• Non ci sono risultati.

Measurement of dijet angular distributions and search for quark compositeness in pp collisions at √s=7TeV


Academic year: 2021

Condividi "Measurement of dijet angular distributions and search for quark compositeness in pp collisions at √s=7TeV"


Testo completo


Measurement of Dijet Angular Distributions and Search for Quark Compositeness


pp Collisions at




¼ 7 TeV

V. Khachatryan et al.* (CMS Collaboration)

(Received 10 February 2011; published 18 May 2011)

Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at ffiffiffi

s p

¼ 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 pb1. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of þ¼ 5:6 TeV (¼ 6:7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level.

DOI:10.1103/PhysRevLett.106.201804 PACS numbers: 13.85.Rm, 12.38.Bx, 12.38.Qk, 12.60.Rc

In the standard model, pointlike parton-parton scatter-ings in high energy proton-proton collisions can give rise to final states with energetic jets. At large momentum trans-fers, events with at least two energetic jets (dijets) may be used to confront the predictions of perturbative quantum chromodynamics (pQCD) and to search for signatures of new physics. In parton-parton scattering, the angular dis-tribution of the outgoing partons, d ^=d cos, is directly sensitive to the spin of the exchanged particle, where ^ is the parton-level cross section and  is the polar scattering angle in the parton-parton center-of-mass (c.m.) frame. While QCD predicts a noticeable deviation of the dijet angular distribution from Rutherford scattering, at small c.m. scattering angles the angular distribution is propor-tional to the Rutherford cross section, d ^=d cos 1=ð1  cosÞ2, characteristic of spin-1 particle exchange.

The dijet angular distributions do not strongly depend on the details of the parton distribution functions (PDFs), since the angular distributions for the underlying pro-cesses, qg! qg, qq0! qq0, and gg! gg, are similar.

For the scattering of massless partons, which are as-sumed to be collinear with the beam protons, the longitu-dinal boost of the parton-parton c.m. frame with respect to the proton-proton c.m. frame, yboost, and  are obtained from the rapidities y1 and y2 of the jets from the two scattered partons by yboost¼12ðy1þ y2Þ and j cosj ¼ tanhy, where y ¼1

2jy1 y2j and where y are the

rapidities of the two jets in the parton-parton c.m. frame. The rapidity is related to the jet energy E and the projection of the jet momentum on the beam axis pz by y¼


2 ln½ðE þ pzÞ=ðE  pzÞ. The variable dijet¼ expð2yÞ

is used to measure the dijet angular distribution, which

for collinear massless-parton scattering takes the form

dijet¼ ð1 þ j cosjÞ=ð1  j cosjÞ. This choice of

dijet, rather than , is motivated by the fact that

ddijet=ddijet is flat for Rutherford scattering. It also

al-lows signatures of new physics that might have a more isotropic angular distribution than QCD (e.g., quark com-positeness) to be more easily examined as they would produce an excess at low values of dijet. The quantity studied in this analysis is ð1=dijetÞðddijet=ddijetÞ, for several ranges of the dijet invariant mass Mjj. Previous searches for quark compositeness using the dijet angular distribution or related observables in pp and pp collisions have been reported at the SppS by the UA1 Collaboration [1], at the Fermilab Tevatron Collider by the D0 [2,3] and CDF Collaborations [4], and at the Large Hadron Collider (LHC) by the ATLAS Collaboration [5]. The CMS Collaboration has also published a search on quark com-positeness with a smaller data sample using the dijet centrality ratio [6]. In this Letter, we present the first measurement of dijet angular distributions from CMS in pp collisions atpffiffiffis¼ 7 TeV.

The central feature of the CMS apparatus is a super-conducting solenoid, of 6 m internal diameter, providing an axial field of 3.8 T. Within the field volume are the silicon pixel and silicon strip tracker, the electromagnetic calo-rimeter (ECAL) and the hadron calocalo-rimeter (HCAL). The ECAL is made up of lead-tungstate crystals, while the HCAL is made of layers of plates of brass and plastic scintillator. These calorimeters provide coverage in pseu-dorapidity up tojj  3, where  ¼  ln tanð=2Þ and  is the polar angle relative to the counterclockwise proton beam direction. An iron or quartz-fiber Cˇ erenkov hadron calorimeter (HF) covers pseudorapidities 3 < jj < 5. In addition, a preshower detector made of silicon sensor planes and lead absorbers is located in front of the ECAL at 1:653 < jj < 2:6. The calorimeter cells are grouped in projective towers of granularity in pseudorapidity and azimuthal angle of 0:087  0:087 at central

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.


pseudorapidities, with coarser granularity at forward pseu-dorapidities. Muons are measured in gas-ionization detec-tors embedded in the steel magnetic field return yoke. A detailed description of the CMS detector can be found elsewhere [7].

Events were collected online with a two-tiered trigger system: level-1 (L1) and the high level trigger (HLT). For this study, events were selected with five inclusive single-jet triggers, with the following single-jet transverse momentum pT thresholds at L1 (HLT): 20 GeV (30 GeV), 30 GeV (50 GeV), 40 GeV (70 GeV), 60 GeV (100 GeV), and 60 GeV (140 GeV). The jets at L1 and HLT were recon-structed using energies measured by the ECAL, HCAL, and HF, and were not corrected for the jet energy response of the calorimeters. All except the highest-threshold jet trigger were prescaled as the LHC instantaneous luminos-ity increased during the course of data taking. In each case, the trigger efficiency was measured as a function of dijet invariant mass Mjj using events selected by a lower-threshold trigger. For the analysis, Mjj and dijet

regions were chosen such that the trigger efficiencies exceeded 99%.

Jets were reconstructed offline from energies mea-sured in the calorimeter towers using the anti-kT clustering algorithm [8] with a distance parameter R¼ 0:5. Spurious jets from noise and noncollision back-grounds were eliminated by loose quality criteria on the jet properties [9]. The jet four-momenta were corrected for the nonlinear response of the calorimeters [10]. The perform-ance of the CMS detector with respect to jet reconstruction is described in detail elsewhere [11].

Events were required to have a primary vertex recon-structed within 24 cm of the detector center along the beam line [12]. Events having at least two jets were selected and the two highest-pT jets were used to measure the dijet angular distributions for different ranges in Mjj. We required dijet< 16 and jyboostj < 1:11, thus restricting

the rapidities y1 and y2 of the two highest-pT jets to be less than 2.5. Nine analysis ranges were defined with the boundaries 0:25 < Mjj< 0:35 TeV, 0:35 <

Mjj< 0:5 TeV, 0:5 < Mjj< 0:65 TeV, 0:65 < Mjj<

0:85 TeV, 0:85 < Mjj< 1:1 TeV, 1:1 < Mjj< 1:4 TeV,

1:4 < Mjj< 1:8 TeV, 1:8 < Mjj< 2:2 TeV, and Mjj>

2:2 TeV. The data correspond to integrated luminosities of 0.4, 3.5, 9.2, and 19:8 pb1 for the lowest four Mjj

ranges and 36 pb1 for the remaining ones. The uncer-tainty on the integrated luminosity has been estimated to be 11% [13].

The dijet angular distributions are corrected for migra-tion effects in dijetand Mjjdue to the finite jet energy and position resolutions of the detector. The correction factors were determined using two independent Monte Carlo (MC) samples: PYTHIA 6.422 [14] with tune D6T [15] andHERWIGþþ 2.4.2 [16]. The four-momentum, rapidity, and azimuthal angle of each generated jet were smeared to

reproduce the measured resolutions. The ratio of the two dijet angular distributions (the generated distribution and the smeared one) determined the unfolding correction factors for a given MC sample and for each Mjj range. The average of the correction factors for each Mjj range

from the two MC samples formed the final unfolding correction applied to the data. The correction factors change the normalized dijet angular distributions for all Mjj ranges by less than 3%. For each Mjj range, the

systematic uncertainty associated with each correction factor was set at 50% of its value. This approach covers the variations of the unfolding correction factors deter-mined fromHERWIGþþ and differentPYTHIAtunes (D6T and Z2 [17]) that vary on their modeling of the jet kine-matic distributions. The use of a parametrized model to simulate the finite jet pT and position resolutions of the detector, to determine the unfolding correction factors, resulted in a systematic uncertainty. This was estimated to be less than 1% for all Mjj ranges and was added in quadrature to the unfolding uncertainties.

The normalized dijet angular distributions are relatively insensitive to many systematic effects; in particular, they show little dependence on the overall jet energy scale. However, since dijet depends on y, they are sensitive to the rapidity dependence of the jet energy calibration. Typical values for the jet energy scale uncertainties for the considered phase space in the variables of jet pT and 

covered in this analysis are between 3% and 4% [10]. The uncertainty on the dijetdistributions due to the jet energy calibration uncertainties was found to be less than 2.5%. The uncertainty on the dijet angular distributions from the jet pT resolution uncertainty, estimated to be 10% [11], was found to be less than 1%. The total systematic uncer-tainty on the dijetdistributions, calculated as the quadratic sum of the contributions due to the uncertainties in the jet energy calibration, the jet pT resolution, and the unfolding

correction, is less than 3% for all Mjj ranges.

The corrected differential dijet angular distributions for different Mjj ranges, normalized to their respective

inte-grals, are shown in Fig.1. The data are compared to pQCD predictions at next-to-leading order (NLO) calculated with NLOJETþþ [18] in the FASTNLO [19] framework. The calculations were performed with the CTEQ6.6 PDFs [20]. The factorization (f) and renormalization (r) scales were set to hpTi, the average dijet pT.

Nonperturbative corrections due to hadronization and mul-tiple parton interactions, determined using the average correction from PYTHIA(D6T tune) andHERWIGþþ, were

applied to the prediction. The uncertainties on the pQCD predictions, indicated by the shaded band in Fig.1, are less than 6% (9%) at low (high) Mjj. These uncertainties include contributions due to scale variations and PDF uncertainties, as well as the uncertainties from the non-perturbative corrections. The uncertainty due to the choice of f and r scales was evaluated by varying the default


choice of scales in the following six combinations: ðf; rÞ ¼ ðhpTi=2; hpTi=2Þ, (hpTi=2, hpTi), (hpTi,

hpTi=2), (2hpTi, 2hpTi), (2hpTi, hpTi), and (hpTi, 2hpTi).

These scale variations modify the predictions of the normalized dijet distributions by less than 5% (9%) at low (high) Mjj. The uncertainty due to the choice of PDFs was determined from the 22 CTEQ6.6 uncertainty eigenvectors using the procedure described in Ref. [20], and was found to be less than 0.5% for all Mjjranges. Half of the difference between the nonperturbative corrections fromPYTHIAandHERWIGþþ was taken as the systematic

uncertainty, and was found to be less than 4% (0.1%) at low (high) Mjj. Overall there is good agreement between the

measured dijet angular distributions and the theoretical predictions for all Mjj ranges.

The measured dijet angular distributions can be used to set limits on quark compositeness represented by a four-fermion contact interaction term in addition to the QCD Lagrangian. The value of the mass scale  character-izes the strengths of the quark substructure binding inter-actions and the physical size of the composite states. A color- and isospin-singlet contact interaction (CI) of left-handed quarks gives rise to an effective Lagrangian term: Lqq¼ 0ð2=2Þð qLqLÞð qLqLÞ [21,22],

where 0 ¼ þ1 corresponds to destructive interference between the QCD and the new physics term, and 0 ¼ 1 to constructive interference. We investigate a model in which all quarks are considered composite as implemented in thePYTHIAevent generator.

The contributions of the CI term in PYTHIAare calcu-lated to leading order (LO), whereas the QCD predictions for the dijet angular distributions are known up to NLO. In order to account for this difference in the QCD plus CI prediction, the cross-section difference QCDNLO QCDLO was added to the LO QCDþCI prediction in each Mjjand dijet

bin. With this procedure, we obtain a QCDþCI prediction where the QCD terms are corrected to NLO while the CI terms are calculated at LO. Nonperturbative corrections due to hadronization and multiple parton interactions were also applied to the prediction. The prediction for QCDþCI at the scale of þ ¼ 5 TeV (0 ¼ þ1) and

¼ 5 TeV (0 ¼ 1) are shown in Fig. 1, for the

four highest Mjjranges.

We perform a statistical test discriminating between the QCD-only hypothesis and the QCDþCI hypothesis as a function of the scale  based on the log-likelihood-ratio Q¼ 2 lnðLQCDþCI

LQCD Þ. The likelihood functions LQCDþCIand

LQCD are modeled as a product of Poisson likelihood functions for each bin in dijetand Mjj in the four highest

Mjj ranges. The prediction for each Mjj range is

norma-lized to the number of data events in that range. The p values, PQCDþCIðQ  QobsÞ and PQCDðQ  QobsÞ, are obtained from ensembles of pseudoexperiments. A modi-fied frequentist approach [23–25] based on the quantity



1  PQCDðQ  QobsÞ

is used to set limits on . This approach is more conserva-tive than a pure frequentist approach (Neyman construc-tion) and prevents an exclusion claim when the data may have little sensitivity to new physics [26]. Systematic un-certainties were introduced via Bayesian integration [27] by varying them as nuisance parameters in the ensembles of pseudoexperiments according to a Gaussian distribution convoluted with the shape variation induced to the dijet distributions. We consider the QCDþCI model to be ex-cluded at the 95% confidence level if CLs< 0:05. Figure2

shows the observed and expected CLsas a function of the dijet χ 2 4 6 8 10 12 14 16 dijet χ > 2.2 TeV jj M (+0.5) dijet χ < 2.2 TeV jj M 1.8 < (+0.4) dijet χ < 1.8 TeV jj M 1.4 < (+0.3) dijet χ < 1.4 TeV jj M 1.1 < (+0.25) dijet χ < 1.1 TeV jj M 0.85 < (+0.2) dijet χ 0.7 < 0.85 TeV jj M 0.65 < (+0.15) χ < 0.65 TeV jj M 0.5 < (+0.1) < 0.5 TeV jj M 0.35 < (+0.05) dijet χ /d dijet σ d dijet σ 1/ 0.1 0.2 0.3 0.4 0.5 0.6 < 0.35 TeV jj M 0.25 < CMS = 7 TeV s -1 L = 36 pb Data QCD prediction = 5 TeV + Λ = 5 TeV Λ

FIG. 1 (color online). Normalized dijet angular distributions in several Mjj ranges, shifted vertically by the additive amounts

given in parentheses in the figure for clarity. The data points include statistical and systematic uncertainties. The results are compared with the predictions of pQCD at NLO (shaded band) and with the predictions including a contact interaction term of compositeness scale þ¼ 5 TeV (dashed histogram) and ¼ 5 TeV (dotted histogram). The shaded band shows the effect on the NLO pQCD predictions due to r and f

scale variations and PDF uncertainties, as well as the unce-rtainties from the nonperturbative corrections added in quadrature.


CI scale þ. From this we determine the lower limit on þ to be 5.6 TeV. The observed limit agrees within 1.4 stan-dard deviations with the expected limit of 5.0 TeV, which was evaluated at the median of the test statistics distribu-tion of the QCD model. The observed limit is slightly higher than the expected one because, for the range Mjj>

2:2 TeV, the measured dijet angular distribution at low

dijet is lower than, although statistically compatible

with, the QCD prediction. The limit for the CI scale was also extracted using an alternate procedure in which the data were not corrected for detector effects and instead the MC predictions were resolution smeared. The limit ob-tained was found to agree with the quoted one within 0.4%. The corresponding observed and expected limits on are 6.7 and 5.8 TeV, respectively.

Shortly before the completion of this Letter, an exact NLO calculation of QCD effects to quark compositeness became available [28]. This calculation indicates that the limit on þ obtained in the present analysis, which only takes into account the LO prediction for the contribution of the contact interaction, might be overestimated by up to 10% compared to the value obtained if the NLO calcula-tion were used.

In summary, CMS has measured the dijet angular dis-tributions over a wide range of dijet invariant masses. The

dijetdistributions are found to be in good agreement with

NLO pQCD predictions, and are used to exclude a range of a color- and isospin-singlet contact interaction scale  for a left-handed quark compositeness model. With a modified frequentist approach, a lower limit on the contact interaction scale of þ¼ 5:6 TeV (¼ 6:7 TeV) for

destructive (constructive) interference at the 95% confi-dence level is obtained, which may be compared with a limit of 5.0 TeV (5.8 TeV) expected for the number of events recorded. These are the most stringent limits on the contact interaction scale of left-handed quarks to date.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).

[1] G. Arnison et al. (UA1 Collaboration),Phys. Lett. B 177, 244 (1986).

[2] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 103, 191803 (2009).

[3] B. Abbott et al. (D0 Collaboration), Phys. Rev. D 64, 032003 (2001).

[4] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 78, 4307(E) (1997);77, 5336 (1996).

[5] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 694, 327 (2011).

[6] V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 105, 262001 (2010).

[7] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[8] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[9] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-09-008, 2009.

[10] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-10-010, 2010.

[11] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-10-003, 2010.

[12] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-TRK-10-005, 2010.

[13] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-EWK-10-004, 2010.

[14] T. Sjo¨strand, S. Mrenna, and P. Skands,J. High Energy Phys. 05 (2006) 026. [TeV] + Λ 1 2 3 4 5 6 S CL 0.04 0.06 0.08 0.1 CMS = 7 TeV s -1 L = 36 pb observed expected σ 1 ± expected σ 2 ± expected

FIG. 2 (color online). Observed CLs(solid line) and expected

CLs(dashed line) with one (two) standard deviation(s) indicated

by the dark (light) band as a function of the contact interaction scale þ. The 95% confidence level limits on þare extracted from the intersections of the observed and expected CLs lines


[15] R. Field,arXiv:1010.3558.

[16] M. Bahr et al.,Eur. Phys. J. C 58, 639 (2008).

[17] ThePYTHIA6Z2 tune is identical to the Z1 tune described in [15] except that Z2 uses the CTEQ6L PDF while Z1 uses CTEQ5L.

[18] Z. Nagy,Phys. Rev. Lett. 88, 122003 (2002).

[19] T. Kluge, K. Rabbertz, and M. Wobisch, arXiv:hepph/ 0609285.

[20] P. M. Nadolsky et al.,Phys. Rev. D 78, 013004 (2008). [21] E. J. Eichten, K. D. Lane, and M. E. Peskin, Phys. Rev.

Lett. 50, 811 (1983).

[22] E. Eichten et al.,Rev. Mod. Phys. 56, 579 (1984). [23] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434,

435 (1999).

[24] A. L. Read, in First Workshop on Condence Limits (CERN, Geneva, Switzerland, 2000), p. 81.

[25] A. L. Read,J. Phys. G 28, 2693 (2002).

[26] K. Nakamura et al. (Particle Data Group),J. Phys. G 37, 075021 (2010).

[27] R. D. Cousins and V. L. Highland,Nucl. Instrum. Methods Phys. Res., Sect. A 320, 331 (1992).

[28] J. Gao et al.,Phys. Rev. Lett. 106, 142001 (2011).

V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2C. Fabjan,2 M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2C. Hartl,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2

M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4K. Cerny,4E. A. De Wolf,4X. Janssen,4

T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4S. Beauceron,5F. Blekman,5S. Blyweert,5J. D’Hondt,5O. Devroede,5 R. Gonzalez Suarez,5A. Kalogeropoulos,5J. Maes,5M. Maes,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5 G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6

T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wickens,6V. Adler,7S. Costantini,7 M. Grunewald,7B. Klein,7A. Marinov,7J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7

P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8 J. De Favereau De Jeneret,8C. Delaere,8P. Demin,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8 V. Lemaitre,8J. Liao,8O. Militaru,8S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9 T. Caebergs,9E. Daubie,9G. A. Alves,10D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11

E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11 W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11F. Torres Da Silva De Araujo,11

F. A. Dias,12M. A. F. Dias,12T. R. Fernandez Perez Tomei,12E. M. Gregores,12,cF. Marinho,12S. F. Novaes,12 Sandra S. Padula,12N. Darmenov,13,bL. Dimitrov,13V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13

S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13I. Vankov,13M. Dyulendarova,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14E. Marinova,14M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15 H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15M. Xu,15 M. Yang,15J. Zang,15Z. Zhang,15Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16 L. Zhang,16B. Zhu,16W. Zou,16A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17

J. C. Sanabria,17N. Godinovic,18D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19 M. Dzelalija,19V. Brigljevic,20S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21

C. Nicolaou,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,e M. A. Mahmoud,23,fA. Hektor,24M. Kadastik,24K. Kannike,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24 V. Azzolini,25P. Eerola,25S. Czellar,26J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26J. Klem,26

M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26 E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26K. Banzuzi,27A. Korpela,27 T. Tuuva,27D. Sillou,28M. Besancon,29S. Choudhury,29M. Dejardin,29D. Denegri,29B. Fabbro,29J. L. Faure,29 F. Ferri,29S. Ganjour,29F. X. Gentit,29A. Givernaud,29P. Gras,29G. Hamel de Monchenault,29P. Jarry,29E. Locci,29

J. Malcles,29M. Marionneau,29L. Millischer,29J. Rander,29A. Rosowsky,29I. Shreyber,29M. Titov,29 P. Verrecchia,29S. Baffioni,30F. Beaudette,30L. Bianchini,30M. Bluj,30,gC. Broutin,30P. Busson,30C. Charlot,30 T. Dahms,30L. Dobrzynski,30R. Granier de Cassagnac,30M. Haguenauer,30P. Mine´,30C. Mironov,30C. Ochando,30

P. Paganini,30D. Sabes,30R. Salerno,30Y. Sirois,30C. Thiebaux,30B. Wyslouch,30,hA. Zabi,30J.-L. Agram,31,i J. Andrea,31A. Besson,31D. Bloch,31D. Bodin,31J.-M. Brom,31M. Cardaci,31E. C. Chabert,31C. Collard,31

E. Conte,31,iF. Drouhin,31,iC. Ferro,31J.-C. Fontaine,31,iD. Gele´,31U. Goerlach,31S. Greder,31P. Juillot,31 M. Karim,31,iA.-C. Le Bihan,31Y. Mikami,31P. Van Hove,31F. Fassi,32D. Mercier,32C. Baty,33N. Beaupere,33


M. Bedjidian,33O. Bondu,33G. Boudoul,33D. Boumediene,33H. Brun,33N. Chanon,33R. Chierici,33D. Contardo,33 P. Depasse,33H. El Mamouni,33A. Falkiewicz,33J. Fay,33S. Gascon,33B. Ille,33T. Kurca,33T. Le Grand,33

M. Lethuillier,33L. Mirabito,33S. Perries,33V. Sordini,33S. Tosi,33Y. Tschudi,33P. Verdier,33H. Xiao,33 L. Megrelidze,34V. Roinishvili,34D. Lomidze,35G. Anagnostou,36M. Edelhoff,36L. Feld,36N. Heracleous,36

O. Hindrichs,36R. Jussen,36K. Klein,36J. Merz,36N. Mohr,36A. Ostapchuk,36A. Perieanu,36F. Raupach,36 J. Sammet,36S. Schael,36D. Sprenger,36H. Weber,36M. Weber,36B. Wittmer,36M. Ata,37W. Bender,37 M. Erdmann,37J. Frangenheim,37T. Hebbeker,37A. Hinzmann,37K. Hoepfner,37C. Hof,37T. Klimkovich,37 D. Klingebiel,37P. Kreuzer,37D. Lanske,37,aC. Magass,37G. Masetti,37M. Merschmeyer,37A. Meyer,37P. Papacz,37

H. Pieta,37H. Reithler,37S. A. Schmitz,37L. Sonnenschein,37J. Steggemann,37D. Teyssier,37M. Bontenackels,38 M. Davids,38M. Duda,38G. Flu¨gge,38H. Geenen,38M. Giffels,38W. Haj Ahmad,38D. Heydhausen,38T. Kress,38

Y. Kuessel,38A. Linn,38A. Nowack,38L. Perchalla,38O. Pooth,38J. Rennefeld,38P. Sauerland,38A. Stahl,38 M. Thomas,38D. Tornier,38M. H. Zoeller,38M. Aldaya Martin,39W. Behrenhoff,39U. Behrens,39M. Bergholz,39,j K. Borras,39A. Cakir,39A. Campbell,39E. Castro,39D. Dammann,39G. Eckerlin,39D. Eckstein,39A. Flossdorf,39

G. Flucke,39A. Geiser,39I. Glushkov,39J. Hauk,39H. Jung,39M. Kasemann,39I. Katkov,39P. Katsas,39 C. Kleinwort,39H. Kluge,39A. Knutsson,39D. Kru¨cker,39E. Kuznetsova,39W. Lange,39W. Lohmann,39,j R. Mankel,39M. Marienfeld,39I.-A. Melzer-Pellmann,39A. B. Meyer,39J. Mnich,39A. Mussgiller,39J. Olzem,39

A. Parenti,39A. Raspereza,39A. Raval,39R. Schmidt,39,jT. Schoerner-Sadenius,39N. Sen,39M. Stein,39 J. Tomaszewska,39D. Volyanskyy,39R. Walsh,39C. Wissing,39C. Autermann,40S. Bobrovskyi,40J. Draeger,40

H. Enderle,40U. Gebbert,40K. Kaschube,40G. Kaussen,40R. Klanner,40J. Lange,40B. Mura,40 S. Naumann-Emme,40F. Nowak,40N. Pietsch,40C. Sander,40H. Schettler,40P. Schleper,40M. Schro¨der,40 T. Schum,40J. Schwandt,40A. K. Srivastava,40H. Stadie,40G. Steinbru¨ck,40J. Thomsen,40R. Wolf,40C. Barth,41

J. Bauer,41V. Buege,41T. Chwalek,41W. De Boer,41A. Dierlamm,41G. Dirkes,41M. Feindt,41J. Gruschke,41 C. Hackstein,41F. Hartmann,41S. M. Heindl,41M. Heinrich,41H. Held,41K. H. Hoffmann,41S. Honc,41T. Kuhr,41 D. Martschei,41S. Mueller,41Th. Mu¨ller,41M. Niegel,41O. Oberst,41A. Oehler,41J. Ott,41T. Peiffer,41D. Piparo,41 G. Quast,41K. Rabbertz,41F. Ratnikov,41M. Renz,41C. Saout,41A. Scheurer,41P. Schieferdecker,41F.-P. Schilling,41

G. Schott,41H. J. Simonis,41F. M. Stober,41D. Troendle,41J. Wagner-Kuhr,41M. Zeise,41V. Zhukov,41,k E. B. Ziebarth,41G. Daskalakis,42T. Geralis,42S. Kesisoglou,42A. Kyriakis,42D. Loukas,42I. Manolakos,42 A. Markou,42C. Markou,42C. Mavrommatis,42E. Ntomari,42E. Petrakou,42L. Gouskos,43T. J. Mertzimekis,43

A. Panagiotou,43I. Evangelou,44C. Foudas,44P. Kokkas,44N. Manthos,44I. Papadopoulos,44V. Patras,44 F. A. Triantis,44A. Aranyi,45G. Bencze,45L. Boldizsar,45G. Debreczeni,45C. Hajdu,45,bD. Horvath,45,lA. Kapusi,45

K. Krajczar,45,mA. Laszlo,45F. Sikler,45G. Vesztergombi,45,mN. Beni,46J. Molnar,46J. Palinkas,46Z. Szillasi,46 V. Veszpremi,46P. Raics,47Z. L. Trocsanyi,47B. Ujvari,47S. Bansal,48S. B. Beri,48V. Bhatnagar,48N. Dhingra,48

R. Gupta,48M. Jindal,48M. Kaur,48J. M. Kohli,48M. Z. Mehta,48N. Nishu,48L. K. Saini,48A. Sharma,48 A. P. Singh,48J. B. Singh,48S. P. Singh,48S. Ahuja,49S. Bhattacharya,49B. C. Choudhary,49P. Gupta,49S. Jain,49

S. Jain,49A. Kumar,49R. K. Shivpuri,49R. K. Choudhury,50D. Dutta,50S. Kailas,50S. K. Kataria,50 A. K. Mohanty,50,bL. M. Pant,50P. Shukla,50T. Aziz,51M. Guchait,51,nA. Gurtu,51M. Maity,51,oD. Majumder,51

G. Majumder,51K. Mazumdar,51G. B. Mohanty,51A. Saha,51K. Sudhakar,51N. Wickramage,51S. Banerjee,52 S. Dugad,52N. K. Mondal,52H. Arfaei,53H. Bakhshiansohi,53S. M. Etesami,53A. Fahim,53M. Hashemi,53

A. Jafari,53M. Khakzad,53A. Mohammadi,53M. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53 B. Safarzadeh,53M. Zeinali,53M. Abbrescia,54a,54bL. Barbone,54a,54bC. Calabria,54a,54bA. Colaleo,54a D. Creanza,54a,54cN. De Filippis,54a,54cM. De Palma,54a,54bA. Dimitrov,54aL. Fiore,54aG. Iaselli,54a,54c L. Lusito,54a,54b,bG. Maggi,54a,54cM. Maggi,54aN. Manna,54a,54bB. Marangelli,54a,54bS. My,54a,54cS. Nuzzo,54a,54b

N. Pacifico,54a,54bG. A. Pierro,54aA. Pompili,54a,54bG. Pugliese,54a,54cF. Romano,54a,54cG. Roselli,54a,54b G. Selvaggi,54a,54bL. Silvestris,54aR. Trentadue,54aS. Tupputi,54a,54bG. Zito,54aG. Abbiendi,55aA. C. Benvenuti,55a

D. Bonacorsi,55aS. Braibant-Giacomelli,55a,55bL. Brigliadori,55aP. Capiluppi,55a,55bA. Castro,55a,55b F. R. Cavallo,55aM. Cuffiani,55a,55bG. M. Dallavalle,55aF. Fabbri,55aA. Fanfani,55a,55bD. Fasanella,55a

P. Giacomelli,55aM. Giunta,55aC. Grandi,55aS. Marcellini,55aM. Meneghelli,55a,55bA. Montanari,55a F. L. Navarria,55a,55bF. Odorici,55aA. Perrotta,55aF. Primavera,55aA. M. Rossi,55a,55bT. Rovelli,55a,55b G. Siroli,55a,55bR. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56a,56bM. Chiorboli,56a,56b,bS. Costa,56a,56b

A. Tricomi,56a,56bC. Tuve,56aG. Barbagli,57aV. Ciulli,57a,57bC. Civinini,57aR. D’Alessandro,57a,57b E. Focardi,57a,57bS. Frosali,57a,57bE. Gallo,57aS. Gonzi,57a,57bP. Lenzi,57a,57bM. Meschini,57aS. Paoletti,57a


G. Sguazzoni,57aA. Tropiano,57a,bL. Benussi,58S. Bianco,58S. Colafranceschi,58,pF. Fabbri,58D. Piccolo,58 P. Fabbricatore,59R. Musenich,59A. Benaglia,60a,60bF. De Guio,60a,60b,bL. Di Matteo,60a,60bA. Ghezzi,60a,60b,b

M. Malberti,60a,60bS. Malvezzi,60aA. Martelli,60a,60bA. Massironi,60a,60bD. Menasce,60aL. Moroni,60a M. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aS. Sala,60aT. Tabarelli de Fatis,60a,60b

V. Tancini,60a,60bS. Buontempo,61aC. A. Carrillo Montoya,61aA. Cimmino,61a,61bA. De Cosa,61a,61b M. De Gruttola,61a,61bF. Fabozzi,61a,qA. O. M. Iorio,61aL. Lista,61aM. Merola,61a,61bP. Noli,61a,61bP. Paolucci,61a

P. Azzi,62aN. Bacchetta,62aP. Bellan,62a,62bD. Bisello,62a,62bA. Branca,62aR. Carlin,62a,62bP. Checchia,62a E. Conti,62aM. De Mattia,62a,62bT. Dorigo,62aU. Dosselli,62aF. Fanzago,62aF. Gasparini,62a,62bP. Giubilato,62a,62b

A. Gresele,62a,62cS. Lacaprara,62a,ppI. Lazzizzera,62a,62cM. Margoni,62a,62bM. Mazzucato,62a

A. T. Meneguzzo,62a,62bM. Nespolo,62a,bL. Perrozzi,62a,bN. Pozzobon,62a,62bP. Ronchese,62a,62bF. Simonetto,62a,62b E. Torassa,62aM. Tosi,62a,62bS. Vanini,62a,62bP. Zotto,62a,62bG. Zumerle,62a,62bU. Berzano,63aC. Riccardi,63a,63b P. Torre,63a,63bP. Vitulo,63a,63bM. Biasini,64a,64bG. M. Bilei,64aB. Caponeri,64a,64bL. Fano`,64a,64bP. Lariccia,64a,64b

A. Lucaroni,64a,64b,bG. Mantovani,64a,64bM. Menichelli,64aA. Nappi,64a,64bA. Santocchia,64a,64bL. Servoli,64a S. Taroni,64a,64bM. Valdata,64a,64bR. Volpe,64a,64b,bP. Azzurri,65a,65cG. Bagliesi,65aJ. Bernardini,65a,65b T. Boccali,65a,bG. Broccolo,65a,65cR. Castaldi,65aR. T. D’Agnolo,65a,65cR. Dell’Orso,65aF. Fiori,65a,65bL. Foa`,65a,65c

A. Giassi,65aA. Kraan,65aF. Ligabue,65a,65cT. Lomtadze,65aL. Martini,65a,rA. Messineo,65a,65bF. Palla,65a F. Palmonari,65aS. Sarkar,65a,65cG. Segneri,65aA. T. Serban,65aP. Spagnolo,65aR. Tenchini,65aG. Tonelli,65a,65b,b A. Venturi,65a,bP. G. Verdini,65aL. Barone,66a,66bF. Cavallari,66aD. Del Re,66a,66bE. Di Marco,66a,66bM. Diemoz,66a

D. Franci,66a,66bM. Grassi,66aE. Longo,66a,66bS. Nourbakhsh,66aG. Organtini,66a,66bA. Palma,66a,66b F. Pandolfi,66a,66b,bR. Paramatti,66aS. Rahatlou,66a,66bN. Amapane,67a,67bR. Arcidiacono,67a,67cS. Argiro,67a,67b M. Arneodo,67a,67cC. Biino,67aC. Botta,67a,67b,bN. Cartiglia,67aR. Castello,67a,67bM. Costa,67a,67bN. Demaria,67a

A. Graziano,67a,67b,bC. Mariotti,67aM. Marone,67a,67bS. Maselli,67aE. Migliore,67a,67bG. Mila,67a,67b V. Monaco,67a,67bM. Musich,67a,67bM. M. Obertino,67a,67cN. Pastrone,67aM. Pelliccioni,67a,67b,bA. Romero,67a,67b

M. Ruspa,67a,67cR. Sacchi,67a,67bV. Sola,67a,67bA. Solano,67a,67bA. Staiano,67aD. Trocino,67a,67b A. Vilela Pereira,67a,67b,bS. Belforte,68aF. Cossutti,68aG. Della Ricca,68a,68bB. Gobbo,68aD. Montanino,68a,68b A. Penzo,68aS. G. Heo,69S. Chang,70J. Chung,70D. H. Kim,70G. N. Kim,70J. E. Kim,70D. J. Kong,70H. Park,70 D. Son,70D. C. Son,70Zero Kim,71J. Y. Kim,71S. Song,71S. Choi,72B. Hong,72M. Jo,72H. Kim,72J. H. Kim,72 T. J. Kim,72K. S. Lee,72D. H. Moon,72S. K. Park,72H. B. Rhee,72E. Seo,72S. Shin,72K. S. Sim,72M. Choi,73 S. Kang,73H. Kim,73C. Park,73I. C. Park,73S. Park,73G. Ryu,73Y. Choi,74Y. K. Choi,74J. Goh,74J. Lee,74S. Lee,74

H. Seo,74I. Yu,74M. J. Bilinskas,75I. Grigelionis,75M. Janulis,75D. Martisiute,75P. Petrov,75T. Sabonis,75 H. Castilla-Valdez,76E. De La Cruz-Burelo,76R. Lopez-Fernandez,76A. Sa´nchez-Herna´ndez,76 L. M. Villasenor-Cendejas,76S. Carrillo Moreno,77F. Vazquez Valencia,77H. A. Salazar Ibarguen,78 E. Casimiro Linares,79A. Morelos Pineda,79M. A. Reyes-Santos,79P. Allfrey,80D. Krofcheck,80P. H. Butler,81

R. Doesburg,81H. Silverwood,81M. Ahmad,82I. Ahmed,82M. I. Asghar,82H. R. Hoorani,82W. A. Khan,82 T. Khurshid,82S. Qazi,82M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83 T. Frueboes,84R. Gokieli,84M. Go´rski,84M. Kazana,84K. Nawrocki,84K. Romanowska-Rybinska,84M. Szleper,84 G. Wrochna,84P. Zalewski,84N. Almeida,85A. David,85P. Faccioli,85P. G. Ferreira Parracho,85M. Gallinaro,85

P. Martins,85P. Musella,85A. Nayak,85P. Q. Ribeiro,85J. Seixas,85P. Silva,85J. Varela,85H. K. Wo¨hri,85 I. Belotelov,86P. Bunin,86I. Golutvin,86A. Kamenev,86V. Karjavin,86G. Kozlov,86A. Lanev,86P. Moisenz,86 V. Palichik,86V. Perelygin,86S. Shmatov,86V. Smirnov,86A. Volodko,86A. Zarubin,86N. Bondar,87V. Golovtsov,87

Y. Ivanov,87V. Kim,87P. Levchenko,87V. Murzin,87V. Oreshkin,87I. Smirnov,87V. Sulimov,87L. Uvarov,87 S. Vavilov,87A. Vorobyev,87Yu. Andreev,88S. Gninenko,88N. Golubev,88M. Kirsanov,88N. Krasnikov,88

V. Matveev,88A. Pashenkov,88A. Toropin,88S. Troitsky,88V. Epshteyn,89V. Gavrilov,89V. Kaftanov,89,a M. Kossov,89,bA. Krokhotin,89N. Lychkovskaya,89G. Safronov,89S. Semenov,89V. Stolin,89E. Vlasov,89 A. Zhokin,89E. Boos,90M. Dubinin,90,sL. Dudko,90A. Ershov,90A. Gribushin,90O. Kodolova,90I. Lokhtin,90

S. Obraztsov,90S. Petrushanko,90L. Sarycheva,90V. Savrin,90A. Snigirev,90V. Andreev,91M. Azarkin,91 I. Dremin,91M. Kirakosyan,91S. V. Rusakov,91A. Vinogradov,91I. Azhgirey,92S. Bitioukov,92V. Grishin,92,b V. Kachanov,92D. Konstantinov,92A. Korablev,92V. Krychkine,92V. Petrov,92R. Ryutin,92S. Slabospitsky,92 A. Sobol,92L. Tourtchanovitch,92S. Troshin,92N. Tyurin,92A. Uzunian,92A. Volkov,92P. Adzic,93,tM. Djordjevic,93

D. Krpic,93,tJ. Milosevic,93M. Aguilar-Benitez,94J. Alcaraz Maestre,94P. Arce,94C. Battilana,94E. Calvo,94 M. Cepeda,94M. Cerrada,94N. Colino,94B. De La Cruz,94C. Diez Pardos,94D. Domı´nguez Va´zquez,94


C. Fernandez Bedoya,94J. P. Ferna´ndez Ramos,94A. Ferrando,94J. Flix,94M. C. Fouz,94P. Garcia-Abia,94 O. Gonzalez Lopez,94S. Goy Lopez,94J. M. Hernandez,94M. I. Josa,94G. Merino,94J. Puerta Pelayo,94 I. Redondo,94L. Romero,94J. Santaolalla,94C. Willmott,94C. Albajar,95G. Codispoti,95J. F. de Troco´niz,95

J. Cuevas,96J. Fernandez Menendez,96S. Folgueras,96I. Gonzalez Caballero,96L. Lloret Iglesias,96 J. M. Vizan Garcia,96J. A. Brochero Cifuentes,97I. J. Cabrillo,97A. Calderon,97M. Chamizo Llatas,97 S. H. Chuang,97J. Duarte Campderros,97M. Felcini,97,uM. Fernandez,97G. Gomez,97J. Gonzalez Sanchez,97 C. Jorda,97P. Lobelle Pardo,97A. Lopez Virto,97J. Marco,97R. Marco,97C. Martinez Rivero,97F. Matorras,97 F. J. Munoz Sanchez,97J. Piedra Gomez,97,vT. Rodrigo,97A. Ruiz-Jimeno,97L. Scodellaro,97M. Sobron Sanudo,97 I. Vila,97R. Vilar Cortabitarte,97D. Abbaneo,98E. Auffray,98G. Auzinger,98P. Baillon,98A. H. Ball,98D. Barney,98

A. J. Bell,98,wD. Benedetti,98C. Bernet,98,dW. Bialas,98P. Bloch,98A. Bocci,98S. Bolognesi,98H. Breuker,98 G. Brona,98K. Bunkowski,98T. Camporesi,98E. Cano,98G. Cerminara,98T. Christiansen,98J. A. Coarasa Perez,98

B. Cure´,98D. D’Enterria,98A. De Roeck,98S. Di Guida,98F. Duarte Ramos,98A. Elliott-Peisert,98B. Frisch,98 W. Funk,98A. Gaddi,98S. Gennai,98G. Georgiou,98H. Gerwig,98D. Gigi,98K. Gill,98D. Giordano,98F. Glege,98 R. Gomez-Reino Garrido,98M. Gouzevitch,98P. Govoni,98S. Gowdy,98L. Guiducci,98M. Hansen,98J. Harvey,98 J. Hegeman,98B. Hegner,98C. Henderson,98G. Hesketh,98H. F. Hoffmann,98A. Honma,98V. Innocente,98P. Janot,98 K. Kaadze,98E. Karavakis,98P. Lecoq,98C. Lourenc¸o,98A. Macpherson,98T. Ma¨ki,98L. Malgeri,98M. