• Non ci sono risultati.

Measurement of strange baryon–antibaryon interactions with femtoscopic correlations

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of strange baryon–antibaryon interactions with femtoscopic correlations"

Copied!
14
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

strange

baryon–antibaryon

interactions

with

femtoscopic

correlations

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received25September2019

Receivedinrevisedform10January2020 Accepted13January2020

Availableonline16January2020 Editor: L.Rolandi

Two-particlecorrelationfunctionsweremeasuredforpp,p,p,andpairsinPb–Pbcollisionsat

s

NN=2.76 TeVand √sNN=5.02 TeVrecordedbytheALICEdetector.Fromasimultaneousfittoall obtainedcorrelationfunctions,realandimaginarycomponentsofthescatteringlengths,as wellasthe effective ranges,wereextracted forcombined pand ppairs and,for thefirsttime, for pairs. Effectiveaveragedscatteringparametersforheavierbaryon–antibaryonpairs,notmeasureddirectly,are alsoprovided.Theresultsrevealsimilarlystronginteractionbetweenmeasuredbaryon–antibaryonpairs, suggestingthattheyallannihilateinthesamemanneratthesamepairrelativemomentumk∗.Moreover, thereportedsignificantnon-zeroimaginarypartandnegativerealpartofthescatteringlengthprovide motivationforfuturebaryon–antibaryonboundstatesearches.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The interaction of baryons is a fundamental aspect of many sub-fields of nuclear physics. It is investigated extensively with numerousmethods,amongwhichare includedthedetailed anal-ysisofthepropertiesofatomicnuclei,thededicatedexperiments wherebeams ofone baryon type are scatteredon other baryons bound inatomic nuclei [1–6], andthe femtoscopytechnique [7]. Thelatterinvolvestheanalysisofmomentumcorrelationsoftwo particlesproducedinnuclearorelementarycollisions [8–12].Itis especiallyinterestingtoprobetheinteractionintheregionofthe lowrelative momentumofthepair,asitisthe mostrelevantfor a precise extraction of the strong interaction scattering parame-ters.Inparticular,thepossiblecreationofboundstatesforagiven baryon–baryonpairwasinvestigatedextensively [13–18].

Nuclearcollisions at relativisticenergies are abundant sources of various particle species. In particular, the number of baryons and antibaryons created in each central Pb–Pb collision at the LargeHadron Collider (LHC) [19] isof the orderof one hundred each atmid-rapidity (

|

y

|

<

0

.

5) [20–22], whichmakes it feasible tostudydetailsoftheirinteractions.Theseparticlesinclude



,



,



,and



andanapproximatelyequalamountoftheir correspond-ingantiparticles.

The interactions of baryons are well known for pp pairs and pn pairs. Measurements were also performed for p



pairs [23–25]. Recently, a comparative study of the baryon–baryon and antibaryon–antibaryon interaction using Au–Au collisions at

 E-mailaddress:alice-publications@cern.ch.

sNN

=

200 GeVhasbeenperformedby theSTARexperimentat

theRelativistic HeavyIonColliderandfound thatthe pp interac-tiondoesnotdifferfromtheppsystem [26].Also,correlation mea-surementsof baryon–baryonpairsin ppcollisions at

s

=

7 TeV andp–Pb collisions at

sNN

=

5

.

02 TeV performedby the ALICE

detector [27] attheLHCprovidemoreconstraintsonthe interac-tion of p



and



[28,29] as well asp



− [30] at low relative pairmomentum.

Concerningproton–antiprotonpairs,thestronginteractionwas studied in detail [31–35]. Of particular interest is protonium (or antiprotonichydrogen)–aproton–antiprotonCoulombboundstate, wherethestronginteractionalsoplaysasignificantrole.The pro-toniumatomsarecreatedbystoppingantiprotonsinhydrogenand the stronginteraction is studiedvia shifts inthe X-rayspectrum fromthe expectedQED transitionsfrom excited states.In partic-ular, thereis evidenceof a contributionfromthe strong force to the 1Sand2P states.However, thenature ofprotoniumin these states, whetherit can be considered a nuclear bound state or a resultof theCoulomb interaction, remains an open question. For moredetailswereferthereadertothereviewpaper [35].

For baryon–antibaryon pairs with non-zero strangeness there ismuch lessexperimental dataavailable. However, low mass en-hancements in the invariant mass distributions of pp, p



, and



pairs havebeen observed in charmonium and B meson de-cays [36–39]. Those enhancements, except for the pp pair, are slightly above the mass threshold of the baryon–antibaryon sys-tems and have widths which are below 200 MeV/c2. Theoreti-cal interpretations of these results predict the existence of vari-ous baryon–antibaryon bound statesandpropose their

classifica-https://doi.org/10.1016/j.physletb.2020.135223

0370-2693/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

tion [36].Resultspresentedinthislettermightshednewlighton thisdomain.

Thebaryon–antibaryonscatteringparameters,whenmeasured, could be implemented in the well-established model of heavy-ion collisions, UrQMD [40], which has the important feature of includingrescatteringin thehadronic phase.In particular, recent comparisonsoftheoretical calculationswiththeALICEdatashow thataproperdescriptionofthisphaseiscriticalforthecorrect re-productionof a large number ofobservables, like particle yields, transverse-momentum spectra,femtoscopy ofidentified particles, aswell as ellipticflow [41–44].The baryon–antibaryon annihila-tionisacriticalcomponentoftherescatteringprocess.Yet,atthe moment,forallbutnucleon-antinucleonpairs,onehastorelyon assumptionsabouttheinteractioncrosssection.Currentlyitis as-sumedthatallbaryon–antibaryonpairsannihilateinthesameway aspp pairsatthesametotalenergyofthepair,

s,inthepairrest frame [40].

Femtoscopyallows oneto accessthebaryon–antibaryon inter-action at low pair relative momentum in a way which is com-plementary to dedicated scattering experiments.Only the strong interaction is present for p



(p



) and



pairs, while for pp pairs, where also the Coulomb interaction is present, it is the dominantcontribution [7,45].Therefore,theparametersofthis in-teraction,together withthesourcefunction, determinetheshape ofthecorrelationfunction.Inaddition,theso-called“residual cor-relation”effect(presenceofanadmixtureofweakdecayproducts inthe sample ofa givenbaryon–antibaryon pair) results in non-trivial interconnections between measured correlation functions. Thefemtoscopictechniquehasbeenemployedalreadytomeasure p



and p



scatteringparameters by the STARexperiment [46]. However, the mostimportant limitation of that studyis the fact thatnocorrectionsforresidualcorrelationswereapplied.

In this letter the scatteringparameters are extracted for p



, p



, and for the first time for



pairs from femtoscopic cor-relations measured in Pb–Pb collisions at

sNN

=

2

.

76 TeV and

sNN

=

5

.

02 TeVregistered bythe ALICEexperimentatLHC.The

residualcorrelationsareaccountedforintheformalism proposed in Ref. [47] which does not attempt to “correct” for this effect (asproposedinan alternativeprocedureinRef. [48]),butinstead usesit toextract informationaboutthestronginteraction poten-tialparameters forthe parent particles.Therefore, itallows fora single andsimultaneous fitto allmeasured correlation functions. This provides maximum statistical accuracy forthe obtained pa-rameters,minimisesthenumberoffitparameters andprovidesa non-trivialinternalconsistencyverification.

Recently, the p



and p



correlations measured by STAR [46] havebeenreanalysedtakingintoaccounttheresidualcorrelations effect [47]. Thatstudy suggests that all baryon–antibaryon pairs mightannihilateinasimilarwayasafunctionoftherelative mo-mentumofthe pairk∗,insteadofthepaircentre-of-mass energy

s. Thiswork aims toprovide moreexperimental constraintson thesescenarios.

2. Experimentanddataanalysis

The data sample used in this work was collected in LHC Run 1 (2011) and Run 2 (2015), where two beams of Pb nuclei were brought to collideat thecentre-of-mass energyof

sNN

=

2

.

76 TeVand

sNN

=

5

.

02 TeV,respectively.Productsofthe

colli-sionsweremeasuredbytheALICEdetector [27].Theperformance ofALICEisdescribedinRef. [49].

