• Non ci sono risultati.

Mechanical behavior of strain sensors based on PEDOT:PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing

N/A
N/A
Protected

Academic year: 2021

Condividi "Mechanical behavior of strain sensors based on PEDOT:PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Mechanical

behavior

of

strain

sensors

based

on

PEDOT:PSS

and

silver

nanoparticles

inks

deposited

on

polymer

substrate

by

inkjet

printing

Michela

Borghetti

a

,

Mauro

Serpelloni

a,∗

,

Emilio

Sardini

a

,

Stefano

Pandini

b

aDip.diIngegneriadell’Informazione,UniversityofBrescia,Brescia,Italy bDip.diIngegneriaMeccanicaeIndustriale,UniversityofBrescia,Brescia,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22February2016

Receivedinrevisedform16March2016 Accepted21March2016

Availableonline22March2016 Keywords: Strainsensor Inkjetprinting Silvernanoparticles PEDOT:PSS Tensiletests Mechanicalbehavior

a

b

s

t

r

a

c

t

Recently,inkjetprintingtechnologyhasreceivedgrowingattentionasamethodtoproducelow-cost large-areaelectronics,sensors,andantennasonpolymersubstrates.Thistechnologyreliesonprinting techniquestodepositelectricallyfunctionalmaterialsontopolymersubstratestofabricateelectronic componentsorsensingelements.Inthispaper,weappliedaninkjetprintedtechnologyforthe develop-mentandcharacterizationoffilmsonapolymersubstrateaimingatgivingdesignconsiderationsforthe optimizationofstrainsensorsorprintedelectronicsobtainedbyinkjetprinting.Twoinksweretested overapolyimidesubstrate,awater-basedconductivepolymer,PEDOT:PSS,andasilvernanoparticles ink.Theirsensingcapabilitieswereinvestigatedundertensileconditionsandvariousstrainhistories (strainramp;cyclicloading-unloadingtests;applicationofconstantstrainoverprolongedtime)aiming athighlightingthecorrelationbetweenelectricalresponse,appliedstrain,timeandmechanicalhistories. Furthermore,themechanicalviscoelasticresponseofthesubstratewasinvestigatedundersimilarstrain historiesinterpretingtheresultsatthelightofthesubstratedeformationalcharacteristicsandevaluating itsinfluence.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Inrecentyears,sensorsprintedonpolymersubstratesrepresent anincreasingareaofresearchanddevelopmentduetothe grow-ingdemandforbiosensors[1],artificialskin[2],chemicalsensors [3],force[4]andstrainsensors[5–9].Inparticular,resistivestrain sensorsonpolymericsubstratesareemployed,ingeneral,forthe measurementofforces[6],movements[7]anddisplacements[8]. Therefore,theyareusedinmanydifferentfields,andnotleast,in thebiomedicalfield[9].Novelsystemshavebeenrecently devel-opedadoptingpolymersinsteadofthemoreconventionalstrain gauges,leadingtosensorsbasedonconductivepolymers[10], poly-mercomposites[11],polymerelastomers[12],thermoplastics[12], epoxies[13].Asa benefit,sensorsbasedonpolymersallowthe useofconventionalandconvenientpolymerprocessingand post-processingtechniques.

Resistive strain sensors are typically manufactured deposit-ingaspecificresistiveinkonapolymersubstrate.Thepolyimide filmsare often favored as substrate due to theirhigh durabil-ity,thewiderangeofworkingtemperaturesandthestabilityto

∗ Correspondingauthor.

E-mailaddress:mauro.serpelloni@unibs.it(M.Serpelloni).

environmentalfactors[14]. Inkdepositioncanbeeasilycarried out throughsimple and low cost printing technologiessuchas inkjetprinting.Thistechniqueisoneofthelatestmethodologies developedfortheimplementationofelectroniccomponents,and recentlyitisbecomingincreasinglypopular,asevidencedbyits adoptioninnumerousscientificpublications[15–17].This tech-niqueofferstheadvantageofbeingfastandrelativelyinexpensive, therefore suitable especially for the rapiddevelopment of pro-totypestobetested.It alsogivesthepossibilitytodeposit inks onvarious,rigidorflexible,substrates[15].Themainadvantage ofinkjetprinted straingauges,over thetraditionalones,liesin theirsimple rapidprototyping process,thewide range of elec-tricresistance,itscompatibilitywiththemechanicalpropertiesof thematerialanditsbuilt-flexibilityforthemeasurementoflarge deformations.

Two typical examples of conductive materials adopted as ink for inkjet-printing strain sensors are non-polymeric inks incorporating silver nanoparticles and the intrinsically con-ductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)(PEDOT:PSS).Asexample,astrainsensorbasedonsilver ink,whichcouldplayastrategicrole forelectrodesandsensing structures due totheextremely low resistivityand mechanical properties, was recently proposed by Andò et al. [18]. On the otherhand,piezoresistivesensorsbasedonPEDOT:PSScanbeused http://dx.doi.org/10.1016/j.sna.2016.03.021

(2)

PEDOT:PSSaninterestingmaterial,whichalsopresentsacertain versatility,suchasthepossibilityofdepositionondifferent sub-strates.SomeexamplesofsensorsmanufacturedwithPEDOT:PSS depositedbyinkjetprinting arereportedinRefs.[21]and [22], providing a characterization of their electrical and mechanical properties.InRef.[22],asensorbasedonPEDOT:PSSisadopted tomeasurethebendingangleofkneeflexionandwristrotation. Theresultssuggestthatbendingsensorsfabricatedbyinkjet print-ingadopting PEDOT:PSS or silver nanoparticles ink offer many advantageswithrespecttoothersystemsforhumanmovement monitoring(insideandoutsidethehumanbody),suchas,thesmall footprint,lowcostandversatility.However,toobtainsatisfactory resultsfromtheuseofthesesensors,itisnecessaryto character-izeproperlytheirmechanicalandelectricalresponse,sotoproperly correlate,atthelightofthesubstratedeformation,sensorresponse andmovement.

Inthispaper,wepresenttheresultsoftensiletestingprotocols, properlydesignedtoevaluatetheresponseofPEDOT:PSSandsilver nanoparticlesinksdepositedbyinkjetprintingundermonotonic andcyclicstrainhistories.Theaimistoimprovetheknowledge onthedesignofstrainsensorsonpolymersubstrate orprinted electronicsmanufacturedbyinkjetprinting,withparticular atten-tionforwhatconcernstherelationshipbetweenappliedstrainand measuredelectricalresistance,andstabilityoftheresponseover timeandforprolongedcyclicemploy.

2. Preparationofsensingfilms

Twotypesofsensorswerepreparedandinvestigated,theywere obtaineddepositingconductiveinksonpoly(imide)film(Kapton® HNDuPont[23])byaproposedinkjetprintingtechnique.Forthe firstsensortype, theconductivelayeris aninkbased onsilver nanoparticles.In particular,theinkis commercializedbySigma Aldrichunderthetradename736465;ithasavolumeresistivity of11␮W/cm,ananoparticlescontentof30–35%andaparticlesize lessthan50nm[24].Forthesecondtypeofsensor,theconductive layerisobtainedbythedepositionofPEDOT:PSS,OrgaconIJ-1005, marketedbyAGFA-Gevaert[25]having0.8%ofsolidpart.

Theemployedfilmpresentsathicknessof25␮m.Thechoice ofpolyimidewasmainlymotivatedonitshighadhesiontothe choseninksandbiocompatibility[26].Furthermore,itpresentsan enhancedthermalstability,whenexposedtorelativelyhigh tem-perature,thankstoitshighglasstransitiontemperatures(about 360◦C).Thisisanimportantfeatureforthesubstrate,sincesensors manufacturingprocessinvolvesthermaltreatmenttopromotethe evaporationofthesolvents.Thethermaltreatmenthelpstowards increasingtheconductivityoftheinkandimprovingadhesionto thesubstrate:themoderatethermalexpansionofthesubstrateon therangeoftemperatureallowsavoidingsignificantgeometrical distortionsofthesubstrate.

The sensors were made using the proposed inkjet printing method.Alow-costdesktopprinter hasbeenusedfor thefilm depositions.Theselectedprinterisoneofthecheapestmodelsof Epson,XP-215,havingfourseparatecartridgeswith128nozzles forblackand42nozzlesforeachcolor,andaprintresolutionupto 5760×1440dpi.

Beforetheinkprinting,thesheetofpolyimide(155×21mm2) wascleaned by placing it in an ultrasonic bath of acetone for 15minatroomtemperature.Aftercleaning,thestripwasdried using dry compressed air. An additional oxygen plasma treat-ment(Colibrì,byGambetti)undervacuumwascarriedoutforthe PEDOT:PSS-typesubstratesfor 180sat35WRF powerin order toimprovetheadhesionbetweeninkandpolyimide.Infact,the

Fig.1.(a)Exampleofasensingstripforthetensiletests;observationsattheoptical microscopeoftheconductivetrack(b)forthesilvernanoparticlesinkand(c)for PEDOT:PSS.

plasmamodifieschemicalstateofthepolyimidesurface,which becomeshydrophilic.

Anemptyprintercartridgewasrefilledbythesilver nanopar-ticlesorPEDOT:PSSink.Inkpathswerecreatedbyrepeatingthe printingprocessforthreetimesforsilver-basedsensorandfive forthePEDOT:PSS-basedsensor,thisensuresagoodconductivity. Afterprintingeachofthelayers,thesheetwasdriedinastaticoven for1minat50◦Ctopreventthespreadofinkwiththefollowing printing.Afterdepositingallthelayers,thesheetwithdevicesin silvernanoparticleswasplacedintheovenfor30minat150◦C (6minat130◦CforPEDOT:PSS).Tocreatecontactsasilverpaste (Dupont5028)hasbeendepositedmanuallyanddriedat130◦Cfor tenfurtherminutes,afterwhichcopperwiresweresolderedonto thesilverpaste,allowingmeasuringeasilytheelectricalresistance. Atypicalspecimenpreparedforthetensiletesting, representa-tiveofthesensor,isrepresentedinFig.1a,andisobtainedbycutting rectangularstrips(155×7mm2)fromtheprintedsheet.Thisfigure showsthesensitivetrackconsistingofasinglerectangularstripeof conductiveink,alignedwiththespecimenlengthandplacedinthe mid-span.Forallthesensors,theconductivestripehasanominal lengthof30mmandanominalwidthof1mm.

Wemeasuredtheresistance(R)ofthedepositedstripeswitha 6½digitdigitalmultimeter.Theaverageresistanceis6900ofthe stripesbasedonthePEDOT:PSSinkand30oftheonesbasedon

(3)

Fig.2. Schematicrepresentationoftheexperimentalsetup;thedynamometer(Instron3366)isemployedtoapplyspecificdeformationhistoriesonthesample,measuring forceanddisplacement,whiletheelectricalresistance(R)issimultaneouslymeasuredbythemultimeter.Thetwocrocodileclampsareconnectedtothemultimeterfor resistancemeasurement.

Fig.3. Schematicrepresentationsofthethreesetsoftests:(a)amonotonicrampatconstantdisplacementrate;(b)loading–unloadingcyclesatvariousmaximumlevelsof strains;(c)maintainedstrainlevelsforprolongedtime.

thenanoparticlesilverink.Wealsomeasuredthethickness(t)of thedepositedinkswithastylusprofilometer(BrukerDektakXT). TheaveragethicknessofthePEDOT:PSSandofthenanoparticles silveris400nmand600nm,respectively.

Finally,wecalculatedtheresistivity()ofthesetwomaterials byusing

R=× L

W×t (1)

whereLandWarethelengthandthewidthofthestripe, respec-tively.Weobtainedameanvalueof92␮mforthePEDOT:PSS and 0.60␮mforthenanoparticle silver. Thelowerresistivity ofthePEDOT:PSSwithrespecttothepristinePEDOT:PSSis justi-fiedbythepresenceofthediethyleneglycol(DEG)intheliquid ink [27,28]. Indeed, DEGinduces tocreate a highly conducting PEDOT:PSSnetwork.Theresistivityofthenanoparticlesilverinkis usually0.30–0.40␮m,butinsomecasesitcouldbehigherthan 1␮m[29,30].Thesinteringprocesscouldbeoneofthereasons ofahigherresistivity,asconfirmedintheliterature[31].

Fig.1bandcrefertotheconductivetrackobtainedbysilver nanoparticlesandbyPEDOT:PSSinks,respectively,asobservedby anopticalmicroscope.

3. Experimentalsetup

Theexperimentalactivityconsistedinsimultaneously monitor-ingstrainandelectricalsignalwhenspecificdeformationhistories wereapplied.Aschematicblockdiagramoftheexperimentalsetup isdisplayedinFig.2.

The strain history was applied,under tensile configuration, bymeansofanelectromechanicaldynamometer(Instron,model 3366),equippedwitha 500Nloadcelland screw-typegrips.In recentyears,thestandardizationworkforthemechanical charac-terizationofprintedelectronicsorsensorsdepositedonpolymeric substrateshasledtothepublicationofnumerousstandards(such asIEC62047orIEC62899, etc.)alsoveryspecifictothe particu-lar fieldof application.However,inourresearch,thegoalis to provideimportantdesignconsiderationsfortheoptimizationof sensors onpolymeric substratesor printed electronics, or con-nections. Therefore, the samplesthat weremanufactured were analyzedviaprotocolsclassicallyusedforthecharacterizationof polymeric materialsin deformations. Tensiletesting conditions wereadoptedsincetheyallowprovidingthebestdescriptionof thestressandstrainconditionsofthesensingportionofthefilm, whereasbendingwouldhaveledtolocallyinhomogeneousstain levelsthroughoutthespecimenlength.

A6½digitsmultimeter(Agilent34401A)measuredthe electri-calresistanceusingfourwireconnections.Apersonalcomputer (PC)withLabVIEWvirtualInstrument(VI)controlledtheInstron

(4)

Fig.4.(a)Stressvs.straincurvesforthepolyimidespecimens;thetwodottedlines representconstructioncurvesforthedeterminationoftheyieldpoint,thecrosses correspondstothebreakpoint;(b)Constructioncurves.

andacquiredthedataofload,displacementandresistancein real-time.

The correlation between stress, strain and variation of the electricalresistancewere investigatedunder three deformation histories,schematicallyshowninFig.3.Thesetestswerecarriedout onsensors,and,separately,alsoonneatpolyimidefilmsamples.i.e. polyimidestripswithoutconductiveink,sotoevaluatemechanical, viscoelasticand cyclicfeatures of sensor’ssubstrate.Neat poly-imidesampleswerepreparedas160mmlongand10mmlarge rectangularstrips.Thegaugelength(120mm)oftheseneat sam-plesissignificantlylongerthanthelengthofthesensitivetrackin ordertobettercharacterizetheintrinsicpropertiesofthematerial andprovideresultsfreefromeffectsoftriaxialitytogrips.

Inthefirsttypeoftest,strainramptest(Fig.3a),themobile crossheadwasmovedatconstantspeed(10mm/min)upto speci-menfailure.

Thesecondtypeoftestconsistsincyclicloading-unloadingtests, carriedoutbysubjectingthesensorto60cyclesforagivenlevelof maximumstrain.Inthepresentresearch,theeffectoftheapplied

Fig.5. Cyclicbehaviorofthesubstratewhenthemaximumdeformationis(a)1.5% and(b)3%.

strainwasinvestigatedinsubsequentcyclicexperiments,increased themaximumstrainattheendofeachstep,thus,thesame speci-menwassubsequentlysubjectedto60cyclesatgivenlevelofstrain, laterincreasedforanothersetof60cycles,anduptothemaximum strain.Theexploredsetofstrainwasequalto0.5%,1%,1.5%,2% and3%.Thespeedofthecrossbeamwasadjustedsothatthetests hadthesametotaldurationofabout10min;sothestrainratewas set,respectively,5.7%/min,11.4%/min,17.1%/min,22.8%/minand 34.3%/min.Aftereachstepthespecimenwasunloadedand10min elapsedbeforethesubsequentstep.

The third type of test consistsin applying a given level of strain and maintaining it for a given time, a testing protocol thatcorrespondstothepolymertestingmethodologyknownas stress relaxation test. Similarly to the cyclic test, the effect of theappliedstrainwasinvestigatedinsubsequentrelaxationstep, increasingthelevelofdeformationappliedaftereachstep. Progres-sivelyincreasingdeformationsequalto0.5%,1%,1.5%,2%and3% wereapplied,withinloadingrampatconstantspeed(2mm/min), and maintainedfor 12minin each step,after which the speci-menwasunloadedand10minelapsedbeforethefollowingstep. In order tostart with thespecimen in puretension, a preload ofmoderateentity(0.5N)wasappliedonthesensorbeforeeach

(5)

Table1

Mechanicalpropertiesofthepolyimidesubstrateasdeterminedinstrainramp tensiletests.

Polyimidecharacteristics Value E,Youngmodulus(GPa) 3.6±0.2 ␴y,stressatyield(MPa) 66±4 ␧y,strainatyield(%) 2.3±0.4 ␴b,stressatbreak(MPa) 230±50 ␧b,strainatbreak(%) 55±27

ramp,allowingcontrollingproperlythestrainvalueappliedineach

step.

Thestressvaluewascalculatedasengineeringstress,by

nor-malizing the measured load to the initial cross-section of the

sample.Forthiscalculation,thethicknessofthepolyimide

sub-strate(25–30␮m)wasconsidered;thethicknessoftheconductive

layer,equaltofewhundredofnanometer,wasconsidered

negli-gible.Thestrainwasexpressedasengineeringstrain,whichisthe

ratiobetweentheelongationofthespecimenandtheinitiallength

betweengrips.

4. Experimentalresults

4.1. Mechanicalbehaviorofthepolyimidesubstrate

Mechanicaltestswerepreliminarilycarriedoutonfour

speci-mensofthepolyimidesubstrateinordertoevaluateitsmechanical

responsetothevariousdeformationhistories.

InFig.4a,thestressvs.strainrelationshipmeasuredalong a monotonicstrainrampatconstantdisplacementrateisreported, andthefourspecimensshowagoodrepeatability(thedeviation standardisaboutthe5%).Thistestallowedevaluatingthe mate-rialstiffnessaswellasitsyieldandbreakpoint,whosevaluesare reportedinTable1.

Atthelowerstrains,thespecimensdisplayalinearincreasing trend,onwhichtheYoungmodulus,E,wasevaluated;deviations fromthistrendarefoundathigherlevelsofstrains,andtheyare displayedastwosubsequentreductionsofthecurveslopebefore finalbreak.Thefirstdeviationfromthelineartrendisassumed rep-resentativeoftheyieldphenomenon.Thevaluesofyieldstress,␴y, wascalculatedasthestressattheintersectionoftwolines inter-polatingthelineartrendsdisplayedbeforeandafterthisdeviation, asschematicallysketchedinFig.4b;theyieldstrain,␧y,was eval-uatedonthestressvs.straincurvesincorrespondenceoftheyield stress.Thevaluesofstressandstrainatbreak(␴band␧b, respec-tively)wereevaluatedasthecoordinatesofthemaximumpoint ofthecurvebeforetheabruptfallofstressoccurringatbreak.The resultssuggestthatthesubstratematerialundergoesyieldingand localizedplasticdeformationalreadyatstrainlevelsequaltoabout 2.3%.Therefore,inparticularforcyclicloading-unloadingtests,the maximumlevelofadoptedstrainneverexceeded3%,whereasthe minimumvalueof0.5%wasadoptedinordertoassureareliable displacementcontrolbymeansofthedynamometer.

Cyclicloading-unloadingtestswerecarriedouttostudythe sub-strateresponseunderthisstrainhistory,andforvariouslevelsof maximumstrains,withthespecificaimtohighlighthysteresisin thestressvs.straincorrelationforrepeatedcyclesandto evalu-atetheaccumulationofresidualdeformationattheendofeach cycle.Fig.5showstheentireoutputofthewholecyclictest(up to20cycles,lastingabout15min);inparticular,Fig.5areferstoa maximumstrainequalto1.5%,whereasFig.5btoastrainequalto 3%,correspondingtovaluesrightbelowandabovetheyieldstrain, respectively.

For bothstrain levels,a hystereticresponse is evidenced,as confirmedbytheareacomprisedbetweenloadingandunloading. Asthenumberofcyclesincreases,aprogressivereductionofthis

Fig.6.Stressrelaxationtestsontheneatpolyimidefilmundertwolevelsofstrains.

areaandanoverlappingoftheloading-unloadingcyclesoccur.The resultsshowthatundertheseconditionsthematerialundergotoa largeevolutionofstress-straincorrelationinthefirstcycle,tending onlyabove10cyclestoacommontrend.Further,thepresenceofa residualdeformationattheendofeachcycleisshown.Thisisnot sorelevantformaximumdeformationlevelsupto1.5%(forthis levelofstraintheresidualdeformationisabout0.05%afterthe1st cycleandapproaching0.1%afterthe20thcycle).Itbecomesmore importantforhigherlevelsofstrain(inthecaseofthehigheststrain exploredtheresidualstrainincreasesfrom0.3%to0.6%duringthe test).

Thestressrelaxationtests,carriedoutbysubjectingthe spec-imenataconstantstrainandmonitoringthestressdecreasingin timefor 30min,providedtheresultsreportedinFig.6,fortwo levelsofstrain(0.25%and1.5%,respectively),bothchosenbelow theevaluatedyieldstrain.Atalltheappliedstrains,theexpected stressreductionisfound,butwhereastheeffectismoderate(i.e.a

Fig.7.Normalizedresistancechange(R/R0)asafunctionofstrainand

simul-taneouslymeasuredstressvs.straincurveforthesensorwithsilverparticlesink (R0=31);thedottedlinesareconstructionlinestobetterevaluatethechangeof

theslopes,whilethedashedlinesdefinethelevelofstrainatwhichthechange occurs.

(6)

Fig.8.SEManalysisforthemicrocrackdetectionwhenthestripesbasedonnanoparticlesilverinkare(a)unstressed,(b)elongatedat1%,(c)elongatedat5%.Nocracksare visibleintheelongatedstripes.

Fig.9. Normalizedresistancechange(R/R0)andstressevolutionofstrain,and

gaugefactors(R0=6890);thelinesrepresentthespecificlevelsofstrainforthe

resistancevariationrateandthestrainatyield(fromthestresscurve).

decreaseofabout2.8%within30min)fortheloweststrain,at1.5% thedecreasebecomesmarkedlymoresignificant(i.e.about13%), fasteranditdoesnotseemtoapproachastableplateauwithinthe testtime,asaprobableconsequenceinthenonlinearviscoelasticity regime.

4.2. Sensorsresponsesintensileramptests

Sensorsresponsestoaquasi-statictensileramp(Fig.3a)are reportedinFigs.7and9,wherethespecimensaredeformedata constantstrainrateuptothespecimenfailure.

InFig.7,thesensorbehaviorwithsilvernanoparticlesinkis shown in terms of normalized resistance change, R/R0, as a functionofstrain(R0=31);alsothestressvs.straincurve, simul-taneouslymeasuredonthesensor,isreported.

Thenormalizedresistancechangeshowsanevidentincreasing dependenceonstrain,displayedasasubsequenceoftwoalmost lineartrendswithdifferentslopes.Atlevelsofstrainofabout4%, infact,theinitiallineartrendgraduallyapproachesasecondtrend withahigherslope.Interestingly,bycomparingthistrendwiththe stressvs.strainrelationship,itissuggestedthatthechangeinslope takesplaceintheregionneartoyieldoccurrence.Finally,athigher strains,butwellbeforespecimenfailure,theresistancepresentsan abruptincreaseofmanyordersofmagnitude,(conditionsof

“over-load”).Thelastdeformationvalueacquired,whichisabout8–10%, canbeadoptedtoestimatethemaximumlimitofsensitivity.

TheincreasingdependenceofR/R0withthestraincanbealso expressedintermsofanincreaseofgaugefactor,whichwaseasily evaluatedasslopeoftheR/R0vs.straincurve,assumingvalues ofG1=3.72inthefirstportionofthecurves,andbecomingalmost twice(G2=6.7)afterwards.Theincreaseinresistancewithstrain canbeascribedtoachangeingeometryoftheconductivetrack, whichincreasesitslengthandreducesitswidth,aswellastoa changeinresistivity.Inparticular,thesignificantchangeofslope occurringincorrespondencetotheyieldpoint,andtheassociated localizationofstrain,couldsuggestthatyieldingisatthebasisof theresistancevariation,asaconsequenceofdamagestothe con-ductivepathatthemicroscale.Thephenomenoncanbeconsidered increasingwithstrainuntillocalizedbreakingofthesensitivetrack ordetachmentsofthesensitivetrackwiththesilverconnection leadtotheoverload.SimilarresultswereobtainedbyValetonetal. [32],who,forasensorobtainedbydepositingasilver-basedink onaPET(poly(ethyleneterephthalate))substrate,interpretedthe changeinelectricalresistanceinducedbytensilestrainasa conse-quenceofmicrocracksontheconductivetrack,andtheasymptote athighdeformationstoexcessivemicrocracking.

In order to verify the presence of suchmicrocracks onthe stretchedsensors,themorphologyoftheconductivetrackswas investigated,usingascanningelectronmicroscope(SEM)andan optical microscope.No significantmorphological changes were foundforstrainlevelsaboveandbelowtheyieldpointwithrespect totheundeformedspecimens.Theseresultsseemtosuggestthat suchpathalteration,ifany,couldbeascribedtoverylocalizedstrain atthesubstrate-trackinterfacebutdonotinvolvefilmcracking atthesurface.Asarepresentativecase,theSEManalysesonan unstressedstripe,onastripeelongatedat1%andat5%imageare showninFig.8.Clearly,furtherexperimentsarerequiredtobetter understandwhatisoccurringintheconductivepath.

InFig.9,theexperimentalresultsforPEDOT:PSS-basedsensor arereported.Thenormalizedresistancevariationshowsan increas-ingdependenceonstrain,asinthecaseofsilverink,butdiffering intermsofcurveshape,whichdisplaysasmootherand continu-ousincreaseofslope,attainingalineartrendonlyforstrainlevels aboveyielding.Interestingly,thecurveshowsanevidentcurvature, whichcloselyresemblesthestressvs.strainevolution,inparticular intheyieldregion.Furthermore,thechangeinstrainisevaluated onthewholestrainscaleuptofailure,sothatthesensing capa-bilitiesofthesensorsarelimitedonlybythesubstrateductility, probablyduetothehigherductilityofthePEDOT:PSStrackswith respecttothoseinsilvernanoparticles.

ThepronouncedcurvatureoftheR/R0vs.strainatlowstrain levelsinhibitsaproperevaluationofthegaugefactoronthesestrain levels,whereasthatathigherstrainscanbecalculatedmore

(7)

eas-Fig.10.Experimentallymeasurednormalizedresistancechange(R/R0)asa

func-tionofstrainandfittingwithasecondorderpolynomialcurve.

ily.Nevertheless,tocomparethesensorperformances,thevalue of gaugefactors belowand above theyield points(G1 and G2, respectively)wereattempted.ThevalueofG1,definedastheslope oftangentatthecurveforstrainsbelow3%,isseentovarybetween 0.19and1.59;thevalueofG2,evaluatedonthelastpartofthecurve (above5%,asshownintheconstructionlineinFig.9)isabout2.6. Boththevaluesofgaugefactorsoncorrespondingstrainregions areseentobelowerthanthosefoundforthesilvernanoparticles ink.

Inthiscase,incontrasttothebilineartrendfoundforthesilver nanoparticlesink-basedsensors,therelationshipbetween resis-tance variation and strain can be described by a second-order polynomial equation, as shown in Fig.10. It seems to suggest thattheresistanceresponseshouldberesearchedinachangeof theelectricalconductivitydependingontheappliedstrain;the conductivePEDOTgrains[19]changetheirinterdistanceunder dif-ferentlevelsofstrain.

ThecalibrationcurveofthesensorbasedonPEDOT:PSScould beapproximatedtoalinearcurveifitisrequiredbythespecific application.Criteriaforselectingofthetwocalibrationpoints min-imizingthe errorcouldbeadoptedsuccessfully in thiscase, as proposedbyPallàs-Arenyet.al[33].

4.3. Sensorsresponseundercyclicandstaticapplicationsofstrain Thesensor responsestoacyclic applicationof progressively increasinglevelsofstress(Fig.3b)arepresentedforthesystem printed with silver nanoparticles ink in Fig. 11. The graphs in Fig.11aandbshowthenormalizedvariationoftheelectrical resis-tancewithinthewholecyclictensiletestfortheminimum(1%)and themaximum(3%)levelofappliedstrain.Atbothlevelsofstrain, thecurvesarecharacterizedbytwoimportantdriftingphenomena: i)hystereticaleffects intheR/R0 vs.straindependence,which becomeslessimportantasthecyclesincrease;ii)averticalshiftof theR/R0vs.straincurvesasthecyclesincrease.Furthermore,the sensoratunloadingdoesnotfullyrecovertheapplied deforma-tion;although,thevalueofminimumdeformationislowerthan 0.1%,inthelastpartoftheunloadingsegmentthesensortendsto bend,presentingabucklingeffect;thiseffectbecomesmore impor-tantastheappliedstrainandthenumberofcyclesincreasing.This determinesthepresenceoftheplateaushownforlowstrainlevels inFig.11b.Thiseffectisclearlydictatedbythefactthatthesensor

Fig.11.Responseofthesilvernanoparticlesinksensorundertheapplicationof loading-unloadingcyclesatagivenmaximumstrainvalue,correspondingto(a) 1.5%and(b)3%;greycurvesrepresentthecontinuousreadingofthesensoronall cyclesandthecurvescorrespondingtothe2nd,30thand60thcyclearehighlighted.

(c)Evolutionofthegaugefactorwiththecyclesandthemaximumstrainapplied.

responseisimportantunderstretching,butnotundercompression orflexure.Asaconsequence,thereisareductionofsensor sensitiv-itytosmalllevelsofdeformation,theextensionofthisplateauof poorsensitivityincreaseswiththenumberofcyclesandalsowith themaximumdeformationappliedduringthetest.Infact,this

(8)

phe-Fig.12.ResponseofthePEDOT:PSSinksensorundertheapplicationof loading-unloadingcyclesatagivenmaximumstrainvalue,correspondingto(a)1%and(b) 3%;greycurvesrepresentthecontinuousreadingofthesensoronallcycles,while incolorsarehighlightedthecurvescorrespondingtothe2nd,30thand60thcycle.

Table2

Averagegaugefactorforvariouslevelsofmaximumappliedstrainandvarious cycles.

GaugeFactor

Strain(%) 2ndcycle 30thcycle 60thcycle

0.5 1.26 1.21 1.21

1.0 1.51 1.56 1.56

1.5 1.73 1.75 1.81

2.0 2.02 2.12 2.19

3.0 2.81 3.14 3.37

nomenoniswellevidencedforthehighestlevelsofstrains,butit

startstobecomerelevantatmaximumdeformationlevelsof2%,

i.e.inproximityoftheyieldstrain.

Toprovideanevaluationoftheoverallsensorcapabilities,we

alsotried toestablishanaveragevalueofthegaugefactor,

cal-culatedasaverageslopeofthesinglecycle,andtheresultsare

reportedinTable2andinFig.11c,withparticularreferencetothe

2nd,30thand60thcycle.Thegaugefactorvalueisrepresentativeof theaveragesensitivityonthewholestrainintervals;forthisreason,

Fig.13.Responseofthesensorswithsilverparticles-basedink(a)and PEDOT:PSS-basedink(b),whenaconstantstrainvalueisappliedandmaintainedconstantin time.

asthemaximumstrainincreases,highervaluesofgaugefactorare found,duetoinfluenceofthehighstrainresponse.Inanycase,it isworthwhiletonotethatforadeformationupto1.5%,thereisno specificdependenceofthegaugefactorfromthenumberofcycles. Suchadependenceonthenumberofcyclesbecomesappreciable formaximumstrainsequalto2%,anditbecomesevidentinthe testsat3%.Thiseffect,havingplaceincorrespondencetotheyield strain,canalsobeafeasibleindexforamarkedmaterialdamageof thesubstrateortheconductivepath,asunderlinedforthetensile tests.

ThePEDOT:PSSink-basedsensorsweresubjectedtocyclictests underthesameconditionsandtheresultsarereportedinFig.12a andb,formaximumdeformationlevelsof1%and3%,respectively. Thesensorsresponseundertheapplicationofaconstantstrain (Fig.3c)wasinvestigated,inordertounderstandwhetherthe mate-rialpresentsadriftintheresponsewithtime,andwhethersuch driftisaffectedbyvariousstrainregimes.InFig.13,theresults for thesensorsprinted withsilver nanoparticles-basedink and PEDOT:PSS-basedink,respectively,arereported.Thecurves rep-resenttheevolutionofR/R0 overtime;R0 istheresistanceof theundeformedsensor.Bothsensorsundergoareductionin resis-tancewithtime;furthermore,thiseffectismoreevidentforhigher appliedstrains,anditseemsthatthePEDOT:PSS-basedsensorsare morepronetosuchaneffect.Thereasonsbehindsucheffectare

(9)

notclear,andwesupposeavariationinshapeoftheconductive trackduringtime(forexampleduetothevariationovertimeof Poisson’sratioorwitheffectsinmicro-localizeddeformation)orto analterationofconductivecapacity,forexampleduetoexposure totheexternalenvironmentandatmosphericmoisture.Further,it isinterestingunderlinethatthereductioninresistance accompa-niesthestressdecreaseshowingaveryclosesimilaritywithit.In anycase,theresistancedecreaseisrelativelysmallforthe silver-basedink,whichshowsanoverallreductionof0.3%atthehighest appliedstrain;forthePEDOT:PSS-basedsensorssuchreductionis moreimportant,anditattainsvaluesofabout4%.

Thisiscomparedwithsensorsatrestfor30minindicatingthat theresistancedecreasemeasuredinthetestswithconstant defor-mation,eventhoughlimited,iscausedbythebehaviorofthesensor duringthetestsanditisnotexclusivelytheresultofthedriftthat thesensorwouldevenhaveifunloaded.

5. Conclusions

Thispaperprovidesamechanicalcharacterizationofstrain sen-sorsrealizedbyinkjetprintingonapolymersubstrateconductive tracksbasedonaPEDOT:PSS-basedinkoronaninkcontaining sil-vernanoparticles.Inallthetests,itwaspossibletohighlightthe closecorrelationofproportionalitythatexistsbetweenthe defor-mationandresistancechange.Inparticular,fromtheramptests obtainedwithsilver-inksensors,thecorrelationcanberepresented astheseriesoftwosubsequentlineartrends,whereasthis behav-iorisdifferentwithrespecttosensorsrealizedwithPEDOT:PSS,in whichthecorrelationcanberepresentedasasecondorder polyno-mialfunction.Thegaugefactorforsilver-inksensorsisabout3.7, whereasforPEDOT:PSS-inksensorsthegaugefactorislessthan 1.Theincreaseofresistancewiththedeformationisnotascribed solelytothedimensionalvariation oftheconductive track,but alsotoachangeoftheresistivitywithdeformation.Furthermore, theapplicationofaconstantdeformationovertimehasrevealed aprogressivedecreaseoftheresistance.Suchdriftismodest,the resistancevariation,calculatedwithadeformationmaintainedat 3%,isabout0.3%ifcomparedtotheinitialresistancevalue.Finally, theapplicationofloading-unloadingcyclesshowed:a)a hystere-sisinthesensorresponse,b)aprogressivedriftoftheresistance towardsgreatervalueswithincreasingnumber ofcyclesand c) theformation,withlowdeformationvalues,ofaplateauofpoor sensitivity.Thesephenomenaoccurinalimitedmodeupto defor-mationsof1.5–3%andtheseareevidentinthetestsinwhichthe sensorisdeformedupto3%.

Thesubstrateinfluenceonthesensorbehaviorhasbeen exper-imentallyverified.Thehighrigidityofthepolyimidecausesalow slopeofthefirstportionofthecurveresistance-stressobtainedin rampdeformation.Inthefuture,aimingatobtainingmore versa-tilestraingaugesensors,whichworkforexampleonalargerscale ofdeformation,elastomericmaterialscanbestudiedassubstrate. Thesesubstratescaneliminatetheproblemoftheyield,reduce thestiffness(andthusincreasethesensitivitytothestress)and mitigatethephenomenonofstressrelaxation,althoughitis neces-sarytofindtheconditionsforagoodwettabilitytotheconductive ink.Fortheelastomericsubstrate,thePEDOT:PSSinkcouldbea betteralternativethanthenanoparticlesilverinkforfabricating sensors,evenifthegaugefactorislowerandtheresistancedriftis moreevident.Indeed,whereasthelastdeformationofthestripes basedonsilveris8–10%(beforethespecimenfailure),theoneofthe PEDOT:PSSstripesacquiredbythetensileramptestis17%which correspondstothestrainatbreak.

References

[1]Y.Sun,K.He,Z.Zhang,A.Zhou,H.Duan,Real-timeelectrochemicaldetection ofhydrogenperoxidesecretioninlivecellsbyPtnanoparticlesdecorated

graphene–carbonnanotubehybridpaperelectrode,Biosens.Bioelectron.68 (2015)358–364.

[2]Y.Huang,W.Dong,T.Huang,Y.Wang,L.Xiao,Y.Su,Z.Yin,Self-similardesign forstretchablewirelessLCstrainsensors,Sens.ActuatorsA224(2015)36–42. [3]R.Ghosh,A.Singh,S.Santra,S.K.Ray,A.Chandra,P.K.Guha,Highlysensitive

large-areamulti-layeredgraphene-basedflexibleammoniasensor,Sens. ActuatorsA205(2014)67–73.

[4]R.D.P.Wong,J.D.Posner,V.J.Santos,Flexiblemicrofluidicnormalforcesensor skinfortactilefeedback,Sens.ActuatorsA179(2012)62–69.

[5]J.-H.Kim,Y.Liang,S.Seo,Patchablethin-filmstraingaugesbasedon pentacenetransistors,Org.Electron.26(2015)355–358.

[6]C.-W.Ma,L.-S.Hsu,J.-C.Kuo,Y.-J.Yang,Aflexibletactileandshearsensing arrayfabricatedusinganovelbuckypaperpatterningtechnique,Sens. ActuatorsA231(2015)21–27.

[7]S.-H.Bae,Y.Lee,B.K.Sharma,H.-J.Lee,J.-H.Kim,J.-H.Ahn,Graphene-based transparentstrainsensor,Carbon51(2013)236–242.

[8]A.Bessonov,M.Kirikova,S.Haque,I.Gartseev,M.J.A.Bailey,Highly reproducibleprintablegraphitestraingaugesforflexibledevices,Sens. ActuatorsA206(2014)75–80.

[9]G.Saggio,Electricalresistanceprofilingofbendsensorsadoptedtomeasure spatialarrangmentofthehumanbody,Proceedingsofthe4thInternational SymposiumonAppliedSciencesinBiomedicalandCommunication Technologies(2011),articleNo.5.

[10]J.N.Pereira,P.Vieira,A.Ferreira,A.J.Paleo,J.G.Rocha,S.Lanceros-Mendez, Piezoresistiveeffectinspin-coatedpolyanilinethinfilms,J.Polym.Res.19 (2012)0–6.

[11]A.Ferreira,J.G.Rocha,A.Anson-Casaos,M.T.Martınez,F.Vaz,S. Lanceros-Mendez,Electromechanicalperformanceofpoly(vinylidene fluoride)/carbonnanotubecompositesforstrainsensorapplications,Sens. ActuatorsA178(2012)10–16.

[12]P.Costa,J.Silva,V.Sencadas,R.Simoes,J.Viana,S.Lanceros-Mendez, Mechanical:electricalandelectro-mechanicalpropertiesofthermoplastic elastomerstyrene–butadiene–styrene/multiwallcarbonnanotubes composites,J.Mater.Sci.48(2013)1172–1179.

[13]A.Ferreira,P.Cardoso,D.Klosterman,J.A.Covas,F.W.J.vanHattum,F.Vaz,S. Lanceros-Mendez,Effectoffillerdispersionontheelectromechanical responseofepoxy/vapor-growncarbonnanofibercomposites,SmartMater. Struct.21(2013)075008.

[14]H.Ohya,V.V.Kudryavsev,S.I.Semenova,Polyimidemembranes:applications, fabricationsandproperties,CRCPress,2016,pp.1997.

[15]B.Andò,S.Baglio,All-Inkjetprintedstrainsensors,IEEESens.J.13(2013) 4874–4879.

[16]N.Komuro,S.Takaki,K.Suzuki,D.Citterio,Inkjetprinted(bio)chemical sensingdevices(2013)anal,Bioanal.Chem.405(2013)5785–5805. [17]G.Cummins,M.P.Y.Desmulliez,Inkjetprintingofconductivematerials:a

review,CircuitWorld38(2012)193–213.

[18]B.Andò,S.Baglio,S.LaMalfa,G.L’Episcopo,Allinkjetprintedsystemfor strainmeasurement,IEEESens.Conf.2011(2011)215–217.

[19]M.Yang,Y.Zhang,H.Zhang,Z.Li,CharacterizationofPEDOT:PSSasa biocompatibleconductivematerial,in:Proceedingsofthe10thIEEE InternationalConferenceonNano/MicroEngineeredandMolecularSystems (NEMS),Xi’an,China,2015,pp.149–151.

[20]M.Hokazono,H.Anno,N.Toshima,Thermoelectricpropertiesandthermal stabilityofPEDOT:PSSfilmsonapolyimidesubstrateandapplicationin flexibleenergyconversiondevices,J.Electron.Mater.43(2014)2196–2201. [21]Y.Seekaew,S.Lokavee,D.Phokharatkul,A.Wisitsoraat,T.Kerdcharoen,C.

Wongchoosuk,Low-costandflexibleprintedgraphene–PEDOT:PSSgas sensorforammoniadetection,Org.Electron.15(2011)2971–2981. [22]P.Calvert,D.Duggal,P.Patra,A.Agrawal,A.Sawhney,Conductingpolymer

andconductingcompositestrainsensorsontextiles,Mol.Cryst.Liq.Cryst. 484(2008).

[23]DuPont,DuPontkaptonHNpolyimidefilm,KaptonHNdatasheet(2011). [24]AdvancedNanoProductsSilverJetInk,2015.Availablefrom:URL:http://

anapro.com/eng/product/silverinkjetink.html.

[25]AfgaSpecialitiesProductsORGACONTMTransparentConductiveInkjetInk:

IJ-1005,2013.Availablefrom:URL:http://www.agfa.com/sp/global/en/ binaries/IJ1005-2013v1.1tcm611-86919.pdf.

[26]Y.Sun,S.P.Lacour,R.A.Brooks,N.Rushton,J.Fawcett,R.E.Cameron, Assessmentofthebiocompatibilityofphotosensitivepolyimidefor implantablemedicaldeviceuse,J.Biomed.Mater.Res.90A(2009)648–655. [27]X.Crispin,F.L.E.Jakobsson,A.Crispin,P.C.M.Grim,P.Andersson,aVolodin,C.

vanHaesendonck,M.VanderAuweraer,W.R.Salaneck,M.Berggren,The originofthehighconductivityofpoly(3,

4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT-PSS)plastic electrodes,Chem.Mater.18(2006)4354–4360.

[28]Y.Liu,B.Weng,J.M.Razal,Q.Xu,C.Zhao,Y.Hou,S.Seyedin,R.Jalili,G.G. Wallace,J.Chen,High-performanceflexibleall-solid-statesupercapacitor fromlargefree-standinggraphene–PEDOT/PSSfilms,Sci.Rep.5(2015)17045. [29]T.Öhlund,J.Örtegren,S.Forsberg,H.E.Nilsson,Papersurfacesformetal

nanoparticleinkjetprinting,Appl.Surf.Sci.259(2012)731–739.

[30]F.Molina-Lopez,D.Briand,N.F.DeRooij,Alladditiveinkjetprintedhumidity sensorsonplasticsubstrate,Sens.ActuatorsB:Chem.66–167(2012) 212–222.

[31]M.L.Allen,M.Aronniemi,T.Mattila,A.Alastalo,K.Ojanperä,M.Suhonen,H. Seppä,Electricalsinteringofnanoparticlestructures,Nanotechnology19 (2008)175201.

(10)

[33]R.Pallàs-Areny,J.Jordana,Ó.Casas,Optimaltwo-pointstaticcalibrationof measurementsystemswithquadraticresponse,Rev.Sci.Instrum.75(2004) 5106–5111.

Biographies

Michela Borghettireceived herMaster’sdegree, cum laude,inElectronicEngineeringfromtheUniversityof Bresciain2012.In2015,shewasvisitingPh.D.studentat UniversitatPolitècnicadeCatalunya.In2016,Shereceived thePh.D.inTechnologyforHealthfromtheUniversity of Brescia.Nowsheis Postdoctoral Reasearcherwith theDepartmentofInformationEngineering,University ofBrescia.She isworking onthedesignand fabrica-tionofsensorsforhealthcareusinglow-costtechnologies. Furthermore,sheisdevelopingelectronic systemsfor measuringandmonitoringlimbmovements.

MauroSerpelloniisassistantprofessorofmeasurement attheInformationEngineeringDepartment.Hereceived thePh.D. inelectronicinstrumentationfrom the Uni-versity of Bresciain 2006. From 2006–2010, he was PostdoctoralResearcherwiththeDepartmentof Infor-mation Engineering,University of Brescia. Nowhe is Assistant Professor and Aggregate Professor with the Department of InformationEngineering, University of Brescia.Hehasworkedonseveralprojectsrelatingto thedesign,modelling,andfabricationofmeasurement systemsforindustrialapplications.Hisresearchinterests includeelectronicinstrumentation,sensors,contactless transmissionsbetweensensorsandelectronicsandsignal processingformicroelectromechanicalsystems.

ElectronicsforAutomation,UniversityofBrescia.Since 2006heisfullprofessorofElectricalandElectronic Mea-surement.Hehasdoneintensiveresearchinthefieldof electronicinstrumentation,sensors,andsignal condition-ingelectronics.Recently,researchhasbeenaddressedto thedevelopmentofautonomoussensorsforbiomedical applicationswithsomespecificinteresttowarddevices implantableinsidethehumanbody.Heisauthoror coau-thor of morethan onehundred paperspublished on internationaljournal.

Pandini,bornin1975inTrento(Italy),studied Mate-rialsEngineeringattheUniversityofTrento,wherehe graduated.InhisPh.D.thesishedealtwiththetimeand temperatureontheviscoelasticbehavior of semicrys-tallinepolymersatsmallandlargedeformations.Since 2005isAssistantProfessorinMaterialsScienceand Tech-nologyattheUniversityofBrescia.Hehasanexpertise inthestructural,mechanicalandthermal characteriza-tionofpolymericandcompositematerialsforengineering andbiomedicalapplications.Hisfieldsofresearchmainly concernsthethermo-mechanicalresponseof polymer-basedfunctionalmaterials(micro-andnano-structured polymer-based systems; nano-filled rubbers), andthe shapememorybehavioroftailoredpolymericsystems.

Figura

Fig. 1. (a) Example of a sensing strip for the tensile tests; observations at the optical microscope of the conductive track (b) for the silver nanoparticles ink and (c) for PEDOT:PSS.
Fig. 3. Schematic representations of the three sets of tests: (a) a monotonic ramp at constant displacement rate; (b) loading–unloading cycles at various maximum levels of strains; (c) maintained strain levels for prolonged time.
Fig. 5. Cyclic behavior of the substrate when the maximum deformation is (a) 1.5% and (b) 3%.
Fig. 7. Normalized resistance change (R/R 0 ) as a function of strain and simul-
+4

Riferimenti

Documenti correlati

2 Rilevava, al riguardo, il Comitato nazionale per la bioetica nel parere del 18 dicembre 2003: «È fuor di dubbio che molti ardui problemi decisionali di terapia e di

L’uomo che conosce, invece, può conoscere solo ciò che egli ha costruito” (von Glasersfeld, 1989b, p. La conoscenza con- siste, in ultima analisi, nella produzione di

Nei pazienti con cardiopatia ischemica accertata o sospetta, nei quali siano state escluse anomalie secondarie della ripolarizzazione ventricolare, diverse anomalie dell'onda

Relatori Candidata Prof.ssa Dente Luciana Pedicini Lucia Prof.ssa Raffa Vittoria. Dott.ssa

In questo lavoro ho anche considerato l'importanza che le traduzioni di Gerardo hanno avuto nella costituzione di un progetto ˮ educativo o meglio ancora di un programma

Considering stationary applications at first, ESS can be employed successfully for addressing several issues affecting modern power systems, such as reduced level of

Thus, not only do international rankings produce a single model of glob- al research and education, but also push universities to avoid the specific social, educational and

Physicochemical properties of mesoporous silica nanoparticles affect drug loading capacity, colloidal stability and interactions with loaded drugs, leading to