• Non ci sono risultati.

Discrete choice experiments with multiple price vectors for products sold in a wide price range

N/A
N/A
Protected

Academic year: 2021

Condividi "Discrete choice experiments with multiple price vectors for products sold in a wide price range"

Copied!
5
0
0

Testo completo

(1)

Method

Article

Discrete

choice

experiments

with

multiple

price

vectors

for

products

sold

in

a

wide

price

range

Caterina

Contini

*

,

Fabio

Boncinelli,

Caterina

Romano,

Gabriele

Scozzafava,

Leonardo

Casini

UniversityofFlorence,Italy

ABSTRACT

Thediscretechoiceexperimentisawidelyusedmethodologyinconsumerstudies.However, applyingthis methodtoinvestigatethemarketofproductssoldinawidepricerangecouldpresentissuesastothequalityof theestimateofpreferences.Infact,forthis`typeofproduct,frequentlyconsumersmayhavedifferentbehaviours whenfaced withdifferentprice levels.Forexample,somemarketsegments mayrefrain frompurchasing productsbelowcertainpricethresholds,consideringthemofanunacceptablequality,whileotherschooseonly belowcertainprices.Toworkaroundthisproblemarea,weproposeamethodologyinwhicheachrespondent declareshisownpriceintervalofreferenceandconsequentlyparticipatesinachoiceexperimentwithaprice vectorcoherentwith hishabits. In thismanner, we areabletograsp andinclude in theestimations the heterogeneityofconsumerswithrespecttopriceandthusobtainmoreaccuratewillingnesstopayestimates.

Themethoddescribesaproceduretobypassissuesrelatedtoidentifyingthepricevectorindiscretechoice experimentsthatinvolveproductssoldinawidepricerange.

Weproposeadiscretechoiceexperimentwithdiff`erentpricevectorsforconsumersegmentswithdifferent pricepreferences.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ARTICLE INFO

Methodname:Discretechoiceexperimentswithmultiplepricevectors

Keywords:Pricepreferenceheterogeneity,Wine,Experimentaldesign,Willingnesstopay,Qualitycue

Articlehistory:Received6March2019;Accepted24July2019;Availableonline31July2019

*Correspondingauthor.

E-mailaddress:caterina.contini@unifi.it(C.Contini).

https://doi.org/10.1016/j.mex.2019.07.026

2215-0161/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

MethodsX

(2)

SpecificationsTable

SubjectArea: AgriculturalandBiologicalSciences

Morespecificsubjectarea: Consumerbehaviour

Methodname: Discretechoiceexperimentswithmultiplepricevectors

Nameandreferenceoforiginalmethod: Discretechoiceexperiment

Resourceavailability: NA

Methoddetails

TheDiscreteChoiceExperiment(DCE)isamethodthatiswidelyusedintheambitofapplied economicsandmarketinginordertostudyconsumerpreferences.Thismethodconsistsofcreating hypotheticalmarketsbymeansofquestionnairesinwhichapurchasingdecisionissimulatedamong variousproductalternativesthatdifferwithrespecttoqualitycharacteristicsandprice[1]Although theprocedurestoapplythismethodarewell-establishedandsharedamongscholars,thechoiceofthe pricevectorpresentsvariouselementsofcomplexityandhasstillnotbeencodified[2].Indeed,to date,the selection ofprice levelstoutilise in theexperiment implies that researchersmake an educatedguessbasedonananalysisofthepricesofproductsavailableonthemarketandsimilarto theonebeingevaluated.

Thisprocedurebecomesparticularlyproblematicwhentheproductsubjectedtotheexperiment presentsaverybroadpricerangeontherealmarket,asinthecaseofelectronicdevices,healthcare, and hospitality services.In fact,for these products, therecould bediversified behavioursof the consumerswithrespecttoprice,inrelationtomanyfactorssuchasincome,habits,andinvolvement. Someconsumers,forexample,mightassociatelowpricestolowquality,whichcandetermineatrend oftheutilityfunctionalongpricevaluesfirstincreasingthendecreasing[3,4].Inthiscase,usingaprice

vector that covers the entire surveyed range on the market would determine an estimate of

compromisethatwouldfailtograspthedifferentbehavioursofconsumers[4].

Weproposetoimplementaprocedurethatbridgesthelimitsoftheconventionalapproachinorder toidentifypricevectorstoutiliseinconductingDCEs.Inparticular,theproposedmethodstrivesto improvetheestimationofconsumerpreferencesbymeansofcodifyingaproceduretodefinetheprice vectorthatcanassistDCEpractitionersinbuildingtheexperimentaldesign.Thismethodmakesit possibletoverifythepresenceofheterogeneousbehavioursofconsumerswithrespecttodifferent pricelevelsandthusobtainmorereliableestimatesofconsumerpreferencesaswell.Inthismanner, wecanindeedconsideranimportantfactorofpreferenceheterogeneityintheestimationsthatwould otherwiseremainconfusedintherandomcomponentoftheestimationmodel.

Theapproachweproposeisbasedontheideathateachrespondentstateshisownpriceintervalof referenceandconsequentlyparticipatesinachoiceexperimentwithapricevectorcoherentwithhis elicitedhabits.Theapproachcanbedividedinto4steps.

Step1–marketanalysisandidentifyingpricerangeofproducts

Inthefirststep,theresearcheriscalledtomakeacarefulmarketanalysisofthegoodbeingstudiedin ordertoidentifythepricerangeinwhichtheproductissold.Thisphaseisnecessarytodeterminethe number andbreadthofthepriceintervalsthatthemarketisdividedinto.Thechoice willhavetobeeffected basedonthehypothesisthatthevariousintervalsalsoincludedifferentbehavioursandthateachofthese insteadcontainshomogeneity.Thenumberofintervalsclearlydoesnotdependsolelyonthepricerangein themarket,butalsoonthesamplesizethatonewishestoobtainandonthegeneralobjectivesofthestudy. Step2–translatingthepriceintervalsidentifiedintopricevectors

Instep2,itisnecessarytodefineapricevectorforeachpriceintervalidentifiedintheprevious phase. Translatingthepriceintervalsintopricevectors presentsacritical aspectthat consistsin identifyingtheupperlevelofthepricevector.Thislevelmustindeedbedefinedinordertobeableto

(3)

graspthemonetarysacrificetheconsumeriswillingtomaketoobtaincertainproductcharacteristics, soastoavoidundervaluingthepriceattribute.

Step3–identifyingthemethodforelicitingrespondents’preferencesonpriceintervals

Inthisstep,eachrespondentmustbeattributedapriceintervalthatcorrespondstohishabitual purchasing behaviour. Phrasing thequestion in the questionnaire to collectthe information on behaviourpresentsseveral pointsofattention.Inparticular,theresearchermustevaluatevarious optionsthatconcernboththemodalityofresponse(openorclosed),andthedifferentphrasingsofthe questionpertainingtotheintervalofprices.Thisquestioncaninfactbedeclinedindifferentwaysso thatfortheproductbeingstudied,theconsumershaveareferencepriceorarangeofprices.Inthefirst case,theresearcherscouldaskforthepriceatwhichtherespondentsgenerallypurchasetheproduct, aswellasthepreferredprice,ortherealmarketprice.Inthesecondcase,thequestionscouldinstead concerntheprevalentinterval,theaverageprice,theminimum,and/ormaximumpriceatwhichthe respondentsmaketheirpurchase.Eachoftheseoptionshasdifferentimplicationsontheresults,and theirchoicedependsonthespecificobjectofinvestigation.Forexample,choosingtheminimumprice couldmakeitpossibletoavoidphenomenaofattributingapositiveutilitytoincreasingpriceswhen dealingwithproductsforwhichpriceisaqualitycue.

Informationgatheredinthismanneralsoallowsustoverifytheneedtobreakdowntheprice range.Infact,thepresenceofasignificantpercentageofthesampleinthedifferentpriceintervals provestheheterogeneityinconsumerbehaviourwithrespecttoprice.

Step4–makingDCEswithmultiplepricevectors

Basedontheinformationgathered,eachrespondentwillperformthechoiceexperimentwitha pricevectorthatrepresentshishabitualbehaviour.Inotherwords,theDCEwillbeequalfortheentire samplewithrespecttothelevelsofalltheattributesexceptforthepriceattributelevels.Asafinal result,weshallhaveasmanysub-samplesaswehavepricevectorsutilisedintheexperiment.Wecan therebyanalysethevarioussub-samplesandfinddifferentiatedpreferencesandwillingnesstopayfor eachpriceinterval.

Methodvalidation

Inordertovalidateourmethodology,wecarriedoutaDCEonasampleof400Italianconsumersof redwinein0.75Lbottles.Wineaffordsavaluablecasestudysinceitpresentsextremelyvariable prices[5].Themarketstudyontheproductpointedoutanoverallpricerangebetweens2ands14, withamedianvalueofapproximatelys5.00(IRI-Infoscandata).

Onthebasisofthisinformation,weaskedrespondentstoindicateinwhichoftwopriceintervals, theyhabituallyorienttheirwinepurchases:(i)“lessthanorequaltos5.00perbottle”or(ii)“morethan s5.00perbottle”.Thisis,ofcourse,oneofthepossiblewaystoelicitconsumerbehaviourwithrespect toprice.Identifyingtwopriceintervalsisindeedfunctionaltothepresentcasestudy,butinother contextsitmightbemoreappropriatetodefineagreaternumberofintervalsand/ortophrasethe questionsothatitpointsoutbehaviourwithrespecttopricedifferentlyfromthewaywehaveused. Inthefollowingstep,thetwosub-samplesparticipatedinanidenticalDCEbutwithtwodifferentprice vectorswithfourlevelseach.Thefirstone,called“lowprice”withthelevelss2.00,s3.50,s5.00ands 6.50 was assigned to those that stated they habitually purchased wine at prices lower thans5.00.Thesecond vector,“highprice”withthelevels,s5.00,s8.00,s11.00,ands14.00wasassignedtoalltheothers.Theother attributesincludedintheexperimentare:organic,nosulphitesadded,andwinegeographicalindications. Thegroupthatchosetheintervalwithpriceslowerthans5.00represents62.5%ofthesample (250individuals),whiletheothergroupmeasures37.5%(150individuals).Thisresultconfirmsthe presenceoftwoconsistentgroupsofconsumerswithheterogeneousbehaviourswithrespecttothe differentpricelevels,and it showsthe effectivenessof thepriceintervalswe haveidentifiedin representingconsumerbehaviour.

(4)

Inorder toallowforpreferenceheterogeneity,weestimateda RandomParameterLogit (RPL) model.Accordingly,theutilityofthei-thconsumerwhenheselectsabottleofwinejinthechoicetask tcanbewrittenas:

Uijt=ASC+αPRICEijt+β’iXijt+

e

ijt (1)

WhereASCisanalternative-specificconstantthatrepresentstheno-buyoption.PRICErepresentsthe pricelevelsofferedtotherespondenttopurchaseabottleofwine;βiisthevectoroftheutility

parametersforparticipanti;Xijtisthevectorofwineattributes,

e

ijtisanunobservedrandomterm.

Thehypothesisthatwehavesignificanteffectsinestimatingtheparametersbychangingtheprice vectorusedinthechoiceexperimentistestedwithalikelihoodratio(LR)test:

LR¼2 LLj XM i¼1 LLi ! ð2Þ whichisdistributedχ2withK(M1)degreesoffreedom,whereLL

jistheloglikelihoodvalueforthe

pooleddata(lowprice+highprice),LLiaretheloglikelihoodvaluesforthedifferentrestrictedmodels

(lowprices,highprices),Kisthenumberofparameters(10inourcase),andMisthenumberofgroups (twoinourcase).

Table1showstheloglikelihoodofthetwomodelsplusthatofthepooledmodel.TheLRvalueis 134.40with10degreesoffreedom.Thisvalueishigherthanthecriticalvaluefortheχ2

statisticat5%, equal to18.31.We thusrejectthenull hypothesisand acceptthealternativehypothesis, i.e.the parametersofthetwomodelsarestatisticallydifferent.Therefore,thechoiceofpricerangeaffectsthe estimation of preferences.Moreover,to assessthe robustnessof the results ontheeconometric specificationandtoworkaroundpotentialscaleissues[6],werepeatedtheLRtestspecifyingthe utilitymodel in WTP spaceinsteadof inpreference space.Using this differentspecification, we confirmthattheresultsforthetwosub-samplesaredifferent.

Table2showstheresultsoftheRPLmodels.Theparametersareallsignificantforthelowandthe highpricemodels.Inbothmodels,theorganic,nosulphitesadded,andthedesignationsoforigin parametershaveapositivesign,whiletheparametersoftheno-buyoptionalwayshaveanegative sign.

Themagnitudesof theparameters ofeach attribute aresubstantially similarin thetwo sub-samplesexceptforthatofprice.Ingeneral,thetwomodelsdescribeanalogouspreferenceswith respecttothechosenattributes,inlinewiththeliterature[7–9].

Thepriceparametersarenegativeandverysignificantinbothmodels.However,themagnitudeof thetwoparametersisquitedifferent,thatis0.34(95%confidenceintervalequals[0.40;0.27])for themodelwiththelowpricesand0.08(95%confidenceintervalequals[0.11;0.04])forthemodel withthehighprices.Theseresultsshowthattherespondentsthatdeclaredanorientationtowards lowerpricesaremoresensitivetovariationsinpricethantherespondentsthatprefertopurchase wineinthehigherpricerange.

Table3reportsthewillingnesstopayforthetwosub-samples.The95%confidenceintervalsare estimatedwiththedeltamethod.ThedifferencesbetweenattributeWTPsareallsignificantaccording toaMann-WhitneyUandKolmogorov-Smirnovtest.

In conclusion, the proposed procedure has made it possible to point out two structures of significantlydifferentpreferencesinpricefortwoimportantmarketsegments,thuspermittinga betterunderstandingofthebehaviourofconsumersand,inparticular,oftheirwillingnesstopay.

Table1

Loglikelihoodandobservationsforbothscenariosandthepooledmodel.

Model Observations Loglikelihood

(Preferencespacemodel*)

Loglikelihood

(WTPspacemodel**)

Lowprice 6000 1546.792 1522.536

Highprice 3600 897.744 886.939

Pooledsample 9600 2511.735 2463.654

(5)

Anin-depthdiscussionoftheresultsandfurtherdetailsaboutourcasestudyarepresentedinan articlewrittenbyContinietal.[10].

References

[1]W.Adamowicz,J.D.Swait,Discretechoicetheoryandmodeling,in:J.L.Lusk,JuttaRoosen,J.F.Shogren,J.Shogren(Eds.), TheOxfordHandbookoftheEconomicsofFoodConsumptionandPolicy,2012,pp.119–151.

[2]N.Hanley,W.Adamowicz,R.E.Wright,Pricevectoreffectsinchoiceexperiments:anempiricaltest,Resour.EnergyEcon. 27(3)(2005)227–234.

[3]U.SlothuusSkjoldborg,D.Gyrd-Hansen,Conjointanalysis:thecostvariable.AnAchilles’heel?HealthEcon.12(6)(2003) 479–491.

[4]L.Casini,C.Contini,N.Marinelli,C.Romano,G.Scozzafava,Nutraceuticaloliveoil:doesitmakethedifference?Nutr.Food Sci.44(6)(2014)586–600.

[5]C.Contini,C.Romano,G.Scozzafava,F.Boncinelli,L.Casini,Wineconsumptionandsalesstrategies:theevolutionofMass RetailTradinginItaly,WineEcon.Policy4(2)(2015)116–127.

[6]K.Train,M.Weeks,Discretechoicemodelsinpreferencespaceandwillingness-to-payspace,in:R.Scarpa,A.Alberini (Eds.),ApplicationsofSimulationMethodsinEnvironmentalandResourceEconomics,Springer,Dordrecht,2005,pp. 1–16. [7]M.Costanigro,C.Appleby,S.D.Menke,Thewineheadache:consumerperceptionsofsulfitesandwillingnesstopayfor

non-sulfitedwines,FoodQual.Prefer.31(2014)81–89.

[8]N.Mtimet,L.M.Albisu,Spanishwineconsumerbehavior:achoiceexperimentapproach,Agribusiness:Int.J.22(3)(2006) 343–362.

[9]I. Schäufele, U. Hamm, Consumers’ perceptions, preferences and willingness-to-pay for winewith sustainability

characteristics:areview,J.Clean.Prod.147(2017)379–394.

[10]C.Contini,F.Boncinelli,C.Romano,G.Scozzafava,L.Casini,Pricevectorissueinachoiceexperiment:amethodological proposal,FoodQual.Prefer.75(2019)23–27.

Table2

EstimatedparametersfromtheRPLmodelforbothscenariosandthepooledmodel.

LowPrice (N=250) Highprice (N=150) Pooledsample (N=400)

Coef. [95%C.I.] Coef. [95%C.I.] Coef. [95%C.I.]

Randomparametersinutilityfunctions

Organic 0.32* 0.06;0.59 0.49** 0.20;0.78 0.34** 0.16;0.53

Nosulphitesadded 1.98** 2.27;1.70 1.56** 1.90;1.22 1.81** 2.02;1.59

PGI 1.08** 0.76;1.41 1.20** 0.78;1.62 1.58** 1.32;1.83

PDO 1.19** 0.90;1.48 1.25** 0.93;1.57 1.40** 1.19;1.61

Non-randomparametersinutilityfunctions

Price 0.34** 0.40;0.27 0.08** 0.11;0.04 0.07** 0.10;0.04

No-buy 2.04** 2.45;1.62 1.54** 2.05;1.03 0.92** 1.19;0.64

Standarddeviationsofparameterdistributions

Organic 0.92* 0.67;1.16 0.63** 0.33;0.92 0.76** 0.57;0.95

Nosulphitesadded 1.41** 1.13;1.70 1.45** 1.11;1.80 1.41** 1.20;1.63

PGI 0.83** 0.41;1.26 0.69** 0.19;1.19 0.92** 1.22;0.62

PDO 0.98** 0.73;1.24 0.37 0.18;0.92 0.80** 0.60;1.00

Note:(**)and(*)denotestatisticalsignificancerespectivelyat1%and5%;N=Samplesize;Coef.=Coefficients;C.I.=95%

confidenceinterval.

Table3

Willingnesstopayinsforbothscenarios.

Variable Willingnesstopayestimates(95%confidenceinterval) Mann-Whitney

UZ-score

Kolmogorov-SmirnovD

Lowprice Highprice

Organic 0.97(0.18;1.76) 6.45(2.05;10.86) 13.03*** 0.74***

Nosulphitesadded 5.90(7.16;4.64) 20.66(31.53;9.79) 9.94*** 0.73***

PGI 3.23(1.91;4.54) 15.85(4.36;27.34) 16.75*** 0.99***

PDO 3.55(2.40;4.70) 16.52(6.93;26.11) 16.75*** 1.00***

Riferimenti

Documenti correlati

Transition in the Workplace: The Experience of Italian Transgender and Gender Non-conforming People through the Lens of the Minority Stress Theory.. C RISTIANO S

Se assumiamo il degrado territoriale come problema fondamentale da affrontare nel progetto di sviluppo sostenibile, ci troviamo nella necessità di ‘complessificare’ gli indi-

from the theoretical and observational point of view, performed to understand the dependence of the CC properties on the chemical composition, there are still many doubts both on

For this purpose, we developed Binding Estimation After Refinement (BEAR) [7], an automated post-dock- ing tool consisting of a conformational refinement of docking binding

he aim of this paper is to reconsider the Maltese epigraphic material from a linguistic point of view, with an attempt to point out what the speciic linguistic choice means within

lis di Genesio sia avvenuta in una fase in cui non si sapeva – o non si voleva sapere – più nulla del cul- to del santo cui era intitolato il monastero brescel- lese e, dunque, si

Nell’introduzione Maltese sostiene la necessità, anche in Italia, di un ripensa- mento degli scopi e delle funzioni del catalogo come conseguenza della sua inefficacia nel

Based on these recent discussions, other differences between biodiversity indicators and EBVs may include (1) current biodiversity indicators, as opposed to EBVs, must be