Method
Article
Discrete
choice
experiments
with
multiple
price
vectors
for
products
sold
in
a
wide
price
range
Caterina
Contini
*
,
Fabio
Boncinelli,
Caterina
Romano,
Gabriele
Scozzafava,
Leonardo
Casini
UniversityofFlorence,Italy
ABSTRACT
Thediscretechoiceexperimentisawidelyusedmethodologyinconsumerstudies.However, applyingthis methodtoinvestigatethemarketofproductssoldinawidepricerangecouldpresentissuesastothequalityof theestimateofpreferences.Infact,forthis`typeofproduct,frequentlyconsumersmayhavedifferentbehaviours whenfaced withdifferentprice levels.Forexample,somemarketsegments mayrefrain frompurchasing productsbelowcertainpricethresholds,consideringthemofanunacceptablequality,whileotherschooseonly belowcertainprices.Toworkaroundthisproblemarea,weproposeamethodologyinwhicheachrespondent declareshisownpriceintervalofreferenceandconsequentlyparticipatesinachoiceexperimentwithaprice vectorcoherentwith hishabits. In thismanner, we areabletograsp andinclude in theestimations the heterogeneityofconsumerswithrespecttopriceandthusobtainmoreaccuratewillingnesstopayestimates.
Themethoddescribesaproceduretobypassissuesrelatedtoidentifyingthepricevectorindiscretechoice experimentsthatinvolveproductssoldinawidepricerange.
Weproposeadiscretechoiceexperimentwithdiff`erentpricevectorsforconsumersegmentswithdifferent pricepreferences.
©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ARTICLE INFO
Methodname:Discretechoiceexperimentswithmultiplepricevectors
Keywords:Pricepreferenceheterogeneity,Wine,Experimentaldesign,Willingnesstopay,Qualitycue
Articlehistory:Received6March2019;Accepted24July2019;Availableonline31July2019
*Correspondingauthor.
E-mailaddress:caterina.contini@unifi.it(C.Contini).
https://doi.org/10.1016/j.mex.2019.07.026
2215-0161/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://
creativecommons.org/licenses/by-nc-nd/4.0/).
ContentslistsavailableatScienceDirect
MethodsX
SpecificationsTable
SubjectArea: AgriculturalandBiologicalSciences
Morespecificsubjectarea: Consumerbehaviour
Methodname: Discretechoiceexperimentswithmultiplepricevectors
Nameandreferenceoforiginalmethod: Discretechoiceexperiment
Resourceavailability: NA
Methoddetails
TheDiscreteChoiceExperiment(DCE)isamethodthatiswidelyusedintheambitofapplied economicsandmarketinginordertostudyconsumerpreferences.Thismethodconsistsofcreating hypotheticalmarketsbymeansofquestionnairesinwhichapurchasingdecisionissimulatedamong variousproductalternativesthatdifferwithrespecttoqualitycharacteristicsandprice[1]Although theprocedurestoapplythismethodarewell-establishedandsharedamongscholars,thechoiceofthe pricevectorpresentsvariouselementsofcomplexityandhasstillnotbeencodified[2].Indeed,to date,the selection ofprice levelstoutilise in theexperiment implies that researchersmake an educatedguessbasedonananalysisofthepricesofproductsavailableonthemarketandsimilarto theonebeingevaluated.
Thisprocedurebecomesparticularlyproblematicwhentheproductsubjectedtotheexperiment presentsaverybroadpricerangeontherealmarket,asinthecaseofelectronicdevices,healthcare, and hospitality services.In fact,for these products, therecould bediversified behavioursof the consumerswithrespecttoprice,inrelationtomanyfactorssuchasincome,habits,andinvolvement. Someconsumers,forexample,mightassociatelowpricestolowquality,whichcandetermineatrend oftheutilityfunctionalongpricevaluesfirstincreasingthendecreasing[3,4].Inthiscase,usingaprice
vector that covers the entire surveyed range on the market would determine an estimate of
compromisethatwouldfailtograspthedifferentbehavioursofconsumers[4].
Weproposetoimplementaprocedurethatbridgesthelimitsoftheconventionalapproachinorder toidentifypricevectorstoutiliseinconductingDCEs.Inparticular,theproposedmethodstrivesto improvetheestimationofconsumerpreferencesbymeansofcodifyingaproceduretodefinetheprice vectorthatcanassistDCEpractitionersinbuildingtheexperimentaldesign.Thismethodmakesit possibletoverifythepresenceofheterogeneousbehavioursofconsumerswithrespecttodifferent pricelevelsandthusobtainmorereliableestimatesofconsumerpreferencesaswell.Inthismanner, wecanindeedconsideranimportantfactorofpreferenceheterogeneityintheestimationsthatwould otherwiseremainconfusedintherandomcomponentoftheestimationmodel.
Theapproachweproposeisbasedontheideathateachrespondentstateshisownpriceintervalof referenceandconsequentlyparticipatesinachoiceexperimentwithapricevectorcoherentwithhis elicitedhabits.Theapproachcanbedividedinto4steps.
Step1–marketanalysisandidentifyingpricerangeofproducts
Inthefirststep,theresearcheriscalledtomakeacarefulmarketanalysisofthegoodbeingstudiedin ordertoidentifythepricerangeinwhichtheproductissold.Thisphaseisnecessarytodeterminethe number andbreadthofthepriceintervalsthatthemarketisdividedinto.Thechoice willhavetobeeffected basedonthehypothesisthatthevariousintervalsalsoincludedifferentbehavioursandthateachofthese insteadcontainshomogeneity.Thenumberofintervalsclearlydoesnotdependsolelyonthepricerangein themarket,butalsoonthesamplesizethatonewishestoobtainandonthegeneralobjectivesofthestudy. Step2–translatingthepriceintervalsidentifiedintopricevectors
Instep2,itisnecessarytodefineapricevectorforeachpriceintervalidentifiedintheprevious phase. Translatingthepriceintervalsintopricevectors presentsacritical aspectthat consistsin identifyingtheupperlevelofthepricevector.Thislevelmustindeedbedefinedinordertobeableto
graspthemonetarysacrificetheconsumeriswillingtomaketoobtaincertainproductcharacteristics, soastoavoidundervaluingthepriceattribute.
Step3–identifyingthemethodforelicitingrespondents’preferencesonpriceintervals
Inthisstep,eachrespondentmustbeattributedapriceintervalthatcorrespondstohishabitual purchasing behaviour. Phrasing thequestion in the questionnaire to collectthe information on behaviourpresentsseveral pointsofattention.Inparticular,theresearchermustevaluatevarious optionsthatconcernboththemodalityofresponse(openorclosed),andthedifferentphrasingsofthe questionpertainingtotheintervalofprices.Thisquestioncaninfactbedeclinedindifferentwaysso thatfortheproductbeingstudied,theconsumershaveareferencepriceorarangeofprices.Inthefirst case,theresearcherscouldaskforthepriceatwhichtherespondentsgenerallypurchasetheproduct, aswellasthepreferredprice,ortherealmarketprice.Inthesecondcase,thequestionscouldinstead concerntheprevalentinterval,theaverageprice,theminimum,and/ormaximumpriceatwhichthe respondentsmaketheirpurchase.Eachoftheseoptionshasdifferentimplicationsontheresults,and theirchoicedependsonthespecificobjectofinvestigation.Forexample,choosingtheminimumprice couldmakeitpossibletoavoidphenomenaofattributingapositiveutilitytoincreasingpriceswhen dealingwithproductsforwhichpriceisaqualitycue.
Informationgatheredinthismanneralsoallowsustoverifytheneedtobreakdowntheprice range.Infact,thepresenceofasignificantpercentageofthesampleinthedifferentpriceintervals provestheheterogeneityinconsumerbehaviourwithrespecttoprice.
Step4–makingDCEswithmultiplepricevectors
Basedontheinformationgathered,eachrespondentwillperformthechoiceexperimentwitha pricevectorthatrepresentshishabitualbehaviour.Inotherwords,theDCEwillbeequalfortheentire samplewithrespecttothelevelsofalltheattributesexceptforthepriceattributelevels.Asafinal result,weshallhaveasmanysub-samplesaswehavepricevectorsutilisedintheexperiment.Wecan therebyanalysethevarioussub-samplesandfinddifferentiatedpreferencesandwillingnesstopayfor eachpriceinterval.
Methodvalidation
Inordertovalidateourmethodology,wecarriedoutaDCEonasampleof400Italianconsumersof redwinein0.75Lbottles.Wineaffordsavaluablecasestudysinceitpresentsextremelyvariable prices[5].Themarketstudyontheproductpointedoutanoverallpricerangebetweens2ands14, withamedianvalueofapproximatelys5.00(IRI-Infoscandata).
Onthebasisofthisinformation,weaskedrespondentstoindicateinwhichoftwopriceintervals, theyhabituallyorienttheirwinepurchases:(i)“lessthanorequaltos5.00perbottle”or(ii)“morethan s5.00perbottle”.Thisis,ofcourse,oneofthepossiblewaystoelicitconsumerbehaviourwithrespect toprice.Identifyingtwopriceintervalsisindeedfunctionaltothepresentcasestudy,butinother contextsitmightbemoreappropriatetodefineagreaternumberofintervalsand/ortophrasethe questionsothatitpointsoutbehaviourwithrespecttopricedifferentlyfromthewaywehaveused. Inthefollowingstep,thetwosub-samplesparticipatedinanidenticalDCEbutwithtwodifferentprice vectorswithfourlevelseach.Thefirstone,called“lowprice”withthelevelss2.00,s3.50,s5.00ands 6.50 was assigned to those that stated they habitually purchased wine at prices lower thans5.00.Thesecond vector,“highprice”withthelevels,s5.00,s8.00,s11.00,ands14.00wasassignedtoalltheothers.Theother attributesincludedintheexperimentare:organic,nosulphitesadded,andwinegeographicalindications. Thegroupthatchosetheintervalwithpriceslowerthans5.00represents62.5%ofthesample (250individuals),whiletheothergroupmeasures37.5%(150individuals).Thisresultconfirmsthe presenceoftwoconsistentgroupsofconsumerswithheterogeneousbehaviourswithrespecttothe differentpricelevels,and it showsthe effectivenessof thepriceintervalswe haveidentifiedin representingconsumerbehaviour.
Inorder toallowforpreferenceheterogeneity,weestimateda RandomParameterLogit (RPL) model.Accordingly,theutilityofthei-thconsumerwhenheselectsabottleofwinejinthechoicetask tcanbewrittenas:
Uijt=ASC+αPRICEijt+β’iXijt+
e
ijt (1)WhereASCisanalternative-specificconstantthatrepresentstheno-buyoption.PRICErepresentsthe pricelevelsofferedtotherespondenttopurchaseabottleofwine;βiisthevectoroftheutility
parametersforparticipanti;Xijtisthevectorofwineattributes,
e
ijtisanunobservedrandomterm.Thehypothesisthatwehavesignificanteffectsinestimatingtheparametersbychangingtheprice vectorusedinthechoiceexperimentistestedwithalikelihoodratio(LR)test:
LR¼2 LLj XM i¼1 LLi ! ð2Þ whichisdistributedχ2withK(M1)degreesoffreedom,whereLL
jistheloglikelihoodvalueforthe
pooleddata(lowprice+highprice),LLiaretheloglikelihoodvaluesforthedifferentrestrictedmodels
(lowprices,highprices),Kisthenumberofparameters(10inourcase),andMisthenumberofgroups (twoinourcase).
Table1showstheloglikelihoodofthetwomodelsplusthatofthepooledmodel.TheLRvalueis 134.40with10degreesoffreedom.Thisvalueishigherthanthecriticalvaluefortheχ2
statisticat5%, equal to18.31.We thusrejectthenull hypothesisand acceptthealternativehypothesis, i.e.the parametersofthetwomodelsarestatisticallydifferent.Therefore,thechoiceofpricerangeaffectsthe estimation of preferences.Moreover,to assessthe robustnessof the results ontheeconometric specificationandtoworkaroundpotentialscaleissues[6],werepeatedtheLRtestspecifyingthe utilitymodel in WTP spaceinsteadof inpreference space.Using this differentspecification, we confirmthattheresultsforthetwosub-samplesaredifferent.
Table2showstheresultsoftheRPLmodels.Theparametersareallsignificantforthelowandthe highpricemodels.Inbothmodels,theorganic,nosulphitesadded,andthedesignationsoforigin parametershaveapositivesign,whiletheparametersoftheno-buyoptionalwayshaveanegative sign.
Themagnitudesof theparameters ofeach attribute aresubstantially similarin thetwo sub-samplesexceptforthatofprice.Ingeneral,thetwomodelsdescribeanalogouspreferenceswith respecttothechosenattributes,inlinewiththeliterature[7–9].
Thepriceparametersarenegativeandverysignificantinbothmodels.However,themagnitudeof thetwoparametersisquitedifferent,thatis0.34(95%confidenceintervalequals[0.40;0.27])for themodelwiththelowpricesand0.08(95%confidenceintervalequals[0.11;0.04])forthemodel withthehighprices.Theseresultsshowthattherespondentsthatdeclaredanorientationtowards lowerpricesaremoresensitivetovariationsinpricethantherespondentsthatprefertopurchase wineinthehigherpricerange.
Table3reportsthewillingnesstopayforthetwosub-samples.The95%confidenceintervalsare estimatedwiththedeltamethod.ThedifferencesbetweenattributeWTPsareallsignificantaccording toaMann-WhitneyUandKolmogorov-Smirnovtest.
In conclusion, the proposed procedure has made it possible to point out two structures of significantlydifferentpreferencesinpricefortwoimportantmarketsegments,thuspermittinga betterunderstandingofthebehaviourofconsumersand,inparticular,oftheirwillingnesstopay.
Table1
Loglikelihoodandobservationsforbothscenariosandthepooledmodel.
Model Observations Loglikelihood
(Preferencespacemodel*)
Loglikelihood
(WTPspacemodel**)
Lowprice 6000 1546.792 1522.536
Highprice 3600 897.744 886.939
Pooledsample 9600 2511.735 2463.654
Anin-depthdiscussionoftheresultsandfurtherdetailsaboutourcasestudyarepresentedinan articlewrittenbyContinietal.[10].
References
[1]W.Adamowicz,J.D.Swait,Discretechoicetheoryandmodeling,in:J.L.Lusk,JuttaRoosen,J.F.Shogren,J.Shogren(Eds.), TheOxfordHandbookoftheEconomicsofFoodConsumptionandPolicy,2012,pp.119–151.
[2]N.Hanley,W.Adamowicz,R.E.Wright,Pricevectoreffectsinchoiceexperiments:anempiricaltest,Resour.EnergyEcon. 27(3)(2005)227–234.
[3]U.SlothuusSkjoldborg,D.Gyrd-Hansen,Conjointanalysis:thecostvariable.AnAchilles’heel?HealthEcon.12(6)(2003) 479–491.
[4]L.Casini,C.Contini,N.Marinelli,C.Romano,G.Scozzafava,Nutraceuticaloliveoil:doesitmakethedifference?Nutr.Food Sci.44(6)(2014)586–600.
[5]C.Contini,C.Romano,G.Scozzafava,F.Boncinelli,L.Casini,Wineconsumptionandsalesstrategies:theevolutionofMass RetailTradinginItaly,WineEcon.Policy4(2)(2015)116–127.
[6]K.Train,M.Weeks,Discretechoicemodelsinpreferencespaceandwillingness-to-payspace,in:R.Scarpa,A.Alberini (Eds.),ApplicationsofSimulationMethodsinEnvironmentalandResourceEconomics,Springer,Dordrecht,2005,pp. 1–16. [7]M.Costanigro,C.Appleby,S.D.Menke,Thewineheadache:consumerperceptionsofsulfitesandwillingnesstopayfor
non-sulfitedwines,FoodQual.Prefer.31(2014)81–89.
[8]N.Mtimet,L.M.Albisu,Spanishwineconsumerbehavior:achoiceexperimentapproach,Agribusiness:Int.J.22(3)(2006) 343–362.
[9]I. Schäufele, U. Hamm, Consumers’ perceptions, preferences and willingness-to-pay for winewith sustainability
characteristics:areview,J.Clean.Prod.147(2017)379–394.
[10]C.Contini,F.Boncinelli,C.Romano,G.Scozzafava,L.Casini,Pricevectorissueinachoiceexperiment:amethodological proposal,FoodQual.Prefer.75(2019)23–27.
Table2
EstimatedparametersfromtheRPLmodelforbothscenariosandthepooledmodel.
LowPrice (N=250) Highprice (N=150) Pooledsample (N=400)
Coef. [95%C.I.] Coef. [95%C.I.] Coef. [95%C.I.]
Randomparametersinutilityfunctions
Organic 0.32* 0.06;0.59 0.49** 0.20;0.78 0.34** 0.16;0.53
Nosulphitesadded 1.98** 2.27;1.70 1.56** 1.90;1.22 1.81** 2.02;1.59
PGI 1.08** 0.76;1.41 1.20** 0.78;1.62 1.58** 1.32;1.83
PDO 1.19** 0.90;1.48 1.25** 0.93;1.57 1.40** 1.19;1.61
Non-randomparametersinutilityfunctions
Price 0.34** 0.40;0.27 0.08** 0.11;0.04 0.07** 0.10;0.04
No-buy 2.04** 2.45;1.62 1.54** 2.05;1.03 0.92** 1.19;0.64
Standarddeviationsofparameterdistributions
Organic 0.92* 0.67;1.16 0.63** 0.33;0.92 0.76** 0.57;0.95
Nosulphitesadded 1.41** 1.13;1.70 1.45** 1.11;1.80 1.41** 1.20;1.63
PGI 0.83** 0.41;1.26 0.69** 0.19;1.19 0.92** 1.22;0.62
PDO 0.98** 0.73;1.24 0.37 0.18;0.92 0.80** 0.60;1.00
Note:(**)and(*)denotestatisticalsignificancerespectivelyat1%and5%;N=Samplesize;Coef.=Coefficients;C.I.=95%
confidenceinterval.
Table3
Willingnesstopayinsforbothscenarios.
Variable Willingnesstopayestimates(95%confidenceinterval) Mann-Whitney
UZ-score
Kolmogorov-SmirnovD
Lowprice Highprice
Organic 0.97(0.18;1.76) 6.45(2.05;10.86) 13.03*** 0.74***
Nosulphitesadded 5.90(7.16;4.64) 20.66(31.53;9.79) 9.94*** 0.73***
PGI 3.23(1.91;4.54) 15.85(4.36;27.34) 16.75*** 0.99***
PDO 3.55(2.40;4.70) 16.52(6.93;26.11) 16.75*** 1.00***