• Non ci sono risultati.

Quantification of quorum sensing molecules and their interaction with polymixin-B hemoperfusion in human plasma by LC-HRMS

N/A
N/A
Protected

Academic year: 2021

Condividi "Quantification of quorum sensing molecules and their interaction with polymixin-B hemoperfusion in human plasma by LC-HRMS"

Copied!
1
0
0

Testo completo

(1)

C4H7NO2 101.047678 C R O - O O NH2 C4H8NO2 102.0555 O O NH3 O O N H R O H M1 M2 = [M1 - 101] m/z -M2' = 102 m/z C16H26NO3 280.1913 C14H24NO4 270.1705 C12H18NO4 240.1236 C16H28NO4 298.2018 C12H21O2 197.1542 C HO O C O O - C4H10 - C2H4 O O N OH H O O O N OH H O - O O NH2 C4H8NO2 102.0555 O O NH3 O O N H O - H2O O O N OH H O O O N H O H O

Quan%fica%on  of  quorum  sensing  molecules  and  their  interac%on  with  polymyxin-­‐B  hemoperfusion  in  human  plasma  by  LC-­‐HRMS  

C.  Medana,  F.  Dal  Bello,  V.  Santoro,  C.  Martano,  D.  Medica,  A.  Quercia,  V.  Cantaluppi    

Department  of  Molecular  Biotechnology  and  Health  Sciences  and  Department  of  Medical  Sciences,  University  of  Turin,  Torino  –  Italy  

 

1.  P.  Boontham  et  al.  Significant  immunomodulatory  effects  of  Pseudomonas  aeruginosa  quorum-­‐sensing  signal   molecules:  possible  link  in  human  sepsis.  Clinical  Science  (2008)  115,  343–351.  

2.  V.  Cantaluppi  et  al.  Quorum  Sensing  (QS)  Molecules  Released  by  Gram  Nega%ve  Bacteria  induce  tubular  injury   interac%ng   with   lipopolysaccharide   (LPS):   a   new   poten%al   mechanism   of   sepsis-­‐associated   AKI.   Presented   at  

19th  InternaHonal  Conference  on  Advances  in  CriHcal  Care  Nephrology  (San  Diego,  2014).  

3.  T.R.I.   Cataldi   et   al.   Occurrence   of   N-­‐acyl-­‐L-­‐homoserine   lactones   in   extracts   of   some   Gram-­‐nega%ve   bacteria   evaluated  by  gas  chromatography–mass  spectrometry.  AnalyHcal  Biochemistry  (2007)  361,  226–235.  

The  study  was  ini%ally  carried  out  in  neutral  physiological  solu%on  and  then  extended  to  biofluids  as    bacterial   culture  supernatant  or  human  plasma.  Biological  samples  were  extracted  by  LLE  with  dichloromethane.  HPLC-­‐ HRMS  analyses  were  accomplished  on  two  instruments:  

i)  Dionex  Ul%mate  3000  LC  system  coupled  via  ESI  interface  with  a  Thermo  Scien%fic  LTQ-­‐Orbitrap  FT-­‐MS.     ii)  Shimadzu  Nexera  LC  coupled  via  Turbo  Ion  Spray  (TIS)  interface  with  a  Sciex  5500  Q-­‐trap  MS.  

C18-­‐RP  columns  were  used  for  chromatographic  separa%on.  3-­‐oxo-­‐C12  AHL  QS  from  P.  aeruginosa  and  C7  HQ   were  purchased  by  Sigma  Aldrich.  

Experiments   of   interac%on   and   hemoperfusion   were   achieved   on   a   medical   device   where   polymyxin-­‐B,   an   an%bio%c   with   high   affinity   for   endotoxins,   has   been   bound   and   immobilized   to   polystyrene   fibers   (Toraymyxin™).  

 

LC:  mobile  phase  (gradient  condi%ons):  formic  acid  10  mM  /  methanol,  from  85/15  to  0/100  in  50’.  Column:   Phenomenex  Luna  C18(2)  100  A,  150  ×  2.1  mm.  

ESI  source  condi%ons:  source  voltage  4.5  kV;  capillary  voltage  19  V;  capillary  temperature  270°C.   TIS  source  condi%ons:  source  voltage  5.5  kV;  source  temperature  500°C.  

 

LTQ-­‐orbitrap  MS  analyzer  condi%ons:  full  scan  FTMS  posi%ve  ion  mode.  300-­‐1000  m/z  @  30000  resolu%on  (500  

m/z  FWHM).  MS/MS  precursor  ions:  3-­‐oxo-­‐C12  AHL  298  m/z  (MH+;  collision  energy,  CE  =  30)  ;  C

7  HQ  260  m/z  (CE   =  30).  

AB  Sciex  5500  MS  analyzer  condi%ons:  MS/MS  posi%ve  ion  mode.  150-­‐350  m/z.    

SRM  3-­‐oxo-­‐C12  AHL  298  m/z  →  197  m/z,  CE  =  21  V;  298  m/z  →  102  m/z,  CE  =  15  V  (quan%ta%on);     Neutral  loss  scan  (NL)  AHL  150-­‐350  m/z  ,  CE  =  15-­‐25  V,  ΔM  101  Da.  

Precursor  ion  scan  (PI)  AHL  150-­‐350  m/z  ,  CE  =  15-­‐25  V,  →  102  m/z;  HQ  150-­‐350  m/z  ,  CE  =  35-­‐45  V  ,  →  175  m/z.    

Blood   samples   were   obtained   by   the   Blood   Bank   of   Molinepe   Hospital,   Turin.   Bacterial   cultures   were   kindly   provided  by  Dr  Viviana  Orlandi  from  University  of  Insubria,  Varese,  Italy.  

     

 

 

Methods  

Overview  

Quorum   sensing   (QS),   is   a   chemical   communica%on   phenomenon   that   has   apracted   wide   concern   over   the   last   years.   In   this   process,   bacterial   popula%ons   could   act   together   by   signaling   molecules   released   in   host   biofluids,   likewise   in   the   social   network   phenomenology.   QS   pass   through   the   bacterial   envelope   and   regulate   virulence  gene  expression  and  biofilm  forma%on.  It  would  be  interes%ng  to  clarify  if  QS   could  bind  the  lipid  A  frac%on  of  lipopolysaccharide  (LPS)  endotoxins.    

Published  studies1  suggested  that  QS  can  also  interact  with  eukaryo%c  cells  exer%ng   immunomodulatory   effects   and   playing   a   key   role   in   urinary   tract   infec%on.   We   evaluated   the   poten%al   role   of   QS   in   sepsis-­‐associated   AKI   (acute   kidney   injury   )   by   studying  their  biological  effects  on  human  kidney  tubular  epithelial  cells  (TEC).2  

In  this  work,  our  aim  is  the  iden%fica%on/quan%fica%on  of  specific  biomarkers  involved   in  the  sepsis-­‐related  mul%-­‐organ  failure  associated  with  high  mortality,  with  regards  to   AKI.  The  rela%onship  between  bacterial  products  such  as  the  recently  discovered  QS   and   microvesicles   (MV)   could   lead   to   the   iden%fica%on   of   new   poten%al   targets   for   medical  interven%on.  

The  project  consists  ini%ally  in  the  study  of  interac%on  of  QS  with  polymyxin-­‐B  bound   membranes   for   hemoperfusion   then   in   the   isola%on   of   QS   from   plasma   of   sep%c   pa%ents  and  on  bacterial  cultures  by  different  methods  based  on  HPLC  coupled  to  MS.    

IntroducGon  

 

 

•    A   fast   and   sensi%ve   LC-­‐HRMS   (LTQ-­‐orbitrap)   method   to   measure   QS   molecules   in   bacterial  cultures  and  human  plasma  samples  was  developed.    

•    The   method   was   compared   with   two   more   selec%ve   neutral   loss   LC-­‐TQMS   (triple  

quadrupole)  methods  to  detect  and  quan%tate  the  presence  of  Acyl  homoserine  lactones  

(AHLs)  or  hydroxyquinolones  (HQs)  

•    One   of   the   aims   of   this   study   was   to   compare   different   acquisi%on   modes,   mobile  

phases  and  sta%onary  phases  in  order  to  opGmize  known  and  unknown  QS  molecules  

detecGon.    

•   The  method  was  applied  to  the  characteriza%on  of  wild  type  vs.  mutant  Pseudomonas  

aeruginosa  strains  with  different  ability  to  produce  QS  molecules.  

Conclusions    

Both  HRMS  and  NL  or  PI  MS/MS  methods  show  to  be  fast  and  selec%ve  for  the  rapid  quan%fica%on  of   bacterial  small  molecules  in  biological  fluids.  Preliminary  experimental  data  indicate  that  the  method  is   suitable  for  the  analysis  of  biofluids  and  evidence  the  ability  of  PMX-­‐B  bound  membrane  to  interact  with   AHL  QS  molecules.

 

References  

Results    

In   the   early   method   development   we   op%mized   the   chromatographic   separa%on   of   several   lipophilic   QS   compounds  on  RP-­‐HPLC  columns  and  studied  the  sensi%vity  of  different  ioniza%on/acquisi%on  modes.  As  far  as   AHLs  are  concerned,  MS/MS  study  evidenced  common  losses  useful  for  precursor  ion  analysis  (genera%on  of   gamma-­‐butyrolactone-­‐2-­‐ammonium   ion)   or   neutral   loss   analysis   (elimina%on   of   2-­‐amino-­‐gamma-­‐ butyrolactone)  of  N-­‐acyl  homoserine  lactone  QS  deriva%ves  (Scheme  1  and  2).  

For  HQ  only  a  poten%al  fragmenta%on  to  a  characteris%c  product  ion  was  iden%fied  (Scheme  2).  

  A   pre-­‐valida%on   of   analy%cal   performances   involved   linearity,   accuracy,   precision,   LLOQ   and   recovery   of   determina%on.  Correla%on  equa%ons  and  LLOQ  values  are  shown  in  Table  1.  

 

Subsequentely   we   inves%gated   the   interac%on   of   studied   QS   (homoserinelactones)   with   gram-­‐   bacterial   endotoxins   as   lipopolysaccharides   (LPS)   and   polymyxin-­‐B,   chemically   bound   to   the   filtering   cartridge   for   hemoperfusion.   An   evidence   of   QS-­‐LPS   and   QS-­‐polymyxin   B   hydrophobic   interac%on   is   presented.   Figure   3   shows  how  3-­‐oxo-­‐C12  AHL  concentra%on  drops  down  aser  incuba%on  (sta%c  experiment)  in  the  presence  of   hemoperfusion  membrane  with  covalently  bonded  polymyxin-­‐B  or  by  filtra%on  (dynamic  experiment)  upon  the   same  membrane.  

Finally   QS   molecules   were   determined   in   bacterial   cultures   and   human   plasma   samples   from   AKI   pa%ents   under  hemoperfusion  treatment.    Only  the  results  of  bacterial  cultures  analyses  are  shown  herein.    

Interes%ngly,  both  HRMS-­‐orbitrap  and  NL/PIS  MS/MS  acquired  on  the  Q-­‐trap  instrument  relealed  the  presence   of  AHL  molecules  in  Pseudomonas  aeruginosa  cultures  broths.  As  expected  the  concentra%on  of  AHL    in  wild-­‐ type   PAO1   samples   was   higher   than   in   mutant   PAO1   rhlI-­‐   samples.   Eventually,   the   presence   of   C

4   AHL   was   evidenced  again  in  the  case  of  the  wild-­‐type  sample  only.  Neutral  loss  scan  seems  to  be  more  sensi%ve  than   precursor  ion  scan  in  the  microbiological  study  (Figure  4).  

                   

Scheme  1:  QS  analytes  with  main  fragmentaGon  pathways  observed  for  protonated  molecular  ions  

Scheme  2:  TQ  MS  MS  selecGve  acquisiGon  modes  

Figure  3:  Standard  AHL  quanGtaGon  aVer  incubaGon/filtering  using  toraymyxin™  hemoperfusion  

filter  

Scheme  3:  Ions  formed  by  previously  idenGfied  AHLs  herein  

invesGgated  

Figure  1:  Hemoperfusion  filter  operaGon  scheme

Table  1:  Linearity  and  LLOQ  of  quanGtaGve  analysis  method  

Figure  2:  Pseudomonas  aeruginosa  bacterial  cultures  

3-­‐oxo-­‐C12  AHL     C7  HQ    

HRMS  calibra%on  curve   y  =  118  x  +  8  E5;  r2  =  0.9999   -­‐-­‐-­‐  

HRMS  LLOQ  (ppb)   1.0   -­‐-­‐-­‐  

HRMS2  calibra%on  curve   y  =  47.5  x  +  3  E5;  r2  =  0.9999  

  -­‐-­‐-­‐  

HRMS2  LLOQ  (ppb)   1.0   -­‐-­‐-­‐  

SRM  MS/MS  calibra%on  curve   y  =  985.45  x  –  190642;  r2  =  0.9997   y  =  296.45  x  –  7873;  r2  =  0.9997  

 

SRM  LLOQ  (ppb)   0.050   0.050  

NL  MS/MS    calibra%on  curve   y  =  5372.8  x  –  1  E6;  r2  =  0.9992   -­‐-­‐-­‐  

NL  LLOQ  (ppb)   5.0   -­‐-­‐-­‐  

PI  MS/MS  calibra%on  curve   y  =  7069.3  x  –  3  E6;  r2  =  0.9995   y  =  122  x  –  97182;  r2  =  0.9998  

PI  LLOQ  (ppb)   5.0   0.050   N OH H O H N OH H O H C16H22NO2 260.165054 C10H9NO2 175.063328 - CO C9H9NO 147.068413 N H H OH 3-­‐oxo-­‐C12

AHL

C7

HQ

N

EU

TRAL

 L

O

SS

 sc

an

PRECURSOR  ION  scan

P.  aeruginosa     PAO1(wild-­‐type)   P.  aeruginosa     PAO1    rhlI-­‐   C18H34NO3 312.2539 O O N H O H C16H30NO3 284.2225 O O N H O H C14H26NO3 256.1912 O O N H O H C12H20NO4 242.1392 O O N H O H O C12H22NO3 228.1600 O O N H O H C11H20NO3 214.1443 O O N H O H C10H16NO4 214.1079 O O N H O H O C10H18NO3 200.1287 O O N H O H C8H14NO3 172.0974 O O N H O H C4 C6 3-oxo-C6 C8 C7 3-oxo-C8 C10 C12 C14 R -M1 N OH R H O H N OH H O H C10H9NO2 175.0633 M2' = 175 m/z C12-­‐3oxo-­‐AHL   C4-­‐AHL   C12-­‐AHL   C10-­‐3oxo-­‐AH   0   20   40   60   80   100   LB   LB_PAO1   LB_RHlI   RE LAT IV E   CO N CE N TRAT IO N S   (%)

  NEUTRAL  LOSS  SCAN  

C12-­‐3oxo-­‐AHL   C4-­‐AHL   C12-­‐AHL   C10-­‐3oxo-­‐AH   C12-­‐3oxo-­‐AHL   C4-­‐AHL   C12-­‐AHL   C10-­‐3oxo-­‐AH   0   20   40   60   80   100   LB   LB_PAO1   LB_RHlI   RE LAT IV E   CO N CE N TRAT IO N S   (%)  

PRECURSOR  ION  SCAN  

C12-­‐3oxo-­‐AHL   C4-­‐AHL   C12-­‐AHL   C10-­‐3oxo-­‐AH  

Figure  4:  QuanGtaGon  of  AHL  produced  by  wild-­‐type  vs.  mutant  P.  aeruginosa  PAO1  in  lysogeny  

broth  (LB)  medium  

Riferimenti

Documenti correlati

be potential FG-receptors in HZ-exposed monocytes as concluded from lack of burst activation and reduced TNFα release in presence of blocking anti- TLR4 antibody, and an

The primary endpoint was to assess the efficacy of PER by calculating the percent change in seizure frequency (mean number of seizures/month at 12 months—mean number of

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable

at  700  °C  and  showing  comparable  particle  size.  This  indicates  that  the  effect  of  the  annealing  temperature  on  the  anisotropy  is  not  only 

adsorption process. zCFX and nCFX are parallel to the outer surface of SW-CNT. Contrary to vacuum simulations, zCFX, adsorbed to the inner surface, has now a linear

L’analisi della legislazione e della giurisprudenza della Corte costituzionale appena svolta conferma che la decorrenza dei termini di decadenza è ricollegata di regola non al

A leading role in this project was to be played by Photius’s “close friend” Constantine-Cyril (“fortissimus amicus”) 9. The constitution of the Macedonian theme and

In tal modo l'ossatua portante ch€ i progetti di disegno urbano potlanno sùg- gerire, dovrà pure delineare la scena di possibili itine- rari nella città proprio