• Non ci sono risultati.

Local landmark alignment for high-resolution fMRI group studies: Toward a fine cortical investigation of hand movements in human

N/A
N/A
Protected

Academic year: 2021

Condividi "Local landmark alignment for high-resolution fMRI group studies: Toward a fine cortical investigation of hand movements in human"

Copied!
13
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Neuroscience

Methods

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j n e u m e t h

Basic

Neuroscience

Local

landmark

alignment

for

high-resolution

fMRI

group

studies:

Toward

a

fine

cortical

investigation

of

hand

movements

in

human

F.

Pizzagalli

a,b

,

G.

Auzias

c

,

C.

Delon-Martin

a,b

,

M.

Dojat

a,b,∗

aINSERMU836(GIN),GrenobleF-38700,France bUniversitéJosephFourier,Grenoble,France cLSISLab,UMRCNRS6168,MarseilleF-13000,France

h

i

g

h

l

i

g

h

t

s

•Weproposethecombinationofhigh-resolutionfMRIwithnon-linearregistrationtechniqueinvolvingexplicitanatomicalconstraintforindividual cortexregionalignment.

•Preciselocalanatomicallandmarkalignmentimprovesfunctionalclusterdetectionandlocalizationatgrouplevel. •Thequalityoftheregistrationobtainedisassessedbybothstructuralandfunctionalindexes.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19October2012

Receivedinrevisedform10May2013 Accepted12May2013 Keywords: Realignment Diffeomorphicregistration FunctionalMRI StructuralMRI Jacobian Sulci Brain

a

b

s

t

r

a

c

t

Convergingevidenceconclusivelydemonstratestherobustrelationshipbetweenanatomicallandmarks andunderlyingfunctionalorganizationinprimarycorticalregions.Inconsequence,aprecisealignment acrosssubjectsofsuchspecificindividuallandmarksshouldimprovetheoverlapofthecorresponding functionalareasandthusthedetectionofactiveclustersatthegrouplevel.Inanefforttodefinea dedi-catedprocessingpipelineforafinenon-invasiveexplorationofthemotorcortexinhuman,weevaluated fourrecentnon-linearregistrationmethodsbasedonanatomicalandfunctionalindexes.Weused high-resolutionfunctionalMRIdatatofinelyrevealtheimpactoftheregistrationonthecorticalassignment ofthedetectedclusters.Ourresultsfirstdemonstratethatthequalityofregistrationstronglyaffectsthe statisticalsignificanceandtheassignmentofactivatedclusterstospecificanatomicalregions,herein theprimarymotorarea.Ourresultsalsoillustratethebiasinducedbythechosenreferencetemplateon thedetectedclusters.TheanalysisoftheJacobianofthedeformationfieldinformsusabouthoweach methoddeformstheanatomicalstructuresandfunctionalmaps.Themethodologywepropose, combin-inghighresolutionfMRIandnon-linearregistrationmethod,allowsarobustnon-invasiveexploration ofthemotorcortex.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Group analysis of neuroimaging data requires registering anatomicalandfunctionalindividualdatainacommonspace.This spatialregistrationshouldensureaprecisealignmentofindividual corticalgraymatterribbonsandideallyofunderlyingfunctional areas.Forprimarycorticalregions,convergingevidence conclu-sivelydemonstratestherobustrelationshipbetweenanatomical landmarksand underlyingfunctionalorganization (Fischl etal., 2008).Inconsequencewhensucharelationshipexists,aprecise alignment across subjects of individual anatomical landmarks

∗ Correspondingauthorat:GrenobleInstitutdesNeurosciences,INSERMU836, BatimentEdmondJSafra,CheminFortunéFerrini,38700LaTronche,France. Tel.:+33456520601;fax:+33452560599.

E-mailaddresses:Michel.Dojat@ujf-grenoble.fr,mdojat@gmail.com(M.Dojat).

shouldimprovetheoverlapofthecorrespondingfunctionalareas andthusthedetectionofactiveclustersatthegrouplevel.Inthis paper, we considertheprimary motor cortex M1 that exhibits a clear relationship with a constant anatomical landmark, the centralsulcus(Fischletal.,2008).Weinvestigatewhetherafine alignmentofindividualcentralsulcusimprovesfunctional align-mentatthegrouplevel.AnimportantpartofM1isdevotedtothe controlofhandmovements.Ourcurrentknowledgeofthehand movement control relies mainly on electrophysiological recor-dingsinmonkeys(Humphrey,1986;Kakeietal.,1999;Rathelot and Strick,2006)and inhumans,onpre-surgicalinvestigations (Penfield,1935)orpostmortemcytoarchitectonicstudies(Geyer etal.,1996).Indeed,humanM1appearstobegrosslysomatotopic butitsfinefunctionalorganizationremainspoorlyknown(Geyer etal.,1996;SanesandSchieber,2001).Neuroimagingappearsas theidealnon-invasivetooltoprogressinourunderstandingofthe corticalrepresentationofhandmovementinhumans.However,

0165-0270/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jneumeth.2013.05.005

(2)

allnon-invasivefunctionalstudiesofhumanM1proposedtodate havebeenlimitedbytheconsiderableinter-subjectvariabilityin subject’sresponse,degreeofsomatotopyandtheexactlocalization oftheirmotormaps(Kleinschmidtetal.,1997;Meieretal.,2008).In healthysubjects,differentfMRIstudiesofthecortical representa-tionoffingersrevealedhighlyoverlappingmaps,togetherwithan arrangementoffinger-specifichotspotsthatfollowsasomatotopic organization(Sanesetal.,1995;Raoetal.,1995;Kleinschmidtetal., 1997;IndovinaandSanes,2001;Beisteineretal.,2001;Dechent andFrahm,2003).Morerecently,Meierandcollaborators(Meier etal.,2008)foundanoverlappingsomatotopyinhumanforwhich therepresentationsofthedifferentbodypartsareintermingled, anda complexorganizationfor thearm andhand,withfingers emphasizedinacoreregionsurroundedbyadorsalandventral representationofthearm.Inthesameline,Strotheretal.reporteda doublerepresentationofthewristandelbow(Strotheretal.,2012). Ourgoalwiththepresent studywastodefinea specificimage processingpipelinetoinvestigatefinelyhandcorticalmovement organizationinM1inhealthyandpathologicalsubjects.

Structurally,theprimarymotorM1andsomatosensoryS1 cor-ticeslieonthetwobanksofthecentralsulcus(CS),respectively anteriorlyandposteriorly.The segmentof theprecentralgyrus shapedlikeaninvertedomegaorepsilonintheaxialplaneand likeahookinthesagittalplane,isareliablelandmarkfor identify-ingtheprecentralgyrusundernormalandpathologicalconditions. Itisgenerallyreferredasthehand-knobstructure andisagood predictorofthehandrepresentationinM1attheindividuallevel (Yousryetal.,1997).However,itpresentsaconsiderablevariability inshapeanddorso-ventralpositionalongtheCSbetweensubjects (Cauloetal.,2007;Sunetal.,2011).Functionally,the investiga-tionofM1withfunctionalMagneticResonanceImaging(fMRI)is limitedbytwofactors:

1.InsufficientspatialresolutionoffMRI.Atacquisition,thetypical spatialresolution(3mm×3mm×3mm)leadstoa mixingof functionalBOLDresponseswithinM1subregionsandbetween M1andsomatosensorycortexS1.

2.Poorcross-participantalignmentofhandmotorarea.Thisleads totheunderestimationorthefailuretodetectfunctional acti-vationinM1.Moreover,spatialalignmentandspatialfiltering, performedpriortostatisticalanalysistoreinforcetheoverlap betweenindividualareas,introducepersethefunctional blur-ringandthelossofapreciselocalizationoffMRIsignals.This clearlyimpedestheseparationofpotentiallydistinctactivated clustersfoundinM1.

Wehypothesizedthatthecombinationofaperfectalignment ofallindividualhand-knobsfromstructuralMRimageswithhigh resolutionfunctional MR images, insuringthe mappingofeach functionalvoxeltoasinglegyruslocation,couldimproveatthe populationlevel functionalareasoverlap,increasingthe signifi-canceofstatisticalparametricmaps.

Given the high tortuosity of the cortical ribbon, Hyde and co-workers(Hydeetal.,2001)foundthatanisotropicspatial res-olutionof1.5mmwasoptimaltodetectrobustcorticalactivation followingafinger-tappingparadigm.Thisspatialresolutioncanbe achievedbydecreasingplanethicknessandincreasingthein-plane acquisitionmatrixusingmulti-shotEPIsequenceswhilerestricting theacquiredvolumetoencompassthemotorarea.Forspatial align-ment,itiswellestablishedthatlinearregistrationisinadequate foraligningcorticalstructuressuchassulci.Severalstudieshave comparednon-linear brainimageregistrationalgorithms work-ingonthewholebrain(Hellieretal.,2003;Kleinetal.,2009),on specificregions(YassaandStark,2009), orusingvolumeversus surface-basedapproaches(Kleinetal.,2010).Inallthesestudies asetofquantitativemeasureswasusedtocomparethedeformed

structuralMRsourceimagestothetarget.Theeffectsofthe regis-trationonbrainactivationdetectionwereinvestigated,tothebest ofourknowledge,mainlyinauditorycortex(Viceicetal.,2009; Tahmasebietal.,2009,2012).Inthispaper,inthecontextofmotor cortexstudies,we explore theeffectsof non-linearregistration methodsonthedetectionofstatisticallysignificantactivated clus-tersandontheirlocalization.Theuseofhigh-resolutionfunctional MRimagesallowstofinelyexploretheimpactoftheregistration onthecorticalassignmentofthedetectedclusters.Weselected fourrecentregistrationmethodsasrepresentativeofthecurrent state-of-the-art.

First,weconsideredDARTEL(Ashburner,2007)as representa-tiveofstandard diffeomorphicmethods wherethedeformation constraints,estimatedgloballyonthewholebrainscan,alignthe corticalvalleysandcrestsbutwithoutguaranteethatsulciof identi-calanatomicaldenominationwouldbeproperlyalignedaltogether. Then,weconsideredDISCO+DARTEL(Auziasetal.,2011)as repre-sentativeofaclassofmethodswhereexplicitsulcallandmarksare usedtoconstraintthe3Ddeformation.Finally,weconsidered Dif-feomorphicDemons(Vercauterenetal.,2009)asrepresentative ofdiffeomorphicmethodswheredeformationscanbeestimated locallytoalignpredefinedthree-dimensionalregionofinterests (ROIs), heresurrounding thehand-knob region.Data werealso processedusingtheSPM8normalizationprocedure1widelyusedin

theneurosciencecommunity.Toassesstheaccuracyofanatomical andfunctionalalignmentsprovidedbyeachregistrationmethod weconsideredcomplementarymeasuresandaquantitative analy-sisofthedeformationfieldcomputedandappliedtohighresolution functionaldatasetscomingfromthirteenhealthycontrolsubjects. Ourresultsdemonstratetheclearimprovement providedby registrationmethods,DARTELandDISCO+DARTEL,allowing large-but-controlled deformations on the quality of inter-individual brainstructurealignmentandonthedetectionandlocalizationof activatedclustersinM1areaatthepopulationlevel.

2. Materialsandmethods

2.1. Dataacquisition

Thirteen right-handed healthy subjects (mean 27.5 y.o.), as assessedbytheEdinburghinventory(Oldfield,1971),withoutpast orcurrent braindiseaseand nodetectedcognitivedeficitwere involvedinthisstudy.Allsubjectsgavewritteninformedconsent toparticipateinthestudy,whichwasapprovedbyour institu-tionalreviewboard.Weacquiredhigh-resolutionstructuralimages (1mm×1mm×1mm)onaBruker3TMedspecS300wholebody scannerequippedwithabirdcageheadcoilusingaT1-weighted 3DMP-RAGE optimizedsequence (Deichmannetal.,2000).For eachsubjectweacquired176sagittalpartitionsintwosegments withanimagematrixof256×112(read×phase).Furtherimaging sequenceparameterswere: TR/TE/TI:16/4.96/903ms,excitation pulseangle:8deg,acquisitionmatrix:176×224×256(x,y,z),fast phaseencodinginantero-posteriordirection(112stepsperRAGE train, 2 segments), slow phase encoding in left-right direction, isotropicnominalresolution=1mm,BW=130Hz/pixel,readoutin caudo-cranialdirection,numberofaverages=1andtotal measure-menttime=14min40s.

BOLDfunctionalimageswereacquiredwiththehighspatial res-olutionof1.5mm×1.5mm×1.5mmusinga4shotEPIsequence (pershot:TR/TE:1500/30ms,flipangle:77deg,acquisitionmatrix: 72×16;2 stacks of 15 adjacent contiguous slices of thickness 1.5mm, the first stack encompassing the hand portion of the

(3)

primarymotorcortexandthesecondonetheupperpartofthe cere-bellum).Thetotalk-spacematrix(72×64)wasdividedin4parts, onepershot.For eachshotaquarterofeachslicewasacquired (72×16).Thefollowingsliceorderwasused:1stsliceofstack1, 1stsliceofstack2,2ndsliceofstack1,2ndsliceofstack2,etc.Thus, eachslicewassampledatfourdifferenttimepoints1.5sapart, pro-vidingatemporalresolutionof6s.Functionaldataacquiredinthe cerebellumregionareoutofthescopeofthepresentpaper. 2.2. fMRIexperiments

Becauseof the highcomplexity of themotor command, we chosetostudysimplebasicmovements,namelyrepetitive flex-ionandrepetitiveextension,performedseparatelywitheitherthe thumbor thefingersorthewristduringa simple block-design fMRIprotocol.Thesetaskswereperformedunilaterallywiththe dominant(right)andwiththenon-dominant(left)hand.Thetotal numberofbasicmovementsequals12(2movementdirections×3 handparts×2hands).For each basicmovement,subjectswere instructedtoperforman alternationof aself-paced‘movement andrelax’duringeachactivationblockduration.Themovements wereregisteredforeachsubjectusingasetofflexiblesensorsof flexion/extension(FlexpointSensorSystems,Inc.,Utah)fixedon4 jointsofeachhandwithHypafix®,toinsureaclosecontactbetween

thesensorsandtheskin.Additionally,thisfixationmethodexertsa restoringforcethathelpsthehandjointstopassivelyreturntotheir initialpositionduringtherelaxingtimefollowingeachflexionor extension.Flexionandextensionsignalswererecordedonlineata frequencyof200HzusingtheLabViewsoftwarepackage(National Instruments®)anddisplayedonascreenintheacquisitionroom

throughouttheexperiment,sothatthetaskscouldbecontrolledin real-timebytheexperimenters.

Eachsubjectunderwentablock-designfMRIprotocol.Inorder not to mix all the twelve movements (2 directions×3 hand parts×2hands),wepresentedthestimuliinfourdifferent func-tional runsfor respectively flexion or extension withtheright hand or the left hand. The order was randomized among the subjects.Each run begins with thepresentation of the type of stimuli(forinstance:‘Righthandflexion’),then12s-restand18 s-activationblocksalternatedandthiscyclewasrepeated9times. Threeactivation blocks wereperformed respectivelywith each handpart,thumb,fingersandwrist,inapseudorandomorderto avoidpossiblemotorpreparation.Priortotheirinstallationwithin theMRscanner,thesubjectsweretrainedtoensurethatthetasks wereproperlyexecuted. Thisshorttrainingperiod avoidedany learningeffect.WeusedthePresentation®software

(Neurobeha-vorialSystems,Inc.)todisplayinstructionsback-projectedusing avideo-projector(Epson7250M,EpsonInc.,LongBeach,CA)ona translucentscreenpositionedattherearofthemagnet.Subjects viewedthisscreenviaamirrorfixedontheheadcoil.

2.3. Structuralimageprocessing

Individualstructuralimageswerefirstlysegmentedand debi-ased using unified segmentation approach as implemented in SPM82(AshburnerandFriston,2005)inconsideringtwobrain

tis-sues(GMandWM)andfournonbraintissues(CSF,largeveins, scalpandmeningia).WealsousedtheBrainVISA3 segmentation

pipelinetoautomaticallyextractandidentifythecorticalsulciand inparticulartheCSineachindividualbrain.Then,thevolumeswere registeredbetweensubjectsfollowingfourdifferentstrategiesand software using their own default parameters values as briefly

2‘NewSegment’SPMfunction. 3http://www.brainvisa.info

described hereafter: (1) SPM8, (2) DARTEL, (3) DISCO+DARTEL (DiDa)and(4)DiffeomorphicDemons(DDe).Eachstrategy pro-videsasubject-relateddeformationfieldappliedtofunctionaldata (seeSection2.4).

2.3.1. SPM8

SPM8registration(spatialnormalization)isembeddedwithin aprobabilisticframeworkthatcombinedimageregistration, tis-sueclassificationandbiasfieldcorrection(AshburnerandFriston, 2005).Tissueprobabilitymaps areusedtoassist the classifica-tion.Thisallowsregistrationtoa standardspacetobeincluded withinthesame generativemodel. Thepriorsused representa modifiedversionoftheICBMtissueprobabilisticatlas.Estimating themodel parametersalternates among classification,bias cor-rection, and registrationsteps. The non-linear registration part usesalow-dimensionalapproach(comparedtoDARTEL),which parameterizesthedeformationsbyalinearcombinationofabout athousandcosinestransformbases.WeusedtheMNItemplateas thetargetforregistration.

2.3.2. DARTEL

DARTEL(Ashburner,2007)registrationoptimizestheoverlapof grayandwhitemattertissuemasksbetweensubjectsthrougha largedeformationmethodwheredeformationsareparameterized basedona stationaryvelocityfield.Toavoidthebiasrelatedto thearbitraryselectionofasinglebrainasaregistrationtemplate, thealgorithmembedstheconstructionofanaverageimage tem-plate.Ititeratestoregisterallimagestotheiraveragetemplateand computeanewaveragetemplateateachstep.Theinitialsmooth templatebecomesgraduallysharpereachtimeitisre-computed, resulting inan iterativecoarse-to-fine registrationscheme.The methodhasbeenalreadyappliedindifferentvoxel-based mor-phometrystudieswithgoodperformances.

2.3.3. DISCO+DARTEL(DiDa)

The DiffeomorphicSulcal-based Cortical(DISCO) registration explicitlyforces thealignment ofsulci inaniterativeapproach. Individualsulciarefirstsegmentedandmodeledasweightedsets ofpoints.Anempiricaltemplateisdefinedastheunionoftheentire setofsulcalpointsthroughthegroupofsubjects.Foreachsulcal label,thecorrespondingsulcallandmark inthetemplate corre-spondstotheunionofallpointsassociatedtothislabelforeach subject.Diffeomorphictransformationofeachindividualdataonto theempiricaltemplateisthenproceededinthegeneralframework oftheLargeDeformationDiffeomorphicMetricMappingtheory. Improvedmaskoverlapandreductionofsulcaldispersioncanbe reachedthroughthesequentialcombinationofDISCOand DAR-TEL(DiDa),withDARTELbeinginitializedusingDISCOsoutcome (Auziasetal.,2011).Inthisstudy,becausewewereinterestedin corticalactivationslocatedinpre-andpost-centralgyri,onlythe centralsulcuswasconsidered.Forthis verystablesulcus, auto-maticdetectionofmisidentificationaspresentedinAuziasetal. (2011) didnotdetectany error.Neither manualnor automatic correctionwasappliedforpossiblecentralsulcalmisalignments. The deformations resulting from the different methods were appliedtothesamesulcithatservedasconstraintinDISCOand DISCO+DARTEL.

2.3.4. Diffeomorphicdemons(DDe)

DiffeomorphicDemonsisan efficientalgorithm forthe non-parametric registration of multiple dimensional images based on the sum of squared difference in voxels intensity between

(4)

imagesimplementedin MedINRIA toolbox4 (Vercauterenet al.,

2009).Itadaptstheoptimizationprocedureontheentirespaceof displacementfieldsproposedinThirion(1998)tothespaceof dif-feomorphictransformations.SimilarlytoDARTEL,DDereliesona stationaryvelocityvectorfieldbuttheobjectivefunctiontobe min-imizedandtheoptimizationstrategyaredifferent.Thismethodhas beenshownoutperformingothermethodswhenappliedlocally inanROIinthemedialtemporallobe(YassaandStark,2009).In thepresentwork,weappliedDDeinacommonROIinthemotor cortexregionconstructedasfollows.Wefirstisolatedthevoxels correspondingtothecentralsulcusofeach subjectusing Brain-VISA.Wethen linearlyregisteredusingSPM8thesevoxels in a commonreferential,theMNIspace.Wemanuallydefined individ-ualROIssurroundingtheprimarysomato-sensorycorticalareaand encompassingthehand-knobstructureoneachindividual struc-turalimageregisteredintheMNIspace.Wecomputedacommon ROIastheunionofallindividualROIsfollowedbymorphological operationsofclosinganddilatation.Thisprocedurewasrepeated foreachhemisphereandresultedintwoROIspersubject(oneper hemisphere).Using individual(inverse)transformation parame-ters,thetwocommonROIswerethenputbackineachindividual referential.DDewasthenappliedtorealigneachindividualROI toachosenreferencesubject.Toassesstheinfluenceofthe refer-enceimageonthealignmentquality,weusedtworeferences,R1 (DDe-R1)andR2(DDe-R2).

2.4. Functionalimageprocessing

For each subject, the functional images were corrected for motionandregisteredtothecorrespondingstructuralimage(rigid transformation) using SMP8. Individual data analysis was per-formedinthesubject’sreferentialusingaclassicalGeneralLinear Model with a regressor for each condition of interest (flexion or extension with fingers, thumb or wrist for each hand) and sixmotion parametersas regressorsof non-interest, convolved withthe canonical hemodynamic response function. Individual statisticalcontrastimageswerecomputedandthen,usingeach registration strategy, registered to the common referential by applying the corresponding deformation field. A slight spatial smoothing wasapplied using a Gaussian kernel with a FWHM equaltothesizeofthespatialresolutionofthefunctionalimages (1.5mm×1.5mm×1.5mm)inordertofittotheGaussian field hypothesis.Randomeffectsstatisticalgroupanalysiswasfurther performedandT-mapsforeachtaskandeachregistrationmethod werecomputed.

2.5. Assessmentofregistrationperformances

Theperformancesofthefourregistrationmethodswere evalu-atedbasedonthecomputationofindexesthatquantitativelyassess bothinter-individualanatomicalandfunctionalalignments.Forthe former,weconsideredboththegray-matteroverlapbetween sub-jectsincomputingtheJaccardoverlapdistance,andthedispersion oftheCSsincomputingtheHausdorffdistance.TheJacobianwas alsocalculatedtoassesstheregularityofthecorresponding defor-mationfield.Forthefunctionalalignment,wereasonedthatifit isimprovedbyaregistrationmethodthenmoresignificant vox-elsshouldbedetectedandcorrectlypositionedintheM1cortex. Inordertofocusonourregionofinterest,themotorregion,and allowforthecomparisonbetweenglobal(DARTEL,DISCO+DARTEL andSPM8)andlocal(DDe)approaches,werestrictedtheanalysis ofregistrationperformancestothecommonROIdefinedforDDe.

4 http://www-sop.inria.fr/asclepios/software/MedINRIA/

2.5.1. Assessmentofaccuracyofanatomicalalignment

Foreachmethod,weappliedthecomputeddeformationfieldto theindividualgraymatterimagesandtotheindividualstructural images.Wecomputedforeachpairofsubjects(S1,S2):

1.ThefuzzyJaccardmeasure,JO,quantifiestheoverlapbetween thegreymatterprobabilitymapsacrosstwosubjects(Auzias etal.,2011;Crumetal.,2005).Itiscomputedbasedonthegrey matterprobabilityvalueGMiforeachvoxeliasfollows:

JO(S1,S2)=



voxels,imin(GM1i,GM2i)



voxels,imax(GM1i,GM2i)

whereGM1 andGM2 arethegraymattermapsforS1 andS2

respectivelyinthecommonROI.

2.TheHausdorffdistance,H,betweentheCS.Hisanindicatorof thespatialdispersionbetweentwodatasets.Itcanbeobtained bygeneratingthesetofdistancesfromeachpointin oneset tothenearestpointintheotherset(minimalvalue),andthen takingthelargestofallthesedistances(maximalvalue).This iscomputedforeachsetinturnandlastlythelargestdistance iskept.Here,eachpointiandjrefersrespectivelytothevoxels correspondingtothesulci(CS)ofsubjectsS1andS2.Thenumber

ofpointsforS1andS2canbedifferent.Thismeasureisinour

contextanindicatorofthespatialdispersionofthecentralsulci afteralignment.

H(S1,S2)=max(max i minj (||CS

1

i −CS2j||),maxj mini (||CS1j −CS2i||))

ThehigherJOvalueandthelowerHvalue,thebetterthe accu-racyoftheregistrationmethodis.

3.Jacobiancomputation

Thedeformationfieldproducedreflectsthequalityofthe reg-istrationmethod(Leow etal.,2007).Indeed,tworegistration methods can achieve similarGM overlaps but witha differ-entamountofdilatationsandcompressions.Unnecessarytissue stretchingorcompressionshouldbeavoided.Amethodthat gen-eratesfewdeformationswhileprovidinganaccuratealignment isalwayspreferable.TheJacobianofthedeformationfieldwas computedtoassesstheregularityofthefieldandtheamount ofdilatationorcompressionforeachvoxelofthecommonROI forthethreediffeomorphicmethodsandforeachsubject.The JacobiancomputationwasstraightforwardforDARTELandDDe methods.AsDiDaisasequentialcombinationofDISCOand DAR-TELwecomputedthefollowingJacobianmeasureforeachvoxel

v

,

JacobianDI+DA(

v

)=JacobianDISCO(

v

)∗JacobianDARTEL(

v

)

Thespatialdistributionofhighcompressionandhighdilatation ratesintheROIandamong subjectsillustratestheregularity ofthefieldaposterioriandhowthecorrespondingregistration methodhasdeformedtheanatomicalstructures.

2.5.2. Assessmentofaccuracyoffunctionalalignment

Becausenogroundtruthisavailabletocomparethe statisti-calparametricmapsobtainedusingeachregistrationmethod,we consideredseparatelytwoaspectsatthepopulationlevel:the acti-vationdetectability(t-values)andthelocalizationofactivation.For each registrationmethodwecomputed,for eachtaskand each hand,thenumberofdetectedvoxelsaboveapredefined thresh-old.Basedonourhypothesisthatpreciseinter-subjectcentralsulci alignmentresultsinprecisealignmentofcorrespondingactivated functionalregions,themoreprecisetheregistration,thehigher

(5)

Fig.1.Hand-knobregion.Left:ThecommonROI(seeSection2.3.3)surroundingthehand-knobisdelineatedbytheredcontouroneachhemisphereofonesubject.Thetop rowshowsforthissubject,theROIforeachhemisphereafterdeformationwitheachregistrationmethod.Onthebottomrow:themeanimagerestrictedtothecommonROI afterregistrationofthe13subjectsforeachhemisphereandeachmethod.L,left;R,right.

thenumberofstatisticalsignificantactivatedvoxelsis.Wefurther testedwhetherthefourmethodshadsignificanteffecton activa-tiondetectabilitywhateverthetask.WecomputedusingStatistica 8(StatSoft©),a 2-way(method,hemisphere)repeated-measure ANOVAwiththe total number of detectedvoxels as measures. A post-hoc Tukey–Kramertest wasfurthercomputed toassess whichmethodsperformedsignificantlybetterintermsof activa-tiondetectability.Forlocalization,wesuperposedthesignificantly activatedvoxels ontothecorrespondingmeanstructuralimage. Themajorpartofactivation shouldbeprecisely locatedinM1. Additionally,wequantifiedthespreadofindividualsubjectpeak activitycoordinatesbyidentifyingbeforeregistrationacluster(size ≥5voxels)statisticallysignificantandvisuallylocalizedatasimilar positionineachindividualforeachtaskandhand.Afterregistration usingSPM8,DARTELandDiDa,wecomputedadispersionindex,for eachtaskandhand,astheEuclideandistancebetweeneach indi-vidualpeakcoordinatesandtheircentroid(meancoordinate).We computeda2-way(method,task)repeated-measureANOVAwith Euclideandistancesasmeasuresandapost-hocTukey–Kramertest wascalculatedassessingwhichmethodsperformedsignificantly betterintermsofdispersionreduction.Therationaleisthatbetter theregistration,lowerthefinaldispersionis.

3. Results

ThecommonROIconsideredfortheanalysisissuperposedin redononeindividualstructuralimageinFig.1.Fig.1showsfor agivensubject(upperrow)thedeformedROIafterapplicationof eachregistrationmethod.Themeanstructural,restrictedtothe commonROI,obtainedafterregistrationofthe13subjectsusing eachmethodisdisplayed(lowerrow).Theblurringobtainedusing SPM8clearlyindicatesapoorrealignment.Non-linear deforma-tionsintroducedinSPM8areclearlytoolimitedtoreachasatisfying registrationofallbrainsfortheconsideredpopulation.Themean deformedROIissharperforthethreediffeomorphicmethods.For DDe,themeanshapeisveryclosetothechosenreferenceimage (notshown).Fig.2displaysthesetof13deformedcentralsulciafter registration.Itillustrateshowthefourmethodsdeformlocallythe individualleftandrightCS.Notethepersistentlargedispersionof sulciafterrealignmentwithSPM8andDDe.Asexpected,wenote thestronginfluenceofthereferenceusedwithDDe(seeDDE-R1 vs.DDe-R2).

3.1. Anatomicalalignmentaccuracy 3.1.1. JaccardoverlapandHausdorffdistance

Fig.3showsthedistributionacrossallpairsofsubjectsofthe fuzzyJaccardoverlapforgraymatterwithintheROIandHausdorff distancebetweenCS.Thesequantitativemeasuresconfirmaclear improvementofthegraymatteroverlapwhenusingdiffeomorphic

methodscomparedtoSPM8.BothDARTELandDiDamethods pro-videdalowHausdorffmeandistanceandagoodoverlapoftheGM aroundthehand-knob.ConcerningDemons,inspiteofthe obten-tionofarelativelyhighoverlapscoreandtheapparentpreservation ofthehand-knobstructureshape,asshowedonthemeanimages (Fig.1),theHausdorffdistancesacrossCSremainrelativelyhigh comparedtoDARTELandDiDa.Wenotedforsomesubjects(6)a localmatchingbetweencentralsulcusandprecentralor postcen-tralsulci.Thissuggeststhatalocalminimumintheenergyterm wasachievedasaconsequenceofthelargedeformationstolerance withoutinsertingexplicitanatomicalconstraints.These quantita-tivemeasuresalsoconfirmtheinfluenceofthechosenreference ontheaccuracyofthemethod.

3.1.2. Deformationfieldsfordiffeomorphicmethods

Fig.4aillustratestheconsistencyofthespatialdeformations acrossthesubjects.ForeachvoxelinthecommonROI,wecounted the number of subjectssustaining relatively largecompression (J<0.6)orlargeexpansion(J>1.4).Fig.4bdepictsthehistogram oftheJacobianvaluesacrossallvoxelsinthecommonROIforthe 13subjectsandforeachhemisphere.

AllJacobianvaluesarepositive,anecessaryconditionfora trans-formationtobediffeomorphic.However,theirdistributionvaries significantlydependingonthemethod.Thehistogramsand spa-tialdistributionmapsshowclearlythatDDegeneratesverystrong deformations(especially compressions) distributed through the entireROI.Thisisanexpectedoutcomeofthepreviouslyobserved mismatchbetweenthecentralsulcusandpre-and post-central sulci.ComparedtoDARTEL,morevoxelssustainedadeformation withDiDa,withsimilarcompressionsandmoredilatations.

3.2. Functionalalignmentaccuracy

Figs.5 and6illustratethelocalization ofthemainactivated clusters derived from group analysis for extension and flexion respectively(p≤0.0001,voxelleveluncorrectedwithno thresh-oldingonclustersize),superimposedonthecorrespondingmean structuralimagecomputedforeachmethodandrestrictedtothe commonROI.WithSPM8,activatedspotscannotbeidentifiedas belongingtoM1orS1becauseofthepooralignment.WithDARTEL andDiDa,inallconditions,wecouldeasilyidentifyseveralspots alongthehand-knobregionwhicharecoherentwiththecurrent knowledgeaboutcorticalrepresentationofhandmovement(Meier etal.,2008).ResultsprovidedbyDDe-R1seemcoherentwiththe literatureforthelefthand(seeespeciallyFig.5)butincoherentfor therighthandwhereactivationfociareclearlyfoundbothalong centralandmostlyalongpostcentralsulci.Theactivationpattern obtainedwithDDe(Figs.5and6)ishighlydependentonthechosen reference(DDeR1versusDDeR2).

(6)

Fig.2. Thedeformedleft(left)andright(right)sulci(13subjects)afterrealignmentbyeachmethod.

Figs.7and8comparethehistogramsoftheT-valuemapsfor extensionandflexion respectivelyforeachtaskandeach hemi-sphere.ThesehistogramsconfirmthatthegoodalignmentofCS obtainedwithDiDaandtoalessextentwithDARTELisassociated withahighernumberofactivatedvoxelscomparedtoSPM8and DDe.

Jointly with the bad registration of CSs, DDe provides low T-values for the left and right hand flexion in spite of a relatively good overlap of gray-matter in the left hemi-sphere (Fig. 3). The bias induced by the choice of the reference subject between DDe-R1 and DDe-R2 appears clearly.

Fig.3.BoxplotofHausdorffdistances(upperrow)andfuzzyJaccardoverlapforgraymatter(bottomrow)obtainedforthefourmethods.Leftcolumn:lefthemisphere,right column:righthemisphere.

(7)

Fig.4.Deformationfieldsfordiffeomorphicmethods.(a)Thespatialdistributionmapsofthedeformationsacrossthesubjects.Theyreportforeachvoxelofthecommon ROIthenumberofsubjectssustaininghighcompressions(J<0.6,top)andhighdilatations(J>1.4,bottom)followingDARTEL,DiDa,DDeR1andDDeR2registration.These valuesaresuperimposedonthecorrespondingmeanstructuralimagecomputedforeachmethodandrestrictedtothecommonROI.(b)HistogramsofJacobianvaluesacross everyvoxelinthecommonROIandacrossallthesubjectsforthelefthemisphere(left)andrighthemisphere(right).

Fig.9clearlyshowsthereductionofthespreadofindividual subjectpeakactivitywithDARTELandDiDacomparedtoSPM8. Thereisahighlysignificanteffectofthemethodonthedispersion (F2,10=12)andahighlysignificantdifferencebetweenSPM8and

DARTEL(p≤0.001)orDiDa(p≤0.0003).Nodifferencewas signifi-cantbetweenDARTELandDiDa.

Fig.10showsthetotalnumberofstatisticallysignificantvoxels detectedatthegrouplevelacrossalltasksforeachhemisphereand foreachmethod.Thereisahighlysignificanteffectofthemethod ontheactivationdetectability(F4,20=16,partialeta-squared2p=

0.76,p≤5×10−6),andasmallbutsignificanteffectofthe

hemi-sphere(F=7,2

p=0.59,p≤4×10−2)andasignificantinteraction

betweenhemisphereandmethod(F=19,2

p=0.79,p≤10−6).For

thelefthemisphere,differencesbetweenthemethodsintermof activationdetectabilityarehighlysignificantbutforSPM8versus DDE-R1orDDE-R2andforDDE-R1versusDDE-R2.Fortheright hemisphere,thedifferencesbetweenmethodsarelesssignificant exceptforDiDaversusDDe-R2.

4. Discussion

Inanefforttoimprovethequalityoftheresultsprovidedat thepopulationlevelusingfMRIdata,weinvestigatedthe combina-tionofstate-of-the-artregistrationmethodswithhighresolution functionalMRdataimagingthemotorcortexregion.Theuseof high-resolutionfunctionalMRimagesallowedtofinelyrevealthe impactoftheregistrationonthecorticalassignmentofthedetected clusters.Ourstudyclearlyshowsthatthealignmentquality pro-videdbynon-linearmethodshasadirectandstrongimpactonthe detectionofactivatedclusters,i.e.improvementofthestatistical significanceofthedetectedclusters,andontheirlocalization,i.e. improvementoftheaccuracyoftheclusterspositionand reduc-tionoftheirspatialdispersion.Thegainweobtainedinfunctional activationdetection confirmsourinitialhypothesis thata good alignmentofindividualcentralsulcishouldimprovethemapping ofindividualfunctionalM1regions.Sucharelationshipbetweenan anatomicallandmarkandafunctionalareaiscertainlylessclearin

(8)

Fig.5.Activationmapsobtainedforextensiontasksforlefthand(top,righthemisphere)andrighthand(bottom,lefthemisphere)foreachmethod.Threecontiguous transverseslicesaredisplayedtoshowthelargestclustersaroundtheright(resp.left)centralsulcusforeachmethod.Mapsaresuperimposedonthecorrespondingmean structuralimagecomputedforeachmethodandrestrictedtothecommonROI.t≥4.0,p≤0.0001voxelleveluncorrectedwithnothresholdingontheclustersize.

nonprimarycorticalareasasobservedforinstancebyTahmasebi etal.(2012)forearlystagesversuscognitivelyhigherlevelsof audi-toryprocessing.Thegeneralizationofourresultsisthenlimited becausespatiallocationoffunctionalareamayvarygreatlyacross subjectswithinacorticalarea(FrostandGoebel,2012)anddue totheuseofpossibleindividualstrategyforhigh-leveltasks.Note thatdespitetheimprovementinspatialresolutionandfunctional alignment,wefailedtoseparatethedifferentialactivationresulting fromdifferentmovements.

4.1. Methodologicalissues

Ourstudyemphasizesthattheaccuracyofregistrationmethod shouldbeassessedviacomplementaryquantitativeindexesthat measuretheaccuracyoftheanatomicalalignmentandthe func-tional overlap. In accordance to Hellieret al. (2003) and Klein etal.(2009),anatomicalmeasuresshowedthatmethodswithhigh

degreeoffreedomcanincreaseoverlapofcorticalribbons(Fig.3, bottom).However,thisdoesnotnecessarilyimprovethealignment ofcentralsulci(CS)(Figs.2and3,up).Amongthe4registration methodsevaluatedhere,onlyDARTELandDiDapresentbothalow HausdorffdistanceforCSandahighoverlapforgraymatter.These goodperformances(Fig.3)highlightthefactthatDARTELachieves agoodalignmentofCS,asalreadyobservedinKleinetal.(2009). Theanatomicalconstraintonsulcialignment broughtbyDISCO doesnotclearlyimprovetheanatomicalalignmentmeasures.With thetwo methods that reduced distances betweenCS, i.e. DAR-TELandDiDa,thefunctionalT-valuedistributions(Figs.7and8), the activation detection (Fig. 10) and the clusters localization (Figs.5and6)wereclearlyimprovedascomparedtoSPM8andDDe. Afterrealignment, theindividualcluster coordinates dispersion wasreducedusingDARTEL,DiDaorDDecomparedtoSPM8(Fig.9) butnosignificantdifferencewasfoundbetweenDDe,DiDaand DARTEL.

(9)

Fig.6.Activationmapsobtainedforflexiontasksforlefthand(top,righthemisphere)andrighthand(bottom,lefthemisphere)foreachmethod.Threecontiguoustransverse slicesaredisplayedtoshowthelargestclustersaroundtheright(resp.left)centralsulcusforeachmethod.Mapsaresuperimposedonthecorrespondingmeanstructural imagecomputedforeachmethodandrestrictedtothecommonROI.t≥4.0,p≤0.0001voxelleveluncorrectedwithnothresholdingontheclustersize.

Indeed, the slight improvement in CS realignment obtained with DiDa has a significant positive effect on group statistics (Figs. 7 and 8). This confirms that any change in deformation hasanimpactonfunctionalgroupanalysis,asreportedinViceic etal. (2009)or Tahmasebietal. (2009, 2012)for auditory cor-tex.NotethateffectivesmoothnessasprovidedbySPM8wasnot statisticallydifferentbetweentheregistrationmethodsused (aver-agevolumetricresolution=3.2,=0.2).InViceicetal.(2009),the authorscomparedtheirlocallandmarkbasedregistrationmethod –developedspecificallyforthesupratemporalplaneandusing sulcidelimitingHeschl’sgyrus–tostandardglobalaffineand non-rigidmethods.Theyshowedtheimportanceoflocalconstraints theyintroducedontheaccuracyof thealignment ofindividual Heschl’sregions.However,thestandardspatialsmoothing(6-mm fullwidthathalfmaximum)theyusedlimitedtheaccuracyofthe assignmentofactivatedclusterstopreciseanatomicalregions.In

Tahmasebietal.(2009)theeffectofspatialsmoothingwas inves-tigatedinauditorycortex,showingthatsmoothingdegradesthe localizationoftheactivationandincreasesthemagnitudeofthe peakactivationfor allstudiedmethods.Weuseda highspatial resolutionaftersmoothingequalto1.5mm×1.5mm×1.5mm.As expected,alargerresolution(3mm×3mm×3mm),after smooth-ing, comparable to image resolution (3.3mm×3.3mm×4mm) usedinTahmasebietal.(2009)improvedthenumberofactivated voxels(see Supplementarydata,Figs.13and 14)buthampered theseparation ofdifferentfociofactivation(seeSupplementary data, Figs.11 and 12). In this case, thedifference inactivation detectabilitybetweenDARTELandDiscoisnomoresignificant(see Supplementarydata,Fig.15).

Our studyprovidesadditionaldata abouttheeffectof regis-trationwiththeanalysisoftheJacobianofthedeformations.The spatialdistributionofthedeformation(Fig.4a)indicatesclearly

(10)

Fig.7.Influenceofregistrationtechniquesongroup-averagedfunctionalmapsforextension.ThezoomedpartemphasizesT-valuesgreaterthan7(p≤10−5).Righthemisphere (rightcolumn)andlefthemisphere(leftcolumn).

that in theabsence of explicit anatomical constraints, such as gray-andwhite-matteroverlapforDARTELandsulcalconstraints forDiDa,DDe computedunsatisfactory deformationsdespiteof arelativelygoodmeasureofgray-matteroverlap.DARTEL defor-mationsremainrelativelysmooth(Fig.4b)whileassociatedwith goodanatomicalandfunctionalmeasures.Thissuggeststhat DAR-TELprovidesdeformations thatrespect theanatomo-functional organizationofthecortex.DiDageneratedstrongerdeformations comparedtoDARTEL.Theadditionalcompressionsweremainly locatedbetweentheleft andright centralsulci, indicating that

theconstraintsfromthetwocentralsulcicompetedinthisregion (Fig.4b).Indeed,unlikeDDe,DiDaandDARTELwerenotrestricted tothecommonROIandcoveredtheentirebrainvolumesuchthat theconstraintsbetweenhemispherescouldinteract.More inter-estingly,voxelscorrespondingtorelativelyhighdilatationswere distributedonbothbanksofthecentralsulciandespeciallyaround thehand-knob structure. This suggeststhat DiDa didintegrate theinformationfromtheshapeofthecentralsulcuswhile regis-teringthesurroundingcorticesbetweensubjects.Thissupports theimprovementobservedwithfunctionalmeasurescomparedto

(11)

Fig.8.Influenceofregistrationtechniquesongroup-averagedfunctionalmapsforflexion.ThezoomedpartemphasizesT-valuesgreaterthan7(p≤10−5).Righthemisphere (rightcolumn)andlefthemisphere(leftcolumn).

DARTEL.Inaddition,ourresultswithDDealsoillustratethebias inducedbythechosenreferencesubject.Thisbiasislikelytooccur withanyregistrationstrategyrelyingonthearbitrarychoiceofa reference.InTahmasebietal.(2009),theauthorsconcludedthat HAMMER(ShenandDavatzikos,2002)outperformedDARTELin theauditorycortexbutthesensitivityoftheformertothechosen referencewasnotreported.AnextensionofDDe(orHAMMER)to iterativelycomputeameanimageasatemplate,similarlyto DAR-TELorDiDa,couldbeconsideredforthemethodimprovement. DARTELandDiDausedthesameiterativelycomputedtemplate andwecanruleoutthepossibleinfluenceofthetemplateonthe

observeddifferences.Ourresultsclearlyindicatethesuperiorityof methodsthatiterativelybuiltagroup-specifictemplatecompared totheuseofapredefinedreferencetemplate.Adrawbackoftheuse ofsuchtemplatesisthatcomparisonsofactivatedclustersposition betweenliteratureislessstraightforward.

Ourstudycouldbeinterestinglyextendedusingefficient non-linearmethodssuchasIRTK,surface-basedregistrationmethods (e.g.FreeSurferFischletal.,1999;Yeoetal.,2009)orrecent combi-nationsofvolumeandsurfaceregistration(Postelnicuetal.,2009; Duetal.,2011).Indeed,surfacebasedanalysisisattractive espe-ciallyforfunctionaldataanalysisbecauseitrespectstheessentially

(12)

Fig.9.Dispersionofindividualsubjectpeakactivitycoordinates.Foreachmethodonestatisticallysignificantclusterwasselectedinindividualsrespectivelyforrighthand extension(RHext,n=10),lefthandextension(LHext,n=11),righthandflexion(RHflex,n=13)andrighthandflexion(LHflex,n=13).Weshowthemeanandstandard deviationofEuclidiandistancebetweeneachindividualpeakcoordinatesandtheircentroid(meancoordinate)afterregistrationwithSPM8,DARTEL,DiDa,DDeR1and DDeR2.

Fig.10.Activationdetectability.Foreachmethod,weshowthemeanandstandarddeviationofthenumberofvoxelssignificantlyactivatedatthegrouplevel(t≥4.0, p≤0.0001voxelleveluncorrected)acrossthetasksforeachhemisphere.Thepvaluescorrespondingtosignificantdifferencesbetweenmethodsareindicatedasfollows:* p≤0.05,***p≤0.001.

2D-structureofthecorticalribbonfacilitatingforinstancethe affec-tationofactivationtotherightsideofthebankofasulcus.However, forregistrationpurpose,surface-basedandvolume-basedmethods seemtoperformwithsimilaraccuracies(Kleinetal.,2010).Finally, theuseofaspecificEPItemplatesuchasproposedinHuangetal. (2010)wouldnotallowreachingtheaccuratelocalizationinmotor cortexwesearchfor.

Toconclude,ourstudydemonstratesthatcombininghigh res-olutionfMRI withaccuraterealignmentof thecentralsulcusof individualsprovidedbyDARTELorDiDaopensthewaytonon inva-sivefunctionalexplorationofthehumanhandmotorcortexatthe populationlevel.Exploringcorticalrepresentationofsimplehand movementsatthehealthy populationlevelgives areferenceto studymechanismsofbrainplasticityunderpathologicalconditions orafterrehabilitationtrainingfollowinghandsurgery.

Funding

This work received financial support from Cluster Handi-cap Vieillissement Neurosciences of the Région Rhône-Alpes, France (grant number RA0000R175) and from PHRC régional

TTPCB(TransfertTendineux,PlasticitéCérébraleetBiomécanique), France. F.P. was supported by a PhD grant from Ministère de la Recherche. G.A. was funded by the Agence Nationale de la Recherche(ANR-09-BLAN-0038-01,‘Brainmorph’).

Acknowledgements

Wethankthetechnicalstaffatthe3Tscannerfacilityincluding LaurentLamalle,OlivierMontigonandIrèneTroprèsfromtheSFR RMNBiomédicaleetNeurosciences.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.jneumeth.2013.05.005.

References

Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007;38(1):95–113.

(13)

AshburnerJ,FristonK.Unifiedsegmentation.Neuroimage2005;26(3):839–51. AuziasG,ColliotO,GlaunèsJ,PerrotM,ManginJ,TrouveA,etal.Diffeomorphic

brainregistrationunderexhaustivesulcalconstraints.IEEETransMedImaging 2011;30(6):1214–27.

Beisteiner R, Windischberger C, Lanzenberger R, Edward V, Cunnington R, Erdler M,et al. Fingersomatotopy in human motor cortex. Neuroimage 2001;13(1):1016–26.

CauloM,BrigantiC,MatteiP,PerfettiB,FerrettiA,RomaniG,etal.Newmorphologic variantsofthehandmotorcortexasseenwithMRimaginginalargestudy population.AmJNeuroradiol2007;28(8):1480–5.

Crum W, CamaraO, RueckertD, Bathia K, Jenkinson M,Hill D. Generalised overlap measures for assessment of pairwise and groupwise image reg-istration and segmentation. Med Image Comput AssistInterv 2005;8(1): 99–106.

DechentP,FrahmJ.Functionalsomatotopyoffingerrepresentationsinhuman pri-marymotorcortex.HumBrainMapp2003;18(4):272–83.

DeichmannR, GoodC,JosephsO, AshburnerJ,TurnerR. Optimizationof3-D MP-RAGEsequencesfor structuralbrainimaging.Neuroimage 2000;12(1): 112–27.

DuJ,YounesL,QiuA.Wholebraindiffeomorphicmetricmappingvia integra-tionofsulcal andgyralcurves, corticalsurfaces,andimages.Neuroimage 2011;56(1):162–73.

FischlB,RajendranN,BusaE,AugustinackJ,HindsO,YeoB,etal.Corticalfolding patternsandpredictingcytoarchitecture.CerebCortex2008;18(8):1973–80. FischlB,SerenoM,TootellR,DaleA.High-resolutionintersubjectaveraginganda

coordinatesystemforthecorticalsurface.HumBrainMapp1999;8(4):272–84. Frost MA, Goebel R. Measuring structural–functional correspondence: spatial variabilityofspecialisedbrainregionsaftermacro-anatomicalalignment. Neu-roimage2012;59(2):1369–81.

GeyerS,LedbergA,Schleicher A,KinomuraS,SchormannT, BürgelU,et al. Two different areas within the primary motor cortex of man. Nature 1996;382(6594):805–7.

HellierP,BarillotC,CorougeI,GibaudB,LeGoualherG,CollinsD,etal. Retro-spectiveevaluationofintersubjectbrainregistration.IEEETransMedImaging 2003;22(9):1120–30.

HuangC,LeeS,HsiaoI,KuanW,WaiY,KoH,etal.Study-specificEPItemplate improvesgroupanalysisinfunctionalMRIofyoungandolderadults.JNeurosci Methods2010;189(2):257–66.

Humphrey D. Representation of movements and muscles within the pri-mateprecentralmotorcortex:historicalandcurrentperspectives.FedProc 1986;45(12):2687–99.

HydeJ,BiswalB,JesmanowiczA.High-resolutionfMRIusingmultislicepartial k-spaceGR-EPIwithcubicvoxels.MagnResonMed2001;46(1):114–25. IndovinaI,SanesJ.Combinedvisualattentionandfingermovementeffectson

humanbrainrepresentations.ExpBrainRes2001;140(3):265–79.

KakeiS,HoffmanD,StrickP.Muscleandmovementrepresentationsintheprimary motorcortex.Science1999;285(5436):2136–9.

KleinA,AnderssonJ,ArdekaniB,AshburnerJ,AvantsB,ChiangM,etal.Evaluationof 14nonlineardeformationalgorithmsappliedtohumanbrainMRIregistration. Neuroimage2009;46(3):786–802.

KleinA,Ghosh S,Avants B,Yeo B, FischlB, Ardekani B, etal. Evaluationof volume-basedandsurface-basedbrainimageregistrationmethods. Neuroim-age2010;51(1):214–20.

KleinschmidtA,NitschkeM,FrahmJ.Somatotopyinthehumanmotorcortexhand area.ahigh-resolutionfunctionalmristudy.EurJNeurosci1997;9(10):2178–86. LeowA,YanovskyI,ChiangM,LeeA,KlunderA,LuA,etal.Statisticalproperties ofJacobianmapsandtherealizationofunbiasedlarge-deformationnonlinear imageregistration.IEEETransMedImaging2007;26(6):822–32.

Meier J, Aflalo T, Kastner S, Graziano M. Complex organization of human primary motor cortex: a high-resolution fMRI study. J Neurophysiol 2008;100(4):1800–12.

OldfieldR.Theassessmentandanalysisofhandedness:theEdinburghinventory. Neuropsychologia1971;9(1):97–113.

PenfieldW.Theprinciplesofphysiologyinvolvedinthemanagementofincreased intracranialpressure.AnnSurg1935;102(4):548–54.

PostelnicuG,ZolleiL,FischlB.Combinedvolumetricandsurfaceregistration.IEEE TransMedImaging2009;28(4):508–22.

RaoS,BinderJ,HammekeT,BandettiniP,BobholzJ,FrostJ,etal.Somatotopic map-pingofthehumanprimarymotorcortexwithfunctionalmagneticresonance imaging.Neurology1995;45(5):919–24.

RathelotJ,StrickP.Musclerepresentationinthemacaquemotorcortex:an anatom-icalperspective.ProcNatlAcadSciUSA2006;103(21):8257–62.

Sanes J, Donoghue J, Thangaraj V, Edelman R, Warach S. Shared neural substrates controlling hand movements in human motor cortex. Science 1995;268(5218):1775–7.

SanesJN,SchieberMH.Orderlysomatotopyinprimarymotorcortex:doesitexist. Neuroimage2001;13:968–74.

ShenD,DavatzikosC.Hammer:hierarchicalattributematchingmechanismfor elas-ticregistration.IEEETransMedImaging2002;21(11):1421–39.

StrotherL,MedendorpWP,CorosAM,VilisT.Doublerepresentationofthewristand elbowinhumanmotorcortex.EurJNeurosci2012;36(9):3291–8.

SunZ,KlöppelS,RivièreD,PerrotM,FrackowiakR,SiebnerH,etal.Theeffectof handednessontheshapeofthecentralsulcus.Neuroimage2011;60(1):332–9. TahmasebiA,AbolmaesumiP,ZhengZ,MunhallK,JohnsrudeI.Reducing inter-subjectanatomicalvariation:effectofnormalizationmethodonsensitivityof functionalmagneticresonanceimagingdataanalysisinauditorycortexandthe superiortemporalregion.Neuroimage2009;47(4):1522–31.

TahmasebiAM,DavisMH,WildCJ,RoddJM,HakyemezH,AbolmaesumiP,etal.Isthe linkbetweenanatomicalstructureandfunctionequallystrongatallcognitive levelsofprocessing?CerebCortex2012;22(7):1593–603.

ThirionJ.Imagematchingasadiffusionprocess:ananalogywithMaxwell’sdemons. MedImageAnal1998;2(3):243–60.

VercauterenT,PennecX,PerchantA,AyacheN.Diffeomorphicdemons:efficient non-parametricimageregistration.Neuroimage2009;45(1Suppl):S61–72. ViceicD,CamposR,FornariE,SpiererL,MeuliR,ClarkeS,etal.Locallandmark-based

registrationforfMRIgroupstudiesofnonprimaryauditorycortex.Neuroimage 2009;44(1):145–53.

Yassa M, Stark C. A quantitative evaluation of cross-participant registra-tion techniquesfor mristudiesof themedial temporallobe.Neuroimage 2009;44(2):319–27.

YeoB,SabuncuM,VercauterenT,AyacheN,FischlB,GollandP.Sphericaldemons: fastdiffeomorphiclandmark-freesurfaceregistration.IEEETransMedImaging 2009;29(3):650–68.

YousryT,SchmidU,AlkadhiH,SchmidtD,PeraudA,BuettnerA,etal.Localizationof themotorhandareatoaknobontheprecentralgyrus.Anewlandmark.Brain 1997;120(Pt1):141–57.

Riferimenti

Documenti correlati

Riguardo alla dimensione soggettiva ci si può riferire a forme di autovalutazione, attraverso cui coinvolgere il soggetto nella ricostruzione della propria

romana, che persino in età imperiale conserva caratteristiche di una ‘fa- ce to face society’, il riconoscimento sociale, la considerazione del ceto di appartenenza, è

Here in The Pardoner and the Frere the dramatist is reminding the King of his role of fidei defensor, and is suggesting how he can be of service to the Catholic Church: Henry

Domenico Curcio è ricercatore di Economia degli Intermediari Finanziari nell’Università degli Studi di Napoli Federico II. Stefania Luzi è responsabile dell’area Economia e

Apelt A, Kowaleski MP, Boudrieau RJ: Effect of tibial tuberosity advancement on cranial tibial subluxation in canine cranial cruciate- deficient stifle joints: an

Katzman K., Iraq: Post-Saddam Governance and Security, Congressional Research Service: Report for Congress, 2009.. National Commission on Terrorist Attacks Upon the United States,

results of the Garey and Johnson approach, we establish under what conditions the results of these two approaches can be.. compared, eventually exhibiting some examples which show

rial complex to the highest degree. The mining industry is a prioritized and important area. Given the high competitiveness of businesses in this sector, increasing the efficiency