Inthisanalysistheminimum-bias(MB)triggerwas used.Itis basedonthe V0detectorconsistingoftwoarraysof32 scintilla-tor counters, which are installed on each side of the interaction

Table 1

Centralityrangesandcorrespondingaveragecharged-particlemultiplicity den-sitiesatmid-rapiditydNch/dηforPb–Pbcollisionsat√sNN=2.76 TeV [50] and√sNN=5.02 TeV [52].

Centrality dNch/dηsNN=2.76 TeV dNch/dηsNN=5.02 TeV

0–5% 1601±60 1943±53 5–10% 1294±49 1586±46 10–20% 966±37 1180±31 20–30% 649±23 786±20 30–40% 426±15 512±15 40–50% 261±9 318±12

point and cover pseudorapidity1 ranges 2

.

8

<

η

<

5

.

1 (V0A)and

3

.

7

<

η

<

1

.

7 (V0C).The MB triggerrequireda signalin both V0 detectors within a time window that is consistent with the collision occurringatthe centreof theALICEdetector. Theevent centrality wasdetermined by analysingthe amplitude ofthe sig-nal fromtheV0detectorwiththe proceduredescribed indetails inRef. [50].

The position of the collision vertex was reconstructed using the signal from the Inner Tracking System (ITS) [27]. The ITS is composed of sixcylindricallayers ofsilicon detectorsand covers

|

η

|

<

0

.

9. Its information can be used for tracking and primary vertex determination. However, in this analysisit was used only forthelatter.Theprimaryvertexforan eventwas requiredto be within

±

8 cmfromthecentreofthedetector.

The analysis was performed in six centrality [51] ranges for both collision energies. They are listed in Table 1 together with their correspondingaveragecharged-particlemultiplicity densities atmid-rapidity



dNch

/

d

η



[50,52].

Charged-particletrajectory(track)reconstructionforboth colli-sion energies was performed usingthe TimeProjection Chamber (TPC) detector [53]. The TPC is divided by the central electrode into two halves.Eachhalf iscapped withareadout plane which is composed of 18 sectors(covering the full azimuthal angle

ϕ

) with159padrowsplacedradiallyineachsector. Atracksignal in the TPC consistsof space points (clusters), and each of them is reconstructed in one ofthe padrows.A trackwas required tobe composedofatleast80clusterstominimisethepossibilitythata signal left bya singleparticle isreconstructedastwotracks. The parameters ofthe trackare determined by performing a Kalman fittoasetofclusters.Thequality ofthefitisdeterminedby cal-culating the

χ

2 whichwasrequiredtobe lowerthan 4forevery

cluster (each cluster has two d.o.f.), in order to select only well fittedtracks.

The identification of primary protons (antiprotons) was per-formed using the combined information fromboth the TPC and the Time-OF-Flight (TOF) detectors (a signal from both detectors was required), while the identification of



(



) decay products (charged secondarypions and(anti)protons)requiredinformation onlyfromtheTPC.TOFisacylindricaldetectorcomposedof Multi-gapResistiveProportionalChambers(MRPC)locatedatr

=

380 cm fromthebeamaxis.TracksarepropagatedfromtheTPCtotheTOF andmatchedto hitsinthisdetector.InthecaseofbothTPCand TOF, thesignals (energy loss dE

/

dx forthe TPC andthe time of flightfortheTOF)werecomparedtotheexpectedonesforagiven particle. The measured–expected signal deviationwas divided by the appropriate detectorresolution

σ

.The trackwas acceptedas a proton(pion)ifit fellwithin 3

σ

ofcombinedTPCandTOF ex-pectedsignalsforaproton(pion)inagivendetector.

Trackswere acceptedforanalysisiftheir pseudorapidityrange was within the range

|

η

|

<

0

.

8 to avoid regions of the detector

1 Pseudorapidityisdefinedasη= −ln

(3)

Fig. 1. Rawinvariantmassdistributionofpπ−(pπ+)pairsusedtoobtainthe() candidatesfor Pb–Pbcollisionsat √sNN=5.02 TeVinthe0–5% centralityrange. Thedashedlinesrepresenttheselectionwidthusedintheanalysis.Notethatthe meanvalueofthedistributionisslightlyshiftedfromtherestmassof()by ∼1 MeV/c2duetoimperfectionsintheenergylosscorrectionsthatareappliedin thetrackreconstruction.

withlimitedacceptance.Theparticleidentificationqualitydepends on the transverse momentum pT, thus a pT

[0

.

7

,

4

.

0] GeV/c

rangewasusedforprimary(anti)protonstoassuregoodpurityof thesample.Tomakesurethatthesampleisnotsignificantly con-taminated by secondary particles coming from weak decaysand particle–detectorinteractions,aselectioncriterionontheDistance ofClosestApproach(DCA)totheprimaryvertexwasalsoapplied, separatelyinthetransverseplane(DCAxy

<

2

.

4 cm)andalongthe

beamaxis(DCAz

<

3

.

2 cm).Thesecriteriawereoptimisedinorder

toselectahighpuritysample of(anti)protons. The pT-integrated

purity,basedonMonteCarlosimulations,ofthep(p)samplewas 95.4%(95.2%).

Theselectionof



(



)isbasedontheirdistinctivedecay topol-ogy in the decay channel



()

p

π

(

p

π

+

)

, with a branch-ing ratio of 63.9% [31]. The reconstruction process, described in Ref. [54], is based onfinding candidates made of two secondary tracks having opposite charge and large impact parameter with respectto the interaction point. The purityof



and



samples is larger than 95% within the selected invariant mass range of

|

M

MPDG

|

0

.

0038 GeV/c 2.The p

T-integratedinvariantmass

distributionof



(



)candidatesisshowninFig.1.

Thefemtoscopiccorrelationismeasuredasafunctionofthe re-ducedmomentumdifferenceofthepairk

=

12



p

1∗

p2∗



,where

p1∗and p

2∗ denotemomentaofthetwoparticlesinthepairrest

frame.Itisdefinedas

C

(

k

)

=

N

A

(

k

)

B

(

k

)

.

(1)

ThedistributionA,calledthe“signal”,isconstructedfrompairs ofparticlesfromthesameevent.Thebackgrounddistribution B is

constructedfrom uncorrelatedparticles measured withthe same single-particle acceptance. In this analysisit was built using the eventmixingmethodwiththetwoparticlescomingfromtwo dif-ferenteventsforwhichthevertexpositionsinthebeamdirection agreewithin 2 cmandthe multiplicities differby nomore than 1

/

4 ofthe widthofthe givencentrality class forwhich the cor-relation function is calculated. Each particle was correlated with particlesfrom10 other events.Theparameter

N

is a normalisa-tionfactor.

In thiswork, the analysis is further simplified by performing all measurements as a function of the magnitudeof the relative momentumk

= |

k

|

only.The

N

parameterwascalculatedduring

thebackgroundsubtractionproceduredescribedinSec.3,inaway that thecorrelation functionapproaches unityink

∈ [

0

.

13

,

1

.

5

]

GeV/c forpp pairsandink

∈ [

0

.

23

,

1

.

5

]

GeV/c forp



,p



,and



pairs.

3. Fittingprocedure

Theextractionofthescatteringparametersfromthemeasured correlationfunctionsrequiresadedicatedfittingprocedure,which takesintoaccountthestrongandCoulombinteraction,depending onagivenpair.Thefittingformulaischosenappropriatelyforeach baryon–antibaryonpair.Afterwards,asimultaneousfittoall mea-suredpairs,takingintoaccountresidualcorrelations,isperformed. Thedetailsoftheprocedurearedescribedbelow.

The two-particle correlation function inthe pairrest frame is definedas [55,56]

C

(

k

)

=



S

(

r

)



 (

k

,

r

)





2d3r

,

(2)

where S

(

r

)

isthesourceemission function,

(

k

,

r

)

is thepair wavefunction,and

r∗ istherelative separationvector. Thesource isassumedto havea spherically-symmetricGaussiandistribution according to measurements [12,57]. The pair wave function de-pendsontheinteractionsbetweenbaryonsandantibaryons.When only the strong interaction is present, the correlation function can be expressed analyticallyasa function of thescattering am-plitude f

(

k

)

=



1 f0

+

1 2d0k∗2

ik



−1

, and the one-dimensional source size R. This description is calledthe Lednický–Lyuboshitz analyticalmodel [7] (seeAppendixAfordetails).Inthiswork,the spin-averagedscatteringparametersareobtained,i.e.

f0thereal

and

f0 imaginary parts of the spin-averaged scatteringlength,

andd0fortherealpartofthespin-averagedeffectiverangeofthe

interaction.Theusual femtoscopicsignconvention isused,where apositive

f0 correspondstoattractivestronginteraction.

Accounting for residual correlations is an important ingredi-ent of every correlation function analysis involving baryons. A fraction of observed (anti)baryons comes from decays of heavier (anti)baryons.This isillustratedin Fig.2,wherethe main contri-butions tothe pp correlationfunction aremarked inblue,to the p



inyellowandtothe



inred.Insuchacase,thecorrelation function is built forthe daughter particles, while theinteraction hastakenplacefortheparent baryons.Toaccount forthiseffect, thefittingformulausedinthisworkcontainsasumofcorrelation functionsforeachpossiblecombinationof(anti)baryons,weighted by thefraction

λ

ofgivenresidual pairs.One needsto transform the theoreticalcorrelation function ofapair intothemomentum frameoftheparticlesregisteredinthedetector [47].

Theprocedure forthecorrelation functionanalysistakinginto accountresidualcorrelationshasbeenperformedbeforeandis de-scribedindetailinRef. [58].Thesameprocedurewascarriedout inthisanalysis.

The fractionsofresidualpairs

λ

were calculatedbasedon the AMPTmodel [59] (aswellasHIJING [60] forevaluationof system-atic uncertainties) after full detector simulation, estimating how manyreconstructed pairs come fromprimary particles andwhat isthepercentageofthosecomingfromthegivendecay.Theyalso takeintoaccountother impuritiesresultingfrommisidentification ordetectoreffects;therefore,their sumisnotequaltounity.The obtainedvaluesoffractionsarelisted inTable2.Themomentum transformation matrices [47] were generated using the THERMI-NATOR 2 model [61] for all residual components of all analysed systems.Thefinalcorrelationfunctionforaxy pairisdefinedas

(4)

Fig. 2. Illustrationofthelinksbetweendifferentbaryon–antibaryonpairsthrough the residual correlation. Main contributions to the pp correlation function are markedinblue,tothepinyellowandtotheinred.Solidlinesshow con-nectionsbetweenstudiedpairs,whiledashedlinespresentothermajorresidual contributionsthatareuniqueforagivensystem.

Cxy

(

k

)

=

1

+



i

λ

i

Ci

(

k

)

1

,

(3)

wherethesumisoverallresidualcomponentsofthexy pairand

λ

i andCi

(

k

)

arethefractionandthecorrelationfunction ofi-th pair,respectively [47].

Correlationfunctionswereobtainedforfourbaryon–antibaryon pairsystemspp, p



,p



,and



.Sincethecorrelationfunctions p



and p



were found tobe consistent with each other within theuncertainties,theywere alwayscombinedandarefurther de-notedasp



p



.A simultaneousfitis desirablebecauseofthe presenceofresidual correlationswhichlink differentpairs.Three setsofunknownscatteringparameters,componentsofthe analyt-ical formula(A.2) used in the fit, were introduced for p



p



,



aswell asheavier,not measureddirectly, baryon–antibaryon pairs, further referred to asBB, consisting ofpairs containing



and



baryons.The pp systemwasusedasareference.However, duetothepresenceoftheCoulombinteractionandcoupled chan-nels,theanalyticaldescription isnolongervalidinthiscase(see AppendixAfordetails).Nevertheless,coupled-channeleffects be-come negligible for large sources asthe ones obtained in Pb-Pb collisionsystems.Thetheoreticalpp correlationfunctionswere

ob-tained by generating pp pairs with the THERMINATOR 2 model and by applying weights accounting for the final state interac-tions with an approximatetreatment of the nn coupled channel, usinga numericalmodelby R.Lednický [7,11] with experimental constraints on strong interaction parameters from previous mea-surements [32,62,63].

Thesourcesizesforprimarypp,p



p



,and



pairswere taken from previous measurements of other baryon–baryon and meson–meson pairs [58]. We assume that the one-dimensional source size R, for each pair, dependson the transverse mass of thepair,mT

=

m2

+

p2

T,andonthecharged-particlemultiplicity Nch[64] followingtherelations

R

(

mT

;

Nch

)

=

a

(

Nch

)

T

,

(4)

and

R

(

Nch

;

mT

)

=

α

(

mT

)

3

Nch

+ β(

mT

),

(5)

where the

γ

exponent and the a

(

Nch

),

α

(

mT

)

and

β(

mT

)

func-tions are empirical and include the constraint of the minimum possible source size (Nch

=

1) being equal to the proton radius, Rp

0

.

88 fm [31].Therelations (4) and (5) are usedforallpairs,

includingthosecontributingviaweakdecays.

The experimental correlation function isalso affectedby phe-nomena other than the strong and Coulomb interactions, such as jets and elliptic flow [65–67]. Those effects are treated as a background.Foreach experimentalfunction,abackgroundfitwas performedinak∗regionwherefemtoscopiceffectsarenot promi-nent. It was found, using the THERMINATOR 2 model, that the resultsarenotdependentonthek∗fitrangewhenthebackground is fitted by a third order polynomial. Next, the estimated back-groundwassubtractedfromtheexperimentalcorrelationfunction. Theprocedure flattensthefunctionforhigherk∗ andtheslopeis larger for lesscentral collisions, which isconsistent withelliptic flow, as it should be more prominent for semi-central collisions andlessforcentralcollisions [65].

As anexample,the correlationfunctionsforpp, p



p



and



pairsforthe10–20%centralityintervalandtwocollision en-ergiesarerepresentedtogetherwiththesimultaneousfitinFig.3. The momentumresolutioneffectwas investigatedwithMonte Carlosimulations bycreatinga two-dimensionalmatrix of gener-atedandreconstructedk∗.Eachsliceofthedistributionwas then fitted with a Gaussian function. Withinthe k∗ region of interest the widthoftheGaussian functionisconstant; therefore,the fit-tingfunctionwassmearedwithaGaussianwithawidthconstant ink∗.

Table 2

Fractionsofresidualcomponents ofpp,p⊕p,and correlationfunctionsfrom Monte CarloeventssimulatedwithAMPTmodelafterfulldetectorsimulation.Thevaluesinparentheses representfractionsobtainedwiththeHIJINGmodelusedforevaluationofsystematic uncertain-ties.Fractionsarethesameforcorrespondingantipairs.

pp p⊕p 

Pair λ Pair λ Pair λ

pp 0.25 (0.32) p 0.29 (0.28)  0.37 (0.24) p 0.12 (0.19)  0.08 (0.09) + 0.04 (0.06) p− 0.04 (0.04) − 0.03 (0.02) 0 0.03 (0.05)  0.02 (0.03) p0/+ 0.02 (0.03) 0 <0.01 (0.20) − 0.01 (0.01) p0 <0.01 (0.12) 00 <0.01 (0.05) +<0.01 (<0.01) 0 <0.01 (0.04) 0/0 <0.01 (0.02) 0/+ <0.01 (0.01) 0/0/+ <0.01 (<0.01) +0 <0.01 (<0.01) 0/+ <0.01 (<0.01)

(5)

Fig. 3. Correlationfunctionsofpp,p⊕p,andpairsforPb–Pbcollisionsat√sNN=5.02 TeV(left)and√sNN=2.76 TeV(right)togetherwiththesimultaneous femtoscopicfitforthe10–20%centralityclass.

Table 3

Valuesofthe spin-averagedscatteringparameters f0, f0,and d0 for p⊕p and pairs, as wellas effective parameters accounting for heavierbaryon–antibaryon(BB)pairsnotmeasureddirectly,extractedfrom thesimultaneousfit. Parameter p⊕p  BB f0(fm) −1.15±±00..2305((statsyst.).) −0.90 ±0.16(syst.) ±0.04(stat.) −1.08 ±0.11(syst.) ±0.20(stat.) f0(fm) 0.53±±00..1504((statsyst.).) 0.40 ±0.18(syst.) ±0.06(stat.) 0.57 ±0.25(syst.) ±0.19(stat) d0(fm) 3.06±±00..9814((statsyst.).) 2.76 ±0.73(syst.) ±0.29(stat.) 2.69 ±0.46(syst.) ±0.74(stat.) 4. Results

Thestrong-interaction scatteringparameters

f0,

f0,andd0

for pp, p



p



,



, and BB pairs resulting from the simulta-neous fit are summarised in Table 3 and plotted in Fig. 4 to-gether with statistical (bars) and systematic (ellipses) uncertain-ties.2 Fig. 4alsoshowsscatteringparametersforvarious baryon– baryon and baryon–antibaryon pairs extracted in previous stud-ies [68–71].

Asthesimultaneousfityieldssimilar values,within uncertain-ties, of parameters forp



p



and



, as well as heavier BB pairs,one can perform a fit assuming a single set of parameters forall those systems. By doing so there is practically no change intheresults;inparticular,thereduced

χ

2

1

.

83 (p

<

0

.

00001)

of the first fit becomes

χ

2

1

.

87 and other scattering

parame-terschangeveryslightly,withinsystematicuncertainties.Thistest confirmsthatthedatapointscanbecorrectlydescribedwhenone assumesthatallbaryon–antibaryonpairshavesimilarvaluesofthe scatteringlengthandtheeffectiverangeofthestronginteraction.

5. Discussion

Femtoscopic correlation functions for pp, p



p



and



have been measured in Pb–Pb collisions at energies of

sNN

=

2

.

76 TeVand

sNN

=

5

.

02 TeVregisteredbytheALICEexperiment.

Theanalysiswas performedinsixcentralityintervals, yielding36 correlationfunctionsintotal.

2 DetailsofthesystematicuncertaintyestimationarediscussedinAppendixB.

For the first time parameters of the strong interaction, the scattering length and the effective range, were extracted for p



p



and



pairs.Moreover,parametersforheavierbaryon– antibaryon pairs, which were not measured directly, were esti-mated.

Severalconclusions can be drawnfromthe extracted parame-ters.Therealandimaginarypartsofthescatteringlength,

f0and

f0,andtheeffectiveinteractionrange,d0,havesimilarvaluesfor

all baryon–antibaryon pairsatlow k∗.Therefore,thedata canbe described usingthe sameparameters for allstudied pairs, which providesavaluableinputfortheoreticalheavy-ioncollisions mod-els.Note thatthe assumptionusedin theUrQMDmodel,namely that

f0 is the same for different baryon–antibaryon pairs as a

functionofthecentre-of-mass energyofthepair,meansthat the inelasticcrosssectionwouldbedifferentatthesamerelativepair momentumk∗.

A significant non-zeroimaginary part ofthe scatteringlength

f0 indicates thepresenceoftheinelasticchannelofthe

interac-tion,whichinthecaseofbaryon–antibaryon includesthe annihi-lationprocess.

Thenegativevalueoftherealpartofthescatteringlength,

f0,

obtained forall baryon–antibaryon pairs may haveone ofa two meanings: either the strong interaction is repulsive, or a bound state can be formed.The significant magnitudeof the imaginary part ofthe scatteringlength,

f0, showsthat baryon–antibaryon

scatteringmayoccur throughinelasticprocesses(annihilation).In the UrQMDmodel, three scenarios can be considered [47]: i) all baryon–antibaryon pairs annihilate similarly atthe same relative momentumk∗;ii)

f0 isthesameforallbaryon–antibaryonpairs,

but expressed as a function of the pair centre-of-mass energy, meaningthat

f0 issmallerforbaryon–antibaryonpairsofhigher

totalpairmass; iii)theinelasticcrosssection isincreasedfor ev-erymatching quark–antiquarkpairin thebaryon–antibaryon sys-tem. In this scenario, in the specific case of this work,

f0 for

p



p



shouldbe lowerthan forpp and



,whichisnot ob-served. UrQMDby defaultusesscenarioii)to modelthebaryon– antibaryon annihilation, which in our case would lead to a de-creaseof

f0 whilegoingfrompp to



pairs; however,similar

valuesof

f0forallbaryon–antibaryonpairsreportedinthiswork

(6)

Fig. 4. (Top)Comparisonofextractedspin-averagedscatteringparameters f0and

f0forp⊕p,pairsandforeffectiveBB pairs,withpreviousanalysesofpp pairs(singlet) [32,33,35,72].(Bottom)Comparisonofextractedspin-averaged scat-teringparameters f0andd0forp⊕p,pairsaswellaseffectiveBB,with selectedpreviousanalysesofotherpairs:pp (singlet) [73],pp (singlet) [72],pn (singlet) [74],nn (singlet) [74],p (singlet) [69],and (spin-averaged) [70]. (Notethat the measurementofthe scatteringparametersbythe STAR ex-periment [70] didnotaccountforresidualcorrelations.Therecentanalysisof correlationsbytheALICECollaboration [28],properlytakingintoaccountthose cor-relations,disfavourstheSTARresults.)

Inelasticscatteringiscompatiblewithaboundstate,wherethe baryonandantibaryoncreateashort-livedresonancewhichdecays stronglyintothreemesons.Evidenceforaprocessinwhicha par-ticleinthemass rangeof2150–2260 MeV/c2 decaysintoa kaon

andtwo pions has beenreported by various experiments in the pastandlistedbytheParticleDataGroup(PDG)asK2

(

2250

)

[31].

Thereportedmassisslightlyabovethep



threshold,thewidthof theresonanceiscompatiblewithastrongly decayingsystemand the decay products match the valencequark content of the p



pair.A nucleon–antihyperonsystemhasalsobeenlistedbyPDGas K3

(

2320

)

,withprotonand



inthefinalstate,whichcorresponds

toaboundstateundergoinganelasticscattering.Theresults pre-sented inthis paper support the existence of baryon–antibaryon boundstatessuch asK2

(

2250

)

andK3

(

2320

)

.Furtherstudiescan

providemoreevidenceontheexistenceofthosestates.

Finally,negativevaluesoftheextractedrealpartofthe scatter-inglength

f0 show eitherthatthe interactionbetweenbaryons

and antibaryons is repulsive, or that baryon–antibaryon bound statescanbeformed.Combinedwiththenon-zeroimaginarypart

f0 which, asmentioned earlier,is associated withthe inelastic

processes,it favoursthe boundstates scenarioover therepulsive interaction. In that casea baryon–antibaryon pair would form a resonance decaying into a group of particles different from the original ones (for instance, p



X

K+

π

+

π

−, where X is the hypotheticalbaryon–antibaryon boundstate).Further studieswill shed more light on existence of such particles. The scenario of

a repulsive interaction is not completely ruled out, butit would manifestinexperimentsasasystematicspatialseparationof mat-terandantimatter,neverobservedbefore.

In summary, the strong-interaction cross section parameters (the scatteringlengthandtheeffectiverange) ofstrangebaryon– antibaryon pairs have been measured at low relative pair mo-mentum usingthefemtoscopictechnique.Theywere foundtobe the samewithinthesystematicuncertainties forallstudied pairs and compatible with the pp parameters measured in other ex-periments. Therefore, a global picture of the baryon–antibaryon annihilation proceeding in a very similar way, regardless of the strange-quarkcontent,issuggested. Finally,theresultsare consis-tentwiththeformationofbaryon–antibaryonboundstates.Future searchesforsuchparticleswillthereforebeofcrucialimportance.

Acknowledgements

The ALICECollaboration would like to thank all its engineers andtechniciansfortheirinvaluablecontributionstothe construc-tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collab-oration gratefully acknowledges the resources and support pro-videdbyallGridcentresandtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the following fundingagenciesfortheir supportin buildingand run-ningthe ALICEdetector:A.I. AlikhanyanNationalScience Labora-tory(YerevanPhysicsInstitute)Foundation (ANSL),State Commit-teeofScienceandWorldFederationofScientists(WFS),Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung,Austria;MinistryofCommunicationsandHigh Tech-nologies, National Nuclear Research Center, Azerbaijan; Conselho NacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq), Uni-versidade Federaldo RioGrandedo Sul(UFRGS),Financiadorade Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Founda-tion ofChina (NSFC) andMinistryofEducation ofChina (MOEC), China; Croatian Science Foundation and Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y De-sarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Edu-cation, Youth and Sports of the Czech Republic, Czech Repub-lic; The Danish Council for Independent Research – Natural Sci-ences,theandDanishNationalResearchFoundation(DNRF), Den-mark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Énergie Atomique (CEA), Institut National de Physique Nu-cléaire et de Physique des Particules (IN2P3) and Centre Na-tional de la Recherche Scientifique (CNRS) and Rlégion des Pays de laLoire, France;Bundesministerium fürBildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fürSchwerionenforschungGmbH,Germany;GeneralSecretariatfor ResearchandTechnology,MinistryofEducation,Researchand Re-ligions, Greece; National Research Development and Innovation Office,Hungary;DepartmentofAtomicEnergy,Governmentof In-dia (DAE), Department of Science and Technology, Government of India(DST), University Grants Commission, Government of In-dia(UGC)andCouncilofScientificandIndustrialResearch(CSIR), India; IndonesianInstitute of Science, Indonesia; Centro Fermi – MuseoStorico dellaFisica eCentroStudi e RicercheEnricoFermi andIstitutoNazionalediFisicaNucleare(INFN),Italy;Institutefor Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHIandJapaneseMinistryofEducation,Culture, Sports, Sci-enceand Technology (MEXT),Japan; Consejo Nacionalde Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación

(7)

Interna-cionalenCiencia yTecnología(FONCICYT)and DirecciónGeneral deAsuntosdelPersonalAcademico(DGAPA),Mexico;Nederlandse OrganisatievoorWetenschappelijkOnderzoek(NWO),Netherlands; TheResearchCouncilofNorway,Norway;CommissiononScience andTechnology forSustainableDevelopment inthe South (COM-SATS),Pakistan;PontificiaUniversidadCatólicadelPerú,Peru; Min-istryof Science andHigher Education andNationalScience Cen-tre, Poland; Korea Institute of Science and Technology Informa-tion and National Research Foundation of Korea (NRF), Republic ofKorea; Ministry of Education andScientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research(JINR),MinistryofEducation andScience oftheRussian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia;Ministry ofEducation,Science, Researchand Sportofthe Slovak Republic, Slovakia; National ResearchFoundation ofSouth Africa,SouthAfrica;SwedishResearchCouncil(VR)andKnut& Al-iceWallenbergFoundation(KAW),Sweden;EuropeanOrganization forNuclear Research, Switzerland; NationalScience and Technol-ogyDevelopment Agency (NSDTA), Suranaree University of Tech-nology(SUT)andOfficeoftheHigherEducationCommissionunder NRUprojectofThailand,Thailand;TurkishAtomic EnergyAgency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine; ScienceandTechnologyFacilitiesCouncil(STFC),UnitedKingdom; NationalScienceFoundationoftheUnitedStatesofAmerica(NSF) andUnitedStatesDepartmentofEnergy,OfficeofNuclearPhysics (DOENP),UnitedStatesofAmerica.

Appendix A. Lednický–Lyuboshitzmodel

The wave function of the pair,

(

k

,

r

)

, in Eq. (2), depends onthetwo-particleinteraction.Baryonsinteractwithanti-baryons via the strong and, if they carry a non-zero electric charge, the Coulomb force. In such a scenario, the interaction of two non-identicalparticlesisgivenbytheBethe–Salpeteramplitude, corre-spondingtothesolutionofthequantumscatteringproblemtaken withtheinversetimedirection:

(+)k

(

r

,

k

)

=

A C

(

η

)

1

2

×

e−ik∗·r∗F

(

i

η

,

1

,

i

ζ

+

)

+

fC

(

k

)

˜

G

(

ρ

,

η

)

r



,

(A.1)

whereACistheGamowfactor,

ζ

±

=

kr

(

1

±

cos

θ

)

,

η

=

1

/(

kaC

)

,

F istheconfluenthypergeometricfunction,andG is

˜

the combina-tionofthe regular andsingular S-waveCoulomb functions.

θ

∗ is theanglebetweenthepairrelativemomentumandrelative posi-tioninthepairrestframe,whileaC istheBohrradiusofthepair.

Thecomponent fC isthestrong-scatteringamplitude,modifiedby

theCoulombinteraction.

When only the strong interaction is present, the correlation function can be expressed analytically asa function ofthe scat-tering amplitude f

(

k

)

=



1 f0

+

1 2d0k

2

ik



−1, and the

one-dimensionalsourcesize R.ThisdescriptioniscalledtheLednický– Lyuboshitzanalyticalmodel [7]:

C

(

k

)

=

1

+



σ

ρ

σ

1 2





f

(

Rk

)





2



1

d σ 0 2

π

R



+

2

f

(

k

)

π

R F1

(

2kR

)

f

(

k

)

R F2

(

2kR

)



,

(A.2)

wherethesumisoverallpair-spinconfigurations

σ

,withweights

ρ

σ (arealnumber)being1

/

4 and3

/

4 forsingletandtripletstates,

respectively,and F1

(

z

)

=



z 0

(

ex 2z2

/

z

)

dx andF2

(

z

)

= (

1

e−z 2

)/

z.

When the Coulomb interaction is also present, e.g., in the pp case, thesource emission functionis numericallyintegratedwith the pair wave function containing a modified scattering ampli-tude [45]: fC

(

k

)

=



1 f0

+

1 2d0k ∗2

ik

2 aC h

(

η

)

ikAC

(

η

)



−1

,

(A.3) whereh

(

η

)

=

η

2



n=1

[

n

(

n2

+

η

2

)

]

−1

− γ −

ln

|

η

|

(

γ =

0

.

5772 is the Eulerconstant).

The description becomes more complicated when coupled channels(suchasnn

pp inthepp system) arepresent.For de-tailsseeRef. [45,75].

Appendix B. Systematicuncertainties

Theanalysiswasalsoperformedontracksreconstructed using theinformationfromboththeITSandtheTPC,asopposedtousing those having the information fromthe TPC only. The correlation functions obtained from the analysis of those tracks were fitted with the procedure described in Sec. 3. Differences on extracted scatteringparametersarebetween4%and17%,depending onthe studiedpairandthescatteringparameter.

Inaddition,severalcomponentsofthefitprocedure were var-ied.Shiftingthecorrelationfunctionnormalisationrangeink∗ by

±

0

.

1 GeV/c yields almost no change on the extracted scattering parameters(maximum1%).Achangeofthebackground parametri-sation from the third to the fourth-order polynomial results in differencesofup to19%for

f0 andbelow10%forother

param-eters.The second-orderpolynomial was alsotestedbutit failsto describethelowk∗regionandthereforecannotbeusedtoextract reliable information.Moreover, the use of residual pair fractions

Table B.1

List ofcontributionsto thesystematicuncertainty ofthe scattering parameters.Valuesareaveragedovercollisionenergiesandcentrality ranges.

p⊕p

Uncertainty source f0(%) f0(%) d0(%)

Normalisation range <1 <1 <1

Background parametrisation <1 2 3

Fit range dependence 3 8 14

Fractions of residual pairs 10 8 19

Momentum resolution correction 7 11 4

Track selection 11 14 4

Source size variation 9 18 20



Uncertainty source f0(%) f0(%) d0(%)

Normalisation range <1 <1 <1

Background parametrisation 6 19 2

Fit range dependence 2 4 5

Fractions of residual pairs 6 15 18

Momentum resolution correction 4 7 2

Track selection 7 17 4

Source size variation 12 35 19

BB

Uncertainty source f0(%) f0(%) d0(%)

Normalisation range <1 1 1

Background parametrisation 6 17 6

Fit range dependence 6 12 11

Fractions of residual pairs 7 19 8

Momentum resolution correction 3 3 1

Track selection 9 <1 12

(8)

calculatedfromtheHIJINGmodel [60] insteadofAMPTresultedin changesofupto19%ford0,upto16%for

f0,andbelow10%for

f0.Variationofsource sizesobtainedfromtransverse-massand

multiplicity scalingsby

±

5%resultedinchangesofup to13% for

f0,upto36%for

f0,andupto20%ford0.Moreover,thewidth

oftheGaussiandistribution accountingformomentumresolution wasvariedby

±

30% whichresultsinsystematicuncertaintyofup to11%.

Contributions to the systematic uncertainty on the extracted scattering parameters are summarised in Table B.1. Since those components are correlated, thetotal systematic uncertainties are representedascovarianceellipsesinthefinalplots.

References

[1]V.G.J.Stoks,R.A.M.Klomp,M.C.M.Rentmeester,J.J.deSwart,Partialwave anal-ysisofallnucleon–nucleonscatteringdatabelow350MeV,Phys. Rev.C48 (1993)792–815.

[2]R.Engelmann,H.Filthuth,V.Hepp,E.Kluge,Inelastic−p-interactionsatlow momenta,Phys.Rev.21(1966)587–889.

[3]F.Eisele,H.Filthuth,W.Foehlisch,V.Hepp,G.Zech,Elastic±pscatteringat lowenergies,Phys.Lett.B37(1971)204–206.

[4]V.Hepp,H.Schleich,Anewdeterminationofthecaptureratior(c)= −p−→

0n/(p→ 0n)+ (p→  0n),the0lifetimeand0 mass

differ-ence,Z.Phys.214(1968)71.

[5]J.deSwart,C.Dullemond,Effectiverangetheoryandthelowenergyhyperon– nucleoninteractions,Ann.Phys.19(1962)458–495.

[6]S.Bart,etal.,hyperonsinthenucleus,Phys.Rev.Lett.83(1999)5238–5241. [7]R.Lednický,V.Lyuboshits,Finalstateinteractioneffectonpairingcorrelations betweenparticleswithsmallrelativemomenta,Sov.J.Nucl.Phys.35(1982) 770,Yad.Fiz.35(1981)1316–1330.

[8]G.I. Kopylov,M.I. Podgoretsky,Correlationsofidentical particlesemittedby highlyexcitednuclei,Sov.J.Nucl.Phys.15(1972)219–223,Yad.Fiz.15(1972) 392–399.

[9]G.I.Kopylov,M.I.Podgoretsky,Multipleproductionandinterferenceofparticles emittedbymovingsources,Sov.J.Nucl.Phys.18(1974)336–341,Yad.Fiz.18 (1973)656–666.

[10]G.I.Kopylov,Likeparticlecorrelationsasatooltostudythemultiple produc-tionmechanism,Phys.Lett.B50(1974)472–474,39(1974).

[11]R.Lednický,Correlationfemtoscopy,Nucl.Phys.A774(2006)189–198,arXiv: nucl-th/0510020 [nucl-th].

[12]M.A.Lisa,S.Pratt, R.Soltz,U.Wiedemann,Femtoscopyinrelativisticheavy ioncollisions:twodecadesofprogress,Annu.Rev.Nucl.Part.Sci.55(2005) 357–402,arXiv:nucl-ex/0505014 [nucl-ex].

[13]O.Hashimoto,H.Tamura,Spectroscopyofhypernuclei,Prog.Part.Nucl.Phys. 57(2006)564–653.

[14]R.Hayano,T.Ishikawa,M.Iwasaki,H.Outa,E.Takada,H.Tamura,A.Sakaguchi, M.Aoki,T.Yamazaki,Evidence forabound stateofthe 4

Hehypernucleus,

Phys.Lett.B231(1989)355–358.

[15]T.Nagae,T.Miyachi,T.Fukuda,H.Outa,T.Tamagawa,J.Nakano,R.S.Hayano, H.Tamura,Y.Shimizu,K.Kubota,R.E.Chrien,R.Sutter,A.Rusek,W.J.Briscoe, R.Sawafta,E.V.Hungerford,A.Empl,W.Naing,C.Neerman,K.Johnston,M. Planinic,Observationofa4

He boundstateinthe4He(K−,π−)reactionat600

MeV/c,Phys.Rev.Lett.80(1998)1605–1609.

[16]K.Nakazawa,Y.Endo,S.Fukunaga,K.Hoshino,S.H.Hwang,K.Imai,H.Ito,K. Itonaga,T.Kanda,M.Kawasaki,J.H.Kim,S.Kinbara,H.Kobayashi,A.Mishina,S. Ogawa,H.Shibuya,T.Sugimura,M.K.Soe,H.Takahashi,T.Takahashi,K.T.Tint, K.Umehara,C.S.Yoon,J.Yoshida,Thefirstevidenceofadeeplyboundstateof

ξ−–14Nsystem,Prog.Theor.Exp.Phys.(2015),033D02.

[17]R.L.Jaffe,Perhapsastabledihyperon,Phys.Rev.Lett.38(1977)195–198, Erra-tum:Phys.Rev.Lett.38(1977)617.

[18]H. Takahashi,et al.,Observationofa 6

Hedoublehypernucleus, Phys.Rev.

Lett.87(2001)212502.

[19]L.Evans,P.Bryant,LHCmachine,J.Instrum.3(2008)S08001. [20]ALICECollaboration,B.Abelev,etal.,K0

SandproductioninPb–Pbcollisions

at√sNN=2.76TeV,Phys.Rev.Lett.111(2013)222301,arXiv:1307.5530 [nucl

-ex].

[21]ALICECollaboration,B.Abelev,etal.,Pion,kaon,andprotonproductionin cen-tralPb–Pbcollisionsat√sNN=2.76 TeV,Phys.Rev.Lett.109(2012)252301,

arXiv:1208.1974 [hep-ex].

[22]ALICECollaboration,B.Abelev,etal.,Centralitydependenceofπ,K,p produc-tioninPb–Pbcollisionsat√sNN=2.76TeV,Phys.Rev.C88(2013)044910,

arXiv:1303.0737 [hep-ex].

[23]G.Alexander,U.Karshon,A.Shapira,G.Yekutieli,R.Engelmann,H.Filthuth,W. Lughofer,Studyofthe–N systeminlow-energy–p elasticscattering,Phys. Rev.173(1968)1452–1460.

[24]B.Sechi-Zorn,B.Kehoe,J.Twitty,R.A.Burnstein,Low-energy–protonelastic scattering,Phys.Rev.175(1968)1735–1740.

[25]J.A.Kadyk,G.Alexander,J.H.Chan,P.Gaposchkin,G.H.Trilling,p interactions inmomentumrange300to1500MeV/c,Nucl.Phys.B27(1971)13–22. [26]STARCollaboration,L.Adamczyk,etal.,Measurementofinteractionbetween

antiprotons,Nature527(2015)345–348,arXiv:1507.07158 [nucl-ex]. [27]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC,

J.Instrum.3(2008)S08002.

[28]ALICECollaboration,S.Acharya,etal.,p–p,p–andcorrelationsstudied viafemtoscopyinppreactionsat√s =7TeV,Phys.Rev.C99(2019)024001, arXiv:1805.12455 [nucl-ex].

[29] ALICE Collaboration, S. Acharya, et al., Study ofthe - interaction with femtoscopycorrelationsinpp and p-Pbcollisions atthe LHC,Phys. Lett.B 797(2019)134822,https://doi.org/10.1016/j.physletb.2019.134822,arXiv:1905. 07209 [nucl-ex].

[30] ALICECollaboration, S.Acharya, et al.,First observationofanattractive in-teraction between a proton and a multi-strange baryon, Phys. Rev. Lett. 123 (2019) 112002, https://doi.org/10.1103/PhysRevLett.123.112002, arXiv: 1904.12198 [nucl-ex].

[31]Particle Data Group Collaboration, C. Patrignani, et al., Review of particle physics,Chin.Phys.C40(2016)100001.

[32]C.J.Batty,Antiprotonic-hydrogenatoms,Rep.Prog.Phys.52(1989)1165–1216. [33]H.Pirner,B.Kerbikov,J.Mahalanabis,Updatingtheeffectiverangeexpansion

oflow-energyNN-scattering,¯ Z.Phys.A338(1991)111–112.

[34]I.L.Grach,B.O.Kerbikov,Yu.A.Simonov,Nucleon–anti-nucleonlow-energy in-teractionintheeffective rangeapproximation, Sov.J.Nucl.Phys. 48(1988) 609–616,Yad.Fiz.48(1988)956–968.

[35]E.Klempt,F.Bradamante,A.Martin,J.Richard,Anti-nucleon–nucleon interac-tionatlowenergy:scatteringandprotonium,Phys.Rep.368(2002)119–316. [36]C.Z.Yuan,X.H.Mo,P.Wang,Baryon–antibaryonnonets,Phys.Lett.B626(2005)

95–100,arXiv:hep-ph/0506019 [hep-ph].

[37]BESCollaboration,J.Z.Bai,etal.,Observationofanearthresholdenhancement inthepp massspectrumfromradiativeJ/ → γpp decays,Phys.Rev.Lett.91 (2003)022001,arXiv:hep-ex/0303006 [hep-ex].

[38]BESCollaboration,M.Ablikim,etal.,Observationofathresholdenhancement inthepinvariantmassspectrum,Phys.Rev.Lett.93(2004)112002,arXiv: hep-ex/0405050 [hep-ex].

[39]BESIIICollaboration,M.Ablikim,etal.,Observationofacross-section enhance-mentnearmassthresholdine+e→ ,Phys.Rev.D97 (3)(2018)032013, arXiv:1709.10236 [hep-ex].

[40]M.Bleicher,etal.,Relativistichadron–hadroncollisionsintheultrarelativistic quantummoleculardynamicsmodel,J.Phys.G25(1999)1859–1896,arXiv: hep-ph/9909407 [hep-ph].

[41]J.Steinheimer,J.Aichelin,M.Bleicher,Nonthermalp/πratioatLHCasa conse-quenceofhadronicfinalstateinteractions,Phys.Rev.Lett.110(2013)042501, arXiv:1203.5302 [nucl-th].

[42]J.Steinheimer,J. Aichelin,M.Bleicher, H.Stöcker,Influenceofthehadronic phaseonobservablesinultrarelativisticheavyioncollisions,Phys.Rev.C95 (2017)064902,arXiv:1703.06638 [nucl-th].

[43]K.Werner,I.Karpenko,M.Bleicher,T.Pierog,S.Porteboeuf-Houssais,Jets,bulk matter,andtheirinteractioninheavy-ioncollisionsatseveralTeV,Phys.Rev.C 85(2012)064907,arXiv:1203.5704 [nucl-th].

[44]I.A.Karpenko,Yu.M.Sinyukov,K.Werner,Uniformdescriptionofbulk observ-ablesinthehydrokineticmodelofA+A collisionsattheBNLrelativisticheavy ioncolliderandtheCERNlargehadroncollider,Phys.Rev.C87(2013)024914, arXiv:1204.5351 [nucl-th].

[45]R.Lednický,Finite-sizeeffectsontwo-particleproduction incontinuousand discretespectrum,Phys.Part.Nucl.40(2009)307–352,arXiv:nucl-th/0501065 [nucl-th].

[46]STARCollaboration,J.Adams,et al.,Proton– correlationsincentralAu+Au collisionsat√sNN=200 GeV,Phys.Rev.C74(2006)064906,arXiv:nucl-ex/

0511003 [nucl-ex].

[47]A.Kisiel,H.Zbroszczyk,M.Szymaski,Extractingbaryon-antibaryonstrong in-teractionpotentialsfrompfemtoscopiccorrelationfunctions,Phys.Rev.C89 (2014)054916,arXiv:1403.0433 [nucl-th].

[48]V.M.Shapoval,B.Erazmus,R.Lednický,Yu.M.Sinyukov,Extractingp scatter-inglengthsfromheavyioncollisions,Phys.Rev.C92(2015)034910,arXiv: 1405.3594 [nucl-th].

[49]ALICECollaboration,B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].

[50]ALICECollaboration,K.Aamodt,etal.,Centralitydependenceofthe charged-particlemultiplicitydensityatmid-rapidityinPb–Pbcollisionsat√sNN=2.76

TeV,Phys.Rev.Lett.106(2011)032301,arXiv:1012.1657 [nucl-ex].

[51]ALICECollaboration,B.Abelev,et al.,CentralitydeterminationofPb–Pb col-lisionsat √sN N =2.76TeVwithALICE,Phys. Rev.C88 (4) (2013)044909, arXiv:1301.4361 [nucl-ex].

[52]ALICECollaboration, J. Adam, et al.,Centrality dependence ofthe charged-particlemultiplicitydensityatmidrapidityinPb–Pbcollisionsat√sNN=5.02

(9)

[53]J.Alme,etal.,TheALICETPC,alarge3-dimensionaltrackingdevicewithfast readoutforultra-highmultiplicityevents,Nucl.Instrum.MethodsA622(2010) 316–367,arXiv:1001.1950 [physics.ins-det].

[54]ALICECollaboration,C.W.Fabjan,etal.,ALICE:physicsperformancereport, Vol-umeII,J.Phys.G32(2006)1295–2040.

[55]S.E.Koonin,Protonpicturesofhigh-energynuclearcollisions,Phys.Lett.B70 (1977)43–47.

[56]S.Pratt,T.Csorgo,J.Zimanyi,Detailedpredictionsfortwo-pioncorrelationsin ultrarelativisticheavy-ioncollisions,Phys.Rev.C42(1990)2646–2652. [57]ALICECollaboration,K.Aamodt,etal.,Two-pionBose-Einsteincorrelationsin

centralPb–Pbcollisionsat√sN N=2.76TeV,Phys.Lett.B696(2011)328–337, arXiv:1012.4035 [nucl-ex].

[58]ALICECollaboration,J.Adam,etal.,One-dimensionalpion,kaon,andproton femtoscopyinPb–Pbcollisionsat√sNN=2.76 TeV,Phys.Rev.C92 (5)(2015)

054908,arXiv:1506.07884 [nucl-ex].

[59]Z.-W.Lin,C.M.Ko,B.-A.Li,B.Zhang,S.Pal,Amultiphasetransportmodelfor relativisticheavyioncollisions,Phys.Rev.C72(2005)064901,arXiv:nucl-th/ 0411110 [nucl-th].

[60]X.-N.Wang,M.Gyulassy,HIJING:aMonteCarlomodelformultiplejet produc-tioninpp,pAandAAcollisions,Phys.Rev.D44(1991)3501–3516. [61]M.Chojnacki,A.Kisiel,W.Florkowski,W.Broniowski,THERMINATOR2:

THER-MalheavyIoNgenerATOR2,Comput.Phys. Commun.183(2012)746–773, arXiv:1102.0273 [nucl-th].

[62]B.O.Kerbikov,A.E.Kudryavtsev,Singletspinfractioninpp andtheproton form-factoratthreshold,Nucl.Phys.A558(1993)177C–182C.

[63]M.Pignone,M.Lacombe, B.Loiseau,R.VinhMau,ParisNN− potential and recentprotonanti-protonlow-energydata,Phys.Rev.C50(1994)2710–2730. [64]ALICECollaboration,J.Adam,etal.,Centralitydependenceofpionfreeze-out radiiinPb–Pbcollisionsat√sNN=2.76TeV,Phys.Rev.C93(2016)024905,

arXiv:1507.06842 [nucl-ex].

[65]A.Kisiel, Non-identicalparticle correlationanalysisinthepresenceof non-femtoscopiccorrelations,ActaPhys.Pol.B48(2017)717.

[66]ALICECollaboration,K.Aamodt,etal.,Femtoscopyofppcollisionsat√s=0.9 and7TeVattheLHCwithtwo-pionBose-Einsteincorrelations,Phys.Rev.D84 (2011)112004,arXiv:1101.3665 [hep-ex].

[67]L.K.Graczykowski,A.Kisiel,M.A.Janik,P.Karczmarczyk,Extractingfemtoscopic radiiinthepresenceofsignificantadditionalcorrelationsources,ActaPhys. Pol.B45(2014)1993–2010,arXiv:1409.8120 [nucl-th].

[68]B.Kerbikov,A.Stavinsky,V.Fedotov,Modelindependentviewonthelow-mass proton–antiprotonenhancement,Phys.Rev.C69(2004)055205,arXiv:hep-ph/ 0402054 [hep-ph].

[69]J. Haidenbauer,S. Petschauer,N. Kaiser,U.G.Meissner,A.Nogga,W.Weise, Hyperon–nucleoninteractionatnext-to-leadingorderinchiraleffectivefield theory,Nucl.Phys.A915(2013)24–58,arXiv:1304.5339 [nucl-th].

[70]STARCollaboration,L.Adamczyk,etal.,correlationfunctioninAu–Au col-lisions at √sN N= 200GeV, Phys. Rev.Lett.114 (2) (2015) 022301,arXiv: 1408.4360 [nucl-ex].

[71]E.Czerwinski,etal.,Determinationoftheη–protonscatteringlengthinfree space,Phys.Rev.Lett.113(2014)062004,arXiv:1404.5436 [nucl-ex]. [72]I.L.Grach,B.O.Kerbikov,Yu.A.Simonov,Effectiverangeanalysisoflow-energy

nucleon–antinucleoninteraction,Phys.Lett.B208(1988)309–314.

[73]L. Mathelitsch, B.J. Verwest, Effectiverangeparameters innucleon–nucleon scattering,Phys.Rev.C29(1984)739–746.

[74]T.A. Rijken,M. Nagels, Y. Yamamoto, Baryon–baryoninteractions: Nijmegen extended-soft-coremodels,Prog.Theor.Phys.Suppl.185(2010)14–71. [75]J. Haidenbauer, Coupled-channeleffects inhadron–hadron correlation

func-tions,Nucl.Phys.A981(2019)1–16,arXiv:1808.05049 [hep-ph].

ALICECollaboration

S. Acharya

141

,

D. Adamová

93

,

S.P. Adhya

141

,

A. Adler

74

,

J. Adolfsson

80

,

M.M. Aggarwal

98

,

G. Aglieri Rinella

34

,

M. Agnello

31

,

N. Agrawal

10

,

Z. Ahammed

141

,

S. Ahmad

17

,

S.U. Ahn

76

,

S. Aiola

146

,

A. Akindinov

64

,

M. Al-Turany

105

,

S.N. Alam

141

,

D.S.D. Albuquerque

122

,

D. Aleksandrov

87

,

B. Alessandro

58

,

H.M. Alfanda

6

,

R. Alfaro Molina

72

,

B. Ali

17

,

Y. Ali

15

,

A. Alici

10

,

53

,

27

,

A. Alkin

2

,

J. Alme

22

,

T. Alt

69

,

L. Altenkamper

22

,

I. Altsybeev

112

,

M.N. Anaam

6

,

C. Andrei

47

,

D. Andreou

34

,

H.A. Andrews

109

,

A. Andronic

105

,

144

,

M. Angeletti

34

,

V. Anguelov

102

,

C. Anson

16

,

T. Antiˇci ´c

106

,

F. Antinori

56

,

P. Antonioli

53

,

R. Anwar

126

,

N. Apadula

79

,

L. Aphecetche

114

,

H. Appelshäuser

69

,

S. Arcelli

27

,

R. Arnaldi

58

,

M. Arratia

79

,

I.C. Arsene

21

,

M. Arslandok

102

,

A. Augustinus

34

,

R. Averbeck

105

,

S. Aziz

61

,

M.D. Azmi

17

,

A. Badalà

55

,

Y.W. Baek

60

,

40

,

S. Bagnasco

58

,

R. Bailhache

69

,

R. Bala

99

,

A. Baldisseri

137

,

M. Ball

42

,

R.C. Baral

85

,

R. Barbera

28

,

L. Barioglio

26

,

G.G. Barnaföldi

145

,

L.S. Barnby

92

,

V. Barret

134

,

P. Bartalini

6

,

K. Barth

34

,

E. Bartsch

69

,

N. Bastid

134

,

S. Basu

143

,

G. Batigne

114

,

B. Batyunya

75

,

P.C. Batzing

21

,

D. Bauri

48

,

J.L. Bazo Alba

110

,

I.G. Bearden

88

,

C. Bedda

63

,

N.K. Behera

60

,

I. Belikov

136

,

F. Bellini

34

,

R. Bellwied

126

,

L.G.E. Beltran

120

,

V. Belyaev

91

,

G. Bencedi

145

,

S. Beole

26

,

A. Bercuci

47

,

Y. Berdnikov

96

,

D. Berenyi

145

,

R.A. Bertens

130

,

D. Berzano

58

,

L. Betev

34

,

A. Bhasin

99

,

I.R. Bhat

99

,

H. Bhatt

48

,

B. Bhattacharjee

41

,

A. Bianchi

26

,

L. Bianchi

126

,

26

,

N. Bianchi

51

,

J. Bielˇcík

37

,

J. Bielˇcíková

93

,

A. Bilandzic

103

,

117

,

G. Biro

145

,

R. Biswas

3

,

S. Biswas

3

,

J.T. Blair

119

,

D. Blau

87

,

C. Blume

69

,

G. Boca

139

,

F. Bock

34

,

A. Bogdanov

91

,

L. Boldizsár

145

,

A. Bolozdynya

91

,

M. Bombara

38

,

G. Bonomi

140

,

M. Bonora

34

,

H. Borel

137

,

A. Borissov

144

,

91

,

M. Borri

128

,

E. Botta

26

,

C. Bourjau

88

,

L. Bratrud

69

,

P. Braun-Munzinger

105

,

M. Bregant

121

,

T.A. Broker

69

,

M. Broz

37

,

E.J. Brucken

43

,

E. Bruna

58

,

G.E. Bruno

33

,

104

,

M.D. Buckland

128

,

D. Budnikov

107

,

H. Buesching

69

,

S. Bufalino

31

,

O. Bugnon

114

,

P. Buhler

113

,

P. Buncic

34

,

O. Busch

133

,

i

,

Z. Buthelezi

73

,

J.B. Butt

15

,

J.T. Buxton

95

,

D. Caffarri

89

,

A. Caliva

105

,

E. Calvo Villar

110

,

R.S. Camacho

44

,

P. Camerini

25

,

A.A. Capon

113

,

F. Carnesecchi

10

,

J. Castillo Castellanos

137

,

A.J. Castro

130

,

E.A.R. Casula

54

,

F. Catalano

31

,

C. Ceballos Sanchez

52

,

P. Chakraborty

48

,

S. Chandra

141

,

B. Chang

127

,

W. Chang

6

,

S. Chapeland

34

,

M. Chartier

128

,

S. Chattopadhyay

141

,

S. Chattopadhyay

108

,

A. Chauvin

24

,

C. Cheshkov

135

,

B. Cheynis

135

,

V. Chibante Barroso

34

,

D.D. Chinellato

122

,

S. Cho

60

,

P. Chochula

34

,

T. Chowdhury

134

,

P. Christakoglou

89

,

C.H. Christensen

88

,

P. Christiansen

80

,

T. Chujo

133

,

C. Cicalo

54

,

L. Cifarelli

10

,

27

,

F. Cindolo

53

,

J. Cleymans

125

,

F. Colamaria

52

,

D. Colella

52

,

A. Collu

79

,

M. Colocci

27

,

M. Concas

58

,

ii

,

Figura

Fig. 1. Raw invariant mass distribution of p π − (p π + ) pairs used to obtain the  (  ) candidates for Pb–Pb collisions at √ s NN = 5
Fig. 2. Illustration of the links between different baryon–antibaryon pairs through the residual correlation
Fig. 3. Correlation functions of pp, p  ⊕ p  , and  pairs for Pb–Pb collisions at √ s NN = 5
Fig. 4. (Top) Comparison of extracted spin-averaged scattering parameters  f 0 and

Riferimenti

Documenti correlati

Certo, occorrerà mettere in conto la difficoltà di innescare sui contenuti necessari e vincolati della nuova legge di bilancio una giurisprudenza costituzionale di analogo rigore

Using the previously generated data from the original cohorts of NCWS, coeliac disease and control subjects ( table 1 ), 1 we configured a discriminant function to identify

model A features pulse durations and intensities being generated through the bivariate lognormal 173.. This enables correlation to be obtained between the two

In view of the wide heterogeneity in study design, time of follow-up, neurodevelopmental tests used and the very small number of included cases further future large prospective

The experimental applications related to the fouling phenomenon and the consequent results are affected by numerous problems, summarized as follows: (i) actual conditions

The integration of RNAseq data, generated on tumors obtained from untreated and EPZ-011989-treated mice, and results from functional studies, carried out on the PDX-derived ES-1

I granuli, di forma tonda od ovale, presentavano un core elettron-denso (Fig. 22b); tra i sani e i parassitati “lontano” dal parassita non si sono registrate differenze

Therefore, small changes in endothelial cell sizes after surgery (AVG-post for group A) were related to an excellent visual outcome (BCVA &gt; 85 letters), whereas sizeable