proton and neutron PDFs, with relative weights to account forthe isospin of the Pbnucleus. The uncertaintyon the model includetheuncertainty onthe NLO calculationsandofthe mea-surementsconsideredinthePDF fit.Themeasuredinvariantyield deviatesfromthelower limit of thispredictionby 2

.

3

σ

. Forthe description of nuclear PDFs, two different approaches were con-sidered. The standard approach evaluates the nPDF as the free PDFmultipliedbyaparameterisationofnuclearmodifications.The calculations obtained with the EPS09 [54] and the more recent EPPS16 [22] parameterisations are shown. Inthe other approach, thenPDFsareobtainedbyfittingthenucleardatainasimilarway asdoneforfreeprotondata,butusingaparameterisationthat de-pends on the atomic mass of the nucleus. The results obtained with the nCTEQ15 nuclear PDFs [21,55] are also presented. The

Fig. 2. Invariantyieldofμ+μ−fromZ0productionin2.5<y<4.0 dividedbythe averagenuclearoverlapfunctioninthe0–90%centralityclass,consideringmuons with−4.0<η<−2.5 andpT>20 GeV/c.Thehorizontalsolidlinerepresentsthe statisticaluncertaintyofthemeasurementwhiletheyellowfilledbandshowsthe systematicuncertainty.Theresultiscomparedtotheoreticalcalculationswithand withoutnuclearmodificationofthePDFs [21,22,53–55].Allmodelcalculations in-corporatePDFsornPDFsdeterminedbyconsideringtheisospinofthePb-nucleus.

nPDFsetsare characterisedby theirdifferentapproximationsand by differentinput dataincluded inthecalculations(see Ref. [22] and referencestherein for details).Only the mostrecent EPPS16 parameterisation includesLHCjet, W± andZ0 data,although the W± and Z0 dataprovide only weak constraints on nPDFs at the currentperturbativeorderofthecalculation(NLO) [21,56].In gen-eral,thenPDFshavelargeruncertaintiescomparedtothefree pro-ton PDFs,sincethey are lessconstrainedfromdata.CT14

+

EPS09 andCT14

+

EPPS16 estimatescombineCT14andEPS09orEPPS16 uncertainties,whereasnCTEQ15doesaglobalstudyoftheproton andnuclearmeasurementuncertaintiesincludedinthefit.EPPS16 allows much morefreedom for theflavour dependenceofnPDFs than othercurrentanalyses, whichresults inlargeruncertainties. AllpQCDcalculationsshowninFig.2thatusenPDFsdescribethe measurementwell.

The rapidity dependence of the Z0-boson invariant yields di-videdby



TAA



isshownin Fig.3(a).Theresultsarecompared to pQCD calculations usingthe CT14 [53] PDFset both with(green filled box) and without (blue hatched box) the EPPS16 [22] pa-rameterisation of the nPDFs. In both cases, the Pb-isospin effect ismodelled bycombiningtheprotonandneutronPDFsornPDFs. EPPS16 decreasestheyields butdoesnothaveastrong influence ontherapiditydependenceofthecalculation.Thecalculationsthat utilise vacuumPDFs overestimate data in the two rapidity inter-vals,whereasthosethatutilisenPDFsareingoodagreementwith data.

In this analysis, the ratio RAA utilises a theoretically calcu-latedreferencecrosssectionforppcollisions [20],whichis

σ

pp

=

11

.

92

±

0

.

43 pb. The value of RAA forthe 0–90% centralityclass isdetermined tobe 0

.

77

±

0

.

10

(

stat

.)

±

0

.

06

(

syst

.)

,deviatingby 2

.

1

σ

fromunity.The pQCD calculation usingCT14 [53] and con-sideringonlytheisospineffects,finds RCT14AA

=

1

.

052

±

0

.

038.The modification of the PDFs in nuclei results in a net reduction of theyields,andconsequently inRAA valueslowerthanunity,with

(5)

rapid-Fig. 3. Invariantyieldofμ+μ−fromZ0in2.5<y<4.0 dividedbyT

AA(a)andnuclearmodificationfactor(b)asafunctionofrapidityforPb–Pbcollisionsat√sNN= 5.02 TeV,consideringmuonswith−4.0<η<−2.5 andpT>20 GeV/c.Theverticalerrorbarsarestatisticalonly.Thehorizontalerrorbarsdisplaythemeasurementbin width,whiletheboxesrepresentthesystematicuncertainties.Thefilledblackboxinpanel(b),locatedat RAA=1,showsthenormalisationuncertainty.Theresultsare comparedtotheoreticalcalculationswithandwithoutnuclearmodificationofthePDFs.ThefilledblueboxesshowthecalculationusingtheCT14PDF,whilethegreen stippledboxesshowthecalculationusingCT14PDFwithEPPS16nPDF [22,53].AllmodelcalculationsincorporatePDFsornPDFsthataccountfortheisospinofthePb nucleus.

Fig. 4. Invariantyieldofμ+μ−fromZ0in2.5<y<4.0 dividedbyT

AA(a)andnuclearmodificationfactor(b)asafunctionofcentrality(representedbyNpartNcoll)for

Pb–Pbcollisionsat√sNN=5.02 TeV,consideringmuonswith−4.0<η<−2.5 andpT>20 GeV/c.Theverticalerrorbarsarestatisticalonly,whiletheboxesrepresentthe systematicuncertainties.Thefilledblackboxinpanel(b),locatedatRAA=1,showsthenormalisationuncertainty.Theresultsarecomparedtotheoreticalcalculationswith centrality-dependentnPDFsthataccountfortheisospinofthePbnucleus [53,54,57].

ity dependence of RAA is presented in Fig. 3(b). The values are smallerthanunity,withaslightrapiditydependence.Thedataare well-describedbycalculationsincludingnPDFs(greenfilledboxes), whilethecalculationsincludingonlyisospineffects(bluehatched boxes)tendtooverestimatethemeasuredvalues.

Z0-boson production is studied as a function of the collision centrality,expressedintermsof



Npart

N

collasshowninFig.4.The valueofRAAiscompatiblewithunityinperipheralcollisions,with

RAA(20–90%)

=

0

.

96

±

0

.

19(stat.)

±

0

.

04(syst.)

±

0

.

06(corr. syst.), whileit is2

.

6

σ

smallerthan unityinthecentral collisions, with

RAA (0–20%)

=

0

.

67

±

0

.

11(stat.)

±

0

.

03(syst.)

±

0

.

04(corr. syst.). The value for 0–20% central collisions deviatesfrom the predic-tionsusingvacuumPDFs(RCT14

AA )by3

σ

.Thedataarecomparedto calculationsincludingacentrality-dependentnuclearmodification ofthePDFs [57],whichdescribethedatawithinuncertainties.

5. Conclusion

We havereportedthe first measurement ofZ0-boson produc-tionatforwardrapiditiesinPb–Pbcollisions at

sNN

=

5

.

02TeV. Theinvariant yields divided by theaveragenuclear overlap func-tionareevaluatedasafunctionofrapidityandaveragenumberof participantnucleons weightedby thenumberofbinary nucleon–

nucleon collisions. Thecorresponding valuesof thenuclear mod-ification factor are estimated by dividing the measured yields in Pb–Pbcollisionsbytheexpectedcross-sectioninppcollisions esti-matedwithNLOpQCDcalculations.ThevalueofRAAiscompatible with unityin the 20–90% centralityclass (withinlarge statistical uncertainty), whereas it is smaller than unity by 2.6 times the quadraticsumofthestatisticalandsystematicuncertaintiesinthe 0–20% most central collisions. The results are well-described by the calculationsthat include modifications of thePDFs innuclei. In contrast, the calculations with vacuumPDFs overestimate the centrality-integrated RAAby2

.

3

σ

andRAA inthe0–20% most cen-tralcollisionsby3

σ

.

Acknowledgements

The ALICE Collaboration would like to thank H. Paukkunen forproviding thepQCD calculationswithEPS09 andEPPS16,and F. LyonnetandA. KusinaforprovidingthepQCDcalculationswith nCTEQ15.

The ALICECollaboration would like to thank all its engineers andtechniciansfortheirinvaluablecontributionstothe construc-tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE

(6)

Collab-oration gratefully acknowledges the resources and support pro-videdbyallGridcentresandtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICECollaboration acknowledges the followingfundingagenciesfortheir support inbuildingand run-ningtheALICEdetector:A.I. Alikhanyan NationalScience Labora-tory(YerevanPhysicsInstitute)Foundation (ANSL),State Commit-teeofScienceandWorldFederationofScientists(WFS), Armenia; AustrianAcademy ofSciences andNationalstiftung fürForschung, Technologie und Entwicklung, Austria; Ministry of Communica-tions and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fun-dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), Na-tional Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Edu-cationandSports andCroatian Science Foundation,Croatia; Min-istryofEducation,YouthandSportsoftheCzechRepublic, Czech Republic; The Danish Council for Independent Research – Natu-ral Sciences, the Carlsberg Foundation and Danish National Re-search Foundation (DNRF), Denmark;Helsinki Institute ofPhysics (HIP),Finland;Commissariatàl’EnergieAtomique(CEA)and Insti-tut Nationalde Physique Nucléaire etde Physique des Particules (IN2P3)andCentre National de laRecherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwe-rionenforschungGmbH,Germany;GeneralSecretariatforResearch and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE),DepartmentofScienceandTechnology,GovernmentofIndia (DST),University Grants Commission, Governmentof India(UGC) andCouncil ofScientificandIndustrialResearch(CSIR), India; In-donesian Institute of Science, Indonesia; Centro Fermi – Museo StoricodellaFisicaeCentroStudieRicercheEnricoFermiand Isti-tutoNazionalediFisicaNucleare(INFN),Italy;Institutefor Innova-tiveScienceandTechnology,NagasakiInstituteofAppliedScience (IIST),Japan Societyforthe PromotionofScience(JSPS)KAKENHI andJapanese Ministry of Education, Culture, Sports, Science and Technology(MEXT),Japan;ConsejoNacionaldeCiencia(CONACYT) yTecnología,throughFondodeCooperaciónInternacionalen Cien-cia y Tecnología (FONCICYT) and Dirección General de Asuntos delPersonalAcademico(DGAPA),Mexico;NederlandseOrganisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Re-search Council of Norway, Norway; Commission on Science and TechnologyforSustainableDevelopmentintheSouth(COMSATS), Pakistan;PontificiaUniversidadCatólicadelPerú,Peru;Ministryof ScienceandHigherEducationandNationalScienceCentre,Poland; KoreaInstituteofScienceandTechnologyInformationandNational ResearchFoundationofKorea(NRF),RepublicofKorea;Ministryof EducationandScientificResearch,Institute ofAtomicPhysicsand RomanianNationalAgencyforScience,TechnologyandInnovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of EducationandScienceoftheRussianFederationandNational Re-search Centre Kurchatov Institute, Russia; Ministry of Education, Science,Researchand SportoftheSlovak Republic, Slovakia; Na-tionalResearchFoundationofSouthAfrica,SouthAfrica;Centrode AplicacionesTecnológicasyDesarrolloNuclear(CEADEN), Cubaen-ergía,CubaandCentrodeInvestigacionesEnergéticas, Medioambi-entalesyTecnológicas(CIEMAT),Spain;SwedishResearchCouncil (VR)andKnut&AliceWallenbergFoundation(KAW),Sweden; Eu-ropean Organization for Nuclear Research, Switzerland; National Scienceand Technology DevelopmentAgency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher

Educa-tionCommissionunderNRUprojectofThailand,Thailand;Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sci-encesofUkraine,Ukraine;ScienceandTechnologyFacilities Coun-cil (STFC), United Kingdom; National Science Foundation of the United Statesof America (NSF) andUnited StatesDepartment of Energy,OfficeofNuclearPhysics(DOENP),UnitedStatesof Amer-ica.

References

[1]S. Peigne, A. Peshier,Collisionalenergy lossof afastmuon inahot QED plasma,Phys.Rev.D77(2008)014015,arXiv:0710.1266 [hep-ph].

[2]V.Kartvelishvili, R.Kvatadze, R.Shanidze,OnZ andZ + jetproduction in heavyioncollisions,Phys.Lett.B356(1995)589–594,arXiv:hep-ph/9505418. [3]Z.ConesadelValle,Vectorbosonsinheavy-ioncollisionsattheLHC,Eur.Phys.

J.C61(2009)729–733,arXiv:0903.1432 [hep-ex].

[4]UA1Collaboration,C.Albajar,etal.,IntermediatevectorBosoncross-sectionsat theCERNsuperprotonsynchrotroncolliderandthenumberofneutrinotypes, Phys.Lett.B198(1987)271.

[5]UA2Collaboration,J.Alitti,etal.,AMeasurementoftheW andZ production

cross-sectionsandadeterminationofW attheCERNp p collider,¯ Phys.Lett.

B276(1992)365–374.

[6]CDF Collaboration,F. Abe,et al.,Measurement ofσ·B(Weν) and σ·

B(Z0e+e)inpp collisions¯ ats=1.8TeV,Phys. Rev.Lett. 76(1996)

3070–3075,arXiv:hep-ex/9509010.

[7]D0Collaboration,B.Abbott,etal.,ExtractionofthewidthoftheW bosonfrom measurementsofσ(pp¯→W+X)×B(Weν)andσ(pp¯→Z+X)×B(Z

ee)andtheirratio,Phys.Rev.D61(2000)072001,arXiv:hep-ex/9906025. [8]CDF Collaboration, A.Abulencia, et al., Measurements ofinclusive W and

Z cross sections in p p collisions at √s=1.96 TeV, J. Phys. G34 (2007) 2457–2544,arXiv:hep-ex/0508029.

[9]ATLASCollaboration,G.Aad,etal.,MeasurementoftheW→ νandZ/γ∗→ productioncrosssectionsinproton–protoncollisionsat√s=7TeV with theATLASdetector,J.HighEnergyPhys.12(2010)060,arXiv:1010.2130 [hep -ex].

[10]ATLAS Collaboration, G.Aad, et al.,Measurement oftheinclusive W± and

Z/γ∗ crosssectionsintheelectron andmuondecay channelsin pp

colli-sionsat√s=7 TeVwiththeATLASdetector,Phys.Rev.D85(2012)072004, arXiv:1109.5141 [hep-ex].

[11]ATLASCollaboration,G.Aad,etal.,MeasurementofW±andZ -boson produc-tioncrosssectionsinpp collisionsat√s=13 TeVwiththeATLASdetector, Phys.Lett.B759(2016)601–621,arXiv:1603.09222 [hep-ex].

[12]CMSCollaboration,S.Chatrchyan,etal.,MeasurementoftheinclusiveW and Z productioncrosssectionsinpp collisionsat√s=7TeV,J.HighEnergyPhys. 10(2011)132,arXiv:1107.4789 [hep-ex].

[13]CMSCollaboration,S.Chatrchyan,etal.,MeasurementofinclusiveWandZ bosonproductioncrosssectionsinppcollisionsat√s=8TeV,Phys.Rev.Lett. 112(2014)191802,arXiv:1402.0923 [hep-ex].

[14]LHCbCollaboration,R.Aaij,etal.,MeasurementoftheforwardZ boson pro-ductioncross-sectioninpp collisionsat√s=7TeV,J.HighEnergyPhys.08 (2015)039,arXiv:1505.07024 [hep-ex].

[15]LHCb Collaboration,R.Aaij,etal., MeasurementofforwardWandZboson productioninpp collisionsat√s=8TeV,J.HighEnergyPhys.01(2016)155, arXiv:1511.08039 [hep-ex].

[16]A.D.Martin,R.G.Roberts,W.J.Stirling,R.S.Thorne,Partondistributionsandthe LHC:W and Z production,Eur.Phys.J.C14(2000)133–145,arXiv:hep-ph/ 9907231.

[17]U.Baur,S.Keller,D.Wackeroth,ElectroweakradiativecorrectionstoW boson

productioninhadroniccollisions,Phys.Rev.D59(1999)013002,arXiv:hep -ph/9807417.

[18]J.Rojo,etal.,ThePDF4LHCreportonPDFsandLHCdata:resultsfromRun I andpreparationforRun II,J.Phys.G42(2015)103103,arXiv:1507.00556 [hep -ph].

[19]J.Butterworth,etal.,PDF4LHCrecommendationsforLHCRunII,J.Phys.G43 (2016)023001,arXiv:1510.03865 [hep-ph].

[20]H. Paukkunen,C.A.Salgado,Constraintsfor thenuclearparton distributions fromZandWproductionattheLHC,J.HighEnergyPhys.1103(2011)071, arXiv:1010.5392 [hep-ph].

[21]A.Kusina,F.Lyonnet,D.B. Clark,E.Godat,T. Jezo,K. Kovarik,F.I.Olness, I. Schienbein,J.Y.Yu,Vectorbosonproductioninproton–leadandlead–lead colli-sionsattheLHCanditsimpactonnCTEQ15PDFs,arXiv:1610.02925 [nucl-th]. [22]K.J.Eskola,P.Paakkinen,H.Paukkunen,C.A.Salgado,EPPS16:nuclearparton distributionswithLHCdata,Eur.Phys.J.C77(2017)163,arXiv:1612.05741 [hep-ph].

[23]D.deFlorian,R.Sassot,Nuclearpartondistributionsatnext-to-leadingorder, Phys.Rev.D69(2004)074028,arXiv:hep-ph/0311227.

(7)

[24]M. Hirai, S. Kumano,T.H. Nagai, Determination ofnuclear parton distribu-tionfunctionsandtheiruncertaintiesinnext-to-leadingorder,Phys.Rev.C76 (2007)065207,arXiv:0709.3038 [hep-ph].

[25]S. AtashbarTehrani,Nuclear partondensitiesand their uncertaintiesatthe next-to-leadingorder,Phys.Rev.C86(2012)064301.

[26]H.Khanpour,S.AtashbarTehrani,Globalanalysisofnuclearpartondistribution functionsandtheiruncertaintiesatnext-to-next-to-leadingorder,Phys.Rev.D 93(2016)014026,arXiv:1601.00939 [hep-ph].

[27]R.Vogt,Shadowingeffectsonvectorbosonproduction,Phys.Rev.C64(2001) 044901,arXiv:hep-ph/0011242.

[28]R.B. Neufeld, I. Vitev, B.-W. Zhang, A possibledetermination of the quark radiation lengthin coldnuclearmatter, Phys. Lett. B704(2011) 590–595, arXiv:1010.3708 [hep-ph].

[29]ATLAS Collaboration,G.Aad,etal.,Z bosonproductioninp+Pb collisionsat

sNN=5.02TeV measuredwiththeATLASdetector,Phys.Rev.C92(2015) 044915,arXiv:1507.06232 [hep-ex].

[30]CMS Collaboration, V.Khachatryan, et al., Study ofZ boson production in pPb collisionsat √sNN=5.02TeV, Phys. Lett. B 759(2016) 36–57,arXiv: 1512.06461 [hep-ex].

[31]CMSCollaboration,V.Khachatryan,etal.,StudyofWbosonproductioninpPb collisionsat√sNN=5.02TeV,Phys.Lett.B750(2015)565–586,arXiv:1503. 05825 [nucl-ex].

[32]ALICECollaboration,J.Adam,etal.,WandZbosonproductioninp-Pb colli-sionsat√sNN=5.02TeV,J.HighEnergyPhys.02(2017)077,arXiv:1611.03002 [nucl-ex].

[33]LHCbCollaboration,R.Aaij,etal.,ObservationofZ productioninproton–lead collisionsatLHCb,J.HighEnergyPhys.1409(2014)030,arXiv:1406.2885 [hep -ex].

[34]R. Gavin,Y. Li,F.Petriello,S. Quackenbush,FEWZ2.0:acodefor hadronic Z production at next-to-next-to-leadingorder, Comput.Phys. Commun.182 (2011)2388–2403,arXiv:1011.3540 [hep-ph].

[35]ATLASCollaboration,G.Aad,etal.,Measurementoftheproductionandlepton chargeasymmetryofW bosonsinPb+Pbcollisionsat√sNN=2.76TeV with theATLASdetector,Eur.Phys.J.C75(2015)23,arXiv:1408.4674 [hep-ex]. [36]ATLAS Collaboration,G.Aad, etal., Measurementof Z bosonProductionin

Pb+PbCollisionsat√sNN=2.76TeV withtheATLASDetector,Phys.Rev.Lett. 110(2013)022301,arXiv:1210.6486 [hep-ex].

[37]CMSCollaboration,S.Chatrchyan,etal.,StudyofZproductioninPbPbandpp collisionsat√sNN=2.76TeV inthedimuonanddielectrondecaychannels,J. HighEnergyPhys.1503(2015)022,arXiv:1410.4825 [nucl-ex].

[38]CMSCollaboration,S.Chatrchyan,etal.,StudyofW bosonproductioninPbPb and pp collisionsat√sNN=2.76TeV,Phys.Lett.B715(2012)66–87,arXiv: 1205.6334 [nucl-ex].

[39] ATLAS Collaboration, Z boson production in Pb+Pb collisions at √sNN= 5.02TeV withtheATLASdetectorattheLHC,ATLAS-CONF-2017-010,2017. [40]M.L.Miller,K.Reygers,S.J.Sanders,P.Steinberg,Glaubermodelinginhigh

en-ergynuclearcollisions,Annu.Rev.Nucl.Part.Sci.57(2007)205–243,arXiv: nucl-ex/0701025.

[41]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, J.Instrum.3(2008)S08002.

[42]ALICECollaboration,B.Abelev,etal.,Measurementofthecrosssectionfor elec-tromagneticdissociationwithneutronemissioninPb–Pbcollisionsat√sN N=

2.76TeV,Phys.Rev.Lett.109(2012)252302,arXiv:1203.2436 [nucl-ex]. [43]ALICECollaboration,K.Aamodt,etal.,Rapidityandtransversemomentum

de-pendenceofinclusiveJ production inpp collisions at√s=7TeV, Phys. Lett.B704(2011)442–455,arXiv:1105.0380 [hep-ex],Erratum:Phys.Lett.B7 (2012)18,692.

[44]S.Alioli,P.Nason,C.Oleari,E.Re,NLOvector-bosonproductionmatchedwith showerinPOWHEG,J.HighEnergyPhys.07(2008)060,arXiv:0805.4802 [hep -ph].

[45]T.Sjostrand, S.Mrenna, P.Z.Skands,PYTHIA6.4physicsandmanual,J.High EnergyPhys.05(2006)026,arXiv:hep-ph/0603175.

[46] R.Brun,F.Carminati,S.Giani,GEANTdetectordescriptionandsimulationtool, CERN-W-5013,1994.

[47]CMSCollaboration, S. Chatrchyan,et al., Measurementof the rapidity and transversemomentumdistributionsofZ bosonsinpp collisionsat√s=7TeV, Phys.Rev.D85(2012)032002,arXiv:1110.4973 [hep-ex].

[48]ALICECollaboration,J.Adam,etal.,J/ψsuppressionatforwardrapidityinPb– Pbcollisionsat √sNN=5.02TeV, Phys. Lett.B766(2017) 212–224,arXiv: 1606.08197 [nucl-ex].

[49]ALICECollaboration,J.Adam,etal.,Centralitydependenceofparticle produc-tioninp–Pbcollisionsat√sNN=5.02TeV,Phys. Rev.C91(2015)064905, arXiv:1412.6828 [nucl-ex].

[50]ALICECollaboration, J. Adam, et al.,Centrality dependence ofthe charged-particle multiplicity density at midrapidity inPb–Pb collisions at √sNN= 5.02TeV,Phys.Rev.Lett.116(2016)222302,arXiv:1512.06104 [nucl-ex]. [51]ALICECollaboration,B.B.Abelev,etal.,PerformanceoftheALICEexperimentat

theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].

[52] V. Blobel, C. Kleinwort, A new method for the high precision align-ment of track detectors, in: Advanced Statistical Techniques in Particle Physics. Proceedings, Conference, Durham, UK, March 18–22, 2002, 2002, pp. URL–STR(9),arXiv:hep-ex/0208021,http://www.ippp.dur.ac.uk/Workshops/ 02/statistics/proceedings//blobel1.pdf,2002.

[53]S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston,P. Nadolsky, J. Pumplin, C. Schmidt,D.Stump,C.P.Yuan,Newpartondistributionfunctionsfromaglobal analysisofquantumchromodynamics,Phys.Rev.D93(2016)033006,arXiv: 1506.07443 [hep-ph].

[54]K.J.Eskola,H.Paukkunen,C.A.Salgado,EPS09:anewgenerationofNLOand LOnuclearpartondistributionfunctions,J.HighEnergyPhys.04(2009)065, arXiv:0902.4154 [hep-ph].

[55]K.Kovarik, etal., nCTEQ15–globalanalysisofnuclearpartondistributions withuncertaintiesinthe CTEQ framework,Phys. Rev.D93(2016)085037, arXiv:1509.00792 [hep-ph].

[56]N.Armesto,H.Paukkunen,J.M.Penín,C.A.Salgado,P.Zurita,Ananalysisofthe impactofLHCRunIproton–leaddataonnuclearpartondensities,Eur.Phys.J. C76(2016)218,arXiv:1512.01528 [hep-ph].

[57]I.Helenius,K.J.Eskola,H.Honkanen,C.A.Salgado,Impact-parameter depen-dentnuclearpartondistributionfunctions:EPS09sandEKS98sandtheir ap-plications innuclear hard processes, J. High Energy Phys. 07 (2012) 073, arXiv:1205.5359 [hep-ph].

TheALICECollaboration

S. Acharya

137

,

D. Adamová

94

,

J. Adolfsson

33

,

M.M. Aggarwal

99

,

G. Aglieri Rinella

34

,

M. Agnello

30

,

N. Agrawal

47

,

Z. Ahammed

137

,

S.U. Ahn

78

,

S. Aiola

141

,

A. Akindinov

63

,

M. Al-Turany

106

,

S.N. Alam

137

,

D.S.D. Albuquerque

122

,

D. Aleksandrov

90

,

B. Alessandro

57

,

R. Alfaro Molina

73

,

Y. Ali

15

,

A. Alici

11

,

26

,

52

,

A. Alkin

3

,

J. Alme

21

,

T. Alt

69

,

L. Altenkamper

21

,

I. Altsybeev

136

,

C. Andrei

87

,

D. Andreou

34

,

H.A. Andrews

110

,

A. Andronic

106

,

M. Angeletti

34

,

V. Anguelov

104

,

C. Anson

97

,

T. Antiˇci ´c

107

,

F. Antinori

55

,

P. Antonioli

52

,

N. Apadula

81

,

L. Aphecetche

114

,

H. Appelshäuser

69

,

S. Arcelli

26

,

R. Arnaldi

57

,

O.W. Arnold

105

,

35

,

I.C. Arsene

20

,

M. Arslandok

104

,

B. Audurier

114

,

A. Augustinus

34

,

R. Averbeck

106

,

M.D. Azmi

16

,

A. Badalà

54

,

Y.W. Baek

77

,

59

,

S. Bagnasco

57

,

R. Bailhache

69

,

R. Bala

101

,

A. Baldisseri

74

,

M. Ball

44

,

R.C. Baral

66

,

88

,

A.M. Barbano

25

,

R. Barbera

27

,

F. Barile

32

,

L. Barioglio

25

,

G.G. Barnaföldi

140

,

L.S. Barnby

93

,

V. Barret

131

,

P. Bartalini

7

,

K. Barth

34

,

E. Bartsch

69

,

N. Bastid

131

,

S. Basu

139

,

G. Batigne

114

,

B. Batyunya

76

,

P.C. Batzing

20

,

J.L. Bazo Alba

111

,

I.G. Bearden

91

,

H. Beck

104

,

C. Bedda

62

,

N.K. Behera

59

,

I. Belikov

133

,

F. Bellini

34

,

26

,

H. Bello Martinez

2

,

R. Bellwied

124

,

L.G.E. Beltran

120

,

V. Belyaev

82

,

G. Bencedi

140

,

S. Beole

25

,

A. Bercuci

87

,

Y. Berdnikov

96

,

D. Berenyi

140

,

R.A. Bertens

127

,

D. Berzano

57

,

34

,

L. Betev

34

,

P.P. Bhaduri

137

,

A. Bhasin

101

,

I.R. Bhat

101

,

(8)

J. Bielˇcíková

94

,

A. Bilandzic

35

,

105

,

G. Biro

140

,

R. Biswas

4

,

S. Biswas

4

,

J.T. Blair

119

,

D. Blau

90

,

C. Blume

69

,

G. Boca

134

,

F. Bock

34

,

A. Bogdanov

82

,

L. Boldizsár

140

,

M. Bombara

39

,

G. Bonomi

135

,

M. Bonora

34

,

H. Borel

74

,

A. Borissov

18

,

104

,

M. Borri

126

,

E. Botta

25

,

C. Bourjau

91

,

L. Bratrud

69

,

P. Braun-Munzinger

106

,

M. Bregant

121

,

T.A. Broker

69

,

M. Broz

38

,

E.J. Brucken

45

,

E. Bruna

57

,

G.E. Bruno

34

,

32

,

D. Budnikov

108

,

H. Buesching

69

,

S. Bufalino

30

,

P. Buhler

113

,

P. Buncic

34

,

O. Busch

130

,

Z. Buthelezi

75

,

J.B. Butt

15

,

J.T. Buxton

17

,

J. Cabala

116

,

D. Caffarri

34

,

92

,

H. Caines

141

,

A. Caliva

106

,

62

,

E. Calvo Villar

111

,

R.S. Camacho

2

,

P. Camerini

24

,

A.A. Capon

113

,

F. Carena

34

,

W. Carena

34

,

F. Carnesecchi

11

,

26

,

J. Castillo Castellanos

74

,

A.J. Castro

127

,

E.A.R. Casula

53

,

C. Ceballos Sanchez

9

,

S. Chandra

137

,

B. Chang

125

,

W. Chang

7

,

S. Chapeland

34

,

M. Chartier

126

,

S. Chattopadhyay

137

,

S. Chattopadhyay

109

,

A. Chauvin

105

,

35

,

C. Cheshkov

132

,

B. Cheynis

132

,

V. Chibante Barroso

34

,

D.D. Chinellato

122

,

S. Cho

59

,

P. Chochula

34

,

M. Chojnacki

91

,

S. Choudhury

137

,

T. Chowdhury

131

,

P. Christakoglou

92

,

C.H. Christensen

91

,

P. Christiansen

33

,

T. Chujo

130

,

S.U. Chung

18

,

C. Cicalo

53

,

L. Cifarelli

11

,

26

,

F. Cindolo

52

,

J. Cleymans

100

,

F. Colamaria

51

,

32

,

D. Colella

64

,

34

,

51

,

A. Collu

81

,

M. Colocci

26

,

M. Concas

57

,

ii

,

G. Conesa Balbastre

80

,

Z. Conesa del Valle

60

,

J.G. Contreras

38

,

T.M. Cormier

95

,

Y. Corrales Morales

57

,

I. Cortés Maldonado

2

,

P. Cortese

31

,

M.R. Cosentino

123

,

F. Costa

34

,

S. Costanza

134

,

J. Crkovská

60

,

P. Crochet

131

,

E. Cuautle

71

,

L. Cunqueiro

70

,

95

,

T. Dahms

105

,

35

,

A. Dainese

55

,

M.C. Danisch

104

,

A. Danu

67

,

D. Das

109

,

I. Das

109

,

S. Das

4

,

A. Dash

88

,

S. Dash

47

,

S. De

48

,

A. De Caro

29

,

G. de Cataldo

51

,

C. de Conti

121

,

J. de Cuveland

41

,

A. De Falco

23

,

D. De Gruttola

29

,

11

,

N. De Marco

57

,

S. De Pasquale

29

,

R.D. De Souza

122

,

H.F. Degenhardt

121

,

A. Deisting

106

,

104

,

A. Deloff

86

,

C. Deplano

92

,

P. Dhankher

47

,

D. Di Bari

32

,

A. Di Mauro

34

,

P. Di Nezza

50

,

B. Di Ruzza

55

,

T. Dietel

100

,

P. Dillenseger

69

,

Y. Ding

7

,

R. Divià

34

,

Ø. Djuvsland

21

,

A. Dobrin

34

,

D. Domenicis Gimenez

121

,

B. Dönigus

69

,

O. Dordic

20

,

L.V.R. Doremalen

62

,

A.K. Dubey

137

,

A. Dubla

106

,

L. Ducroux

132

,

S. Dudi

99

,

A.K. Duggal

99

,

M. Dukhishyam

88

,

P. Dupieux

131

,

R.J. Ehlers

141

,

D. Elia

51

,

E. Endress

111

,

H. Engel

68

,

E. Epple

141

,

B. Erazmus

114

,

F. Erhardt

98

,

B. Espagnon

60

,

G. Eulisse

34

,

J. Eum

18

,

D. Evans

110

,

S. Evdokimov

112

,

L. Fabbietti

105

,

35

,

J. Faivre

80

,

A. Fantoni

50

,

M. Fasel

95

,

L. Feldkamp

70

,

A. Feliciello

57

,

G. Feofilov

136

,

A. Fernández Téllez

2

,

A. Ferretti

25

,

A. Festanti

28

,

34

,

V.J.G. Feuillard

74

,

131

,

J. Figiel

118

,

M.A.S. Figueredo

121

,

S. Filchagin

108

,

D. Finogeev

61

,

F.M. Fionda

21

,

23

,

M. Floris

34

,

S. Foertsch

75

,

P. Foka

106

,

S. Fokin

90

,

E. Fragiacomo

58

,

A. Francescon

34

,

A. Francisco

114

,

U. Frankenfeld

106

,

G.G. Fronze

25

,

U. Fuchs

34

,

C. Furget

80

,

A. Furs

61

,

M. Fusco Girard

29

,

J.J. Gaardhøje

91

,

M. Gagliardi

25

,

A.M. Gago

111

,

K. Gajdosova

91

,

M. Gallio

25

,

C.D. Galvan

120

,

P. Ganoti

85

,

C. Garabatos

106

,

E. Garcia-Solis

12

,

K. Garg

27

,

C. Gargiulo

34

,

P. Gasik

105

,

35

,

E.F. Gauger

119

,

M.B. Gay Ducati

72

,

M. Germain

114

,

J. Ghosh

109

,

P. Ghosh

137

,

S.K. Ghosh

4

,

P. Gianotti

50

,

P. Giubellino

34

,

106

,

57

,

P. Giubilato

28

,

E. Gladysz-Dziadus

118

,

P. Glässel

104

,

D.M. Goméz Coral

73

,

A. Gomez Ramirez

68

,

A.S. Gonzalez

34

,

P. González-Zamora

2

,

S. Gorbunov

41

,

L. Görlich

118

,

S. Gotovac

117

,

V. Grabski

73

,

L.K. Graczykowski

138

,

K.L. Graham

110

,

L. Greiner

81

,

A. Grelli

62

,

C. Grigoras

34

,

V. Grigoriev

82

,

A. Grigoryan

1

,

S. Grigoryan

76

,

J.M. Gronefeld

106

,

F. Grosa

30

,

J.F. Grosse-Oetringhaus

34

,

R. Grosso

106

,

F. Guber

61

,

R. Guernane

80

,

B. Guerzoni

26

,

M. Guittiere

114

,

K. Gulbrandsen

91

,

T. Gunji

129

,

A. Gupta

101

,

R. Gupta

101

,

I.B. Guzman

2

,

R. Haake

34

,

C. Hadjidakis

60

,

H. Hamagaki

83

,

G. Hamar

140

,

J.C. Hamon

133

,

M.R. Haque

62

,

J.W. Harris

141

,

A. Harton

12

,

H. Hassan

80

,

D. Hatzifotiadou

52

,

11

,

S. Hayashi

129

,

S.T. Heckel

69

,

E. Hellbär

69

,

H. Helstrup

36

,

A. Herghelegiu

87

,

E.G. Hernandez

2

,

G. Herrera Corral

10

,

F. Herrmann

70

,

B.A. Hess

103

,

K.F. Hetland

36

,

H. Hillemanns

34

,

C. Hills

126

,

B. Hippolyte

133

,

B. Hohlweger

105

,

D. Horak

38

,

S. Hornung

106

,

R. Hosokawa

80

,

130

,

P. Hristov

34

,

C. Hughes

127

,

T.J. Humanic

17

,

N. Hussain

43

,

T. Hussain

16

,

D. Hutter

41

,

D.S. Hwang

19

,

J.P. Iddon

126

,

S.A. Iga Buitron

71

,

R. Ilkaev

108

,

M. Inaba

130

,

M. Ippolitov

82

,

90

,

M.S. Islam

109

,

M. Ivanov

106

,

V. Ivanov

96

,

V. Izucheev

112

,

B. Jacak

81

,

N. Jacazio

26

,

P.M. Jacobs

81

,

M.B. Jadhav

47

,

S. Jadlovska

116

,

J. Jadlovsky

116

,

S. Jaelani

62

,

C. Jahnke

35

,

M.J. Jakubowska

138

,

M.A. Janik

138

,

P.H.S.Y. Jayarathna

124

,

C. Jena

88

,

M. Jercic

98

,

R.T. Jimenez Bustamante

106

,

P.G. Jones

110

,

A. Jusko

110

,

P. Kalinak

64

,

A. Kalweit

34

,

J.H. Kang

142

,

V. Kaplin

82

,

S. Kar

137

,

A. Karasu Uysal

79

,

O. Karavichev

61

,

T. Karavicheva

61

,

L. Karayan

106

,

104

,

P. Karczmarczyk

34

,

E. Karpechev

61

,

U. Kebschull

68

,

R. Keidel

143

,

D.L.D. Keijdener

62

,

M. Keil

34

,

B. Ketzer

44

,

Z. Khabanova

92

,

P. Khan

109

,

S. Khan

16

,

S.A. Khan

137

,

A. Khanzadeev

96

,

Y. Kharlov

112

,

A. Khatun

16

,

A. Khuntia

48

,

M.M. Kielbowicz

118

,

B. Kileng

36

,

B. Kim

130

,

D. Kim

142

,

D.J. Kim

125

,

E.J. Kim

14

,

H. Kim

142

,

J.S. Kim

42

,

J. Kim

104

,

M. Kim

59

,

S. Kim

19

,

T. Kim

142

,

S. Kirsch

41

,

I. Kisel

41

,

S. Kiselev

63

,

A. Kisiel

138

,

G. Kiss

140

,

J.L. Klay

6

,

C. Klein

69

,

J. Klein

34

,

C. Klein-Bösing

70

,

(9)

S. Klewin

104

,

A. Kluge

34

,

M.L. Knichel

104

,

34

,

A.G. Knospe

124

,

C. Kobdaj

115

,

M. Kofarago

140

,

M.K. Köhler

104

,

T. Kollegger

106

,

V. Kondratiev

136

,

N. Kondratyeva

82

,

E. Kondratyuk

112

,

A. Konevskikh

61

,

M. Konyushikhin

139

,

M. Kopcik

116

,

M. Kour

101

,

C. Kouzinopoulos

34

,

O. Kovalenko

86

,

V. Kovalenko

136

,

M. Kowalski

118

,

I. Králik

64

,

A. Kravˇcáková

39

,

L. Kreis

106

,

M. Krivda

110

,

64

,

F. Krizek

94

,

E. Kryshen

96

,

M. Krzewicki

41

,

A.M. Kubera

17

,

V. Kuˇcera

94

,

C. Kuhn

133

,

P.G. Kuijer

92

,

A. Kumar

101

,

J. Kumar

47

,

L. Kumar

99

,

S. Kumar

47

,

S. Kundu

88

,

P. Kurashvili

86

,

A. Kurepin

61

,

A.B. Kurepin

61

,

A. Kuryakin

108

,

S. Kushpil

94

,

M.J. Kweon

59

,

Y. Kwon

142

,

S.L. La Pointe

41

,

P. La Rocca

27

,

C. Lagana Fernandes

121

,

Y.S. Lai

81

,

I. Lakomov

34

,

R. Langoy

40

,

K. Lapidus

141

,

C. Lara

68

,

A. Lardeux

20

,

A. Lattuca

25

,

E. Laudi

34

,

R. Lavicka

38

,

R. Lea

24

,

L. Leardini

104

,

S. Lee

142

,

F. Lehas

92

,

S. Lehner

113

,

J. Lehrbach

41

,

R.C. Lemmon

93

,

E. Leogrande

62

,

I. León Monzón

120

,

P. Lévai

140

,

X. Li

13

,

X.L. Li

7

,

J. Lien

40

,

R. Lietava

110

,

B. Lim

18

,

S. Lindal

20

,

V. Lindenstruth

41

,

S.W. Lindsay

126

,

C. Lippmann

106

,

M.A. Lisa

17

,

V. Litichevskyi

45

,

A. Liu

81

,

W.J. Llope

139

,

D.F. Lodato

62

,

P.I. Loenne

21

,

V. Loginov

82

,

C. Loizides

81

,

95

,

P. Loncar

117

,

X. Lopez

131

,

E. López Torres

9

,

A. Lowe

140

,

P. Luettig

69

,

J.R. Luhder

70

,

M. Lunardon

28

,

G. Luparello

24

,

58

,

M. Lupi

34

,

T.H. Lutz

141

,

A. Maevskaya

61

,

M. Mager

34

,

S.M. Mahmood

20

,

A. Maire

133

,

R.D. Majka

141

,

M. Malaev

96

,

L. Malinina

76

,

iii

,

D. Mal’Kevich

63

,

P. Malzacher

106

,

A. Mamonov

108

,

V. Manko

90

,

F. Manso

131

,

V. Manzari

51

,

Y. Mao

7

,

M. Marchisone

132

,

128

,

75

,

J. Mareš

65

,

G.V. Margagliotti

24

,

A. Margotti

52

,

J. Margutti

62

,

A. Marín

106

,

C. Markert

119

,

M. Marquard

69

,

N.A. Martin

106

,

P. Martinengo

34

,

J.A.L. Martinez

68

,

M.I. Martínez

2

,

G. Martínez García

114

,

M. Martinez Pedreira

34

,

S. Masciocchi

106

,

M. Masera

25

,

A. Masoni

53

,

L. Massacrier

60

,

E. Masson

114

,

A. Mastroserio

51

,

A.M. Mathis

35

,

105

,

P.F.T. Matuoka

121

,

A. Matyja

127

,

C. Mayer

118

,

J. Mazer

127

,

M. Mazzilli

32

,

M.A. Mazzoni

56

,

F. Meddi

22

,

Y. Melikyan

82

,

A. Menchaca-Rocha

73

,

E. Meninno

29

,

J. Mercado Pérez

104

,

M. Meres

37

,

S. Mhlanga

100

,

Y. Miake

130

,

M.M. Mieskolainen

45

,

D.L. Mihaylov

105

,

K. Mikhaylov

63

,

76

,

A. Mischke

62

,

A.N. Mishra

48

,

D. Mi´skowiec

106

,

J. Mitra

137

,

C.M. Mitu

67

,

N. Mohammadi

34

,

62

,

A.P. Mohanty

62

,

B. Mohanty

88

,

M. Mohisin Khan

16

,

iv

,

D.A. Moreira De Godoy

70

,

L.A.P. Moreno

2

,

S. Moretto

28

,

A. Morreale

114

,

A. Morsch

34

,

V. Muccifora

50

,

E. Mudnic

117

,

D. Mühlheim

70

,

S. Muhuri

137

,

M. Mukherjee

4

,

J.D. Mulligan

141

,

M.G. Munhoz

121

,

K. Münning

44

,

M.I.A. Munoz

81

,

R.H. Munzer

69

,

H. Murakami

129

,

S. Murray

75

,

L. Musa

34

,

J. Musinsky

64

,

C.J. Myers

124

,

J.W. Myrcha

138

,

D. Nag

4

,

B. Naik

47

,

R. Nair

86

,

B.K. Nandi

47

,

R. Nania

11

,

52

,

E. Nappi

51

,

A. Narayan

47

,

M.U. Naru

15

,

H. Natal da Luz

121

,

C. Nattrass

127

,

S.R. Navarro

2

,

K. Nayak

88

,

R. Nayak

47

,

T.K. Nayak

137

,

S. Nazarenko

108

,

R.A. Negrao De Oliveira

69

,

34

,

L. Nellen

71

,

S.V. Nesbo

36

,

G. Neskovic

41

,

F. Ng

124

,

M. Nicassio

106

,

M. Niculescu

67

,

J. Niedziela

138

,

34

,

B.S. Nielsen

91

,

S. Nikolaev

90

,

S. Nikulin

90

,

V. Nikulin

96

,

A. Nobuhiro

46

,

F. Noferini

11

,

52

,

P. Nomokonov

76

,

G. Nooren

62

,

J.C.C. Noris

2

,

J. Norman

126

,

80

,

A. Nyanin

90

,

J. Nystrand

21

,

H. Oeschler

18

,

104

,

i

,

H. Oh

142

,

A. Ohlson

104

,

L. Olah

140

,

J. Oleniacz

138

,

A.C. Oliveira Da Silva

121

,

M.H. Oliver

141

,

J. Onderwaater

106

,

C. Oppedisano

57

,

R. Orava

45

,

M. Oravec

116

,

A. Ortiz Velasquez

71

,

A. Oskarsson

33

,

J. Otwinowski

118

,

K. Oyama

83

,

Y. Pachmayer

104

,

V. Pacik

91

,

D. Pagano

135

,

G. Pai ´c

71

,

P. Palni

7

,

J. Pan

139

,

A.K. Pandey

47

,

S. Panebianco

74

,

V. Papikyan

1

,

P. Pareek

48

,

J. Park

59

,

S. Parmar

99

,

A. Passfeld

70

,

S.P. Pathak

124

,

R.N. Patra

137

,

B. Paul

57

,

H. Pei

7

,

T. Peitzmann

62

,

X. Peng

7

,

L.G. Pereira

72

,

H. Pereira Da Costa

74

,

D. Peresunko

82

,

90

,

E. Perez Lezama

69

,

V. Peskov

69

,

Y. Pestov

5

,

V. Petráˇcek

38

,

M. Petrovici

87

,

C. Petta

27

,

R.P. Pezzi

72

,

S. Piano

58

,

M. Pikna

37

,

P. Pillot

114

,

L.O.D.L. Pimentel

91

,

O. Pinazza

52

,

34

,

L. Pinsky

124

,

D.B. Piyarathna

124

,

M. Płosko ´n

81

,

M. Planinic

98

,

F. Pliquett

69

,

J. Pluta

138

,

S. Pochybova

140

,

P.L.M. Podesta-Lerma

120

,

M.G. Poghosyan

95

,

B. Polichtchouk

112

,

N. Poljak

98

,

W. Poonsawat

115

,

A. Pop

87

,

H. Poppenborg

70

,

S. Porteboeuf-Houssais

131

,

V. Pozdniakov

76

,

S.K. Prasad

4

,

R. Preghenella

52

,

F. Prino

57

,

C.A. Pruneau

139

,

I. Pshenichnov

61

,

M. Puccio

25

,

V. Punin

108

,

J. Putschke

139

,

S. Raha

4

,

S. Rajput

101

,

J. Rak

125

,

A. Rakotozafindrabe

74

,

L. Ramello

31

,

F. Rami

133

,

D.B. Rana

124

,

R. Raniwala

102

,

S. Raniwala

102

,

S.S. Räsänen

45

,

B.T. Rascanu

69

,

D. Rathee

99

,

V. Ratza

44

,

I. Ravasenga

30

,

K.F. Read

127

,

95

,

K. Redlich

86

,

v

,

A. Rehman

21

,

P. Reichelt

69

,

F. Reidt

34

,

X. Ren

7

,

R. Renfordt

69

,

A. Reshetin

61

,

K. Reygers

104

,

V. Riabov

96

,

T. Richert

62

,

33

,

M. Richter

20

,

P. Riedler

34

,

W. Riegler

34

,

F. Riggi

27

,

C. Ristea

67

,

M. Rodríguez Cahuantzi

2

,

K. Røed

20

,

R. Rogalev

112

,

E. Rogochaya

76

,

D. Rohr

34

,

41

,

D. Röhrich

21

,

P.S. Rokita

138

,

F. Ronchetti

50

,

E.D. Rosas

71

,

K. Roslon

138

,

P. Rosnet

131

,

A. Rossi

55

,

28

,

A. Rotondi

134

,

F. Roukoutakis

85

,

C. Roy

133

,

P. Roy

109

,

O.V. Rueda

71

,

R. Rui

24

,

B. Rumyantsev

76

,

A. Rustamov

89

,

E. Ryabinkin

90

,

Y. Ryabov

96

,

A. Rybicki

118

,

S. Saarinen

45

,

S. Sadhu

137

,

S. Sadovsky

112

,

K. Šafaˇrík

34

,

S.K. Saha

137

,

B. Sahoo

47

,

P. Sahoo

48

,

R. Sahoo

48

,

S. Sahoo

66

,

P.K. Sahu

66

,

J. Saini

137

,

Figura

Fig. 1. Invariant mass distribution of μ + μ − pairs for Pb–Pb collisions at √ s NN = 5
Fig. 2. Invariant yield of μ + μ − from Z 0 production in 2 . 5 &lt; y &lt; 4 . 0 divided by the average nuclear overlap function in the 0–90% centrality class, considering muons with − 4
Fig. 3. Invariant yield of μ + μ − from Z 0 in 2 . 5 &lt; y &lt; 4 . 0 divided by  T

Riferimenti

Documenti correlati

Certo, occorrerà mettere in conto la difficoltà di innescare sui contenuti necessari e vincolati della nuova legge di bilancio una giurisprudenza costituzionale di analogo rigore

Using the previously generated data from the original cohorts of NCWS, coeliac disease and control subjects ( table 1 ), 1 we configured a discriminant function to identify

model A features pulse durations and intensities being generated through the bivariate lognormal 173.. This enables correlation to be obtained between the two

In view of the wide heterogeneity in study design, time of follow-up, neurodevelopmental tests used and the very small number of included cases further future large prospective

The experimental applications related to the fouling phenomenon and the consequent results are affected by numerous problems, summarized as follows: (i) actual conditions

The integration of RNAseq data, generated on tumors obtained from untreated and EPZ-011989-treated mice, and results from functional studies, carried out on the PDX-derived ES-1

I granuli, di forma tonda od ovale, presentavano un core elettron-denso (Fig. 22b); tra i sani e i parassitati “lontano” dal parassita non si sono registrate differenze

Therefore, small changes in endothelial cell sizes after surgery (AVG-post for group A) were related to an excellent visual outcome (BCVA &gt; 85 letters), whereas sizeable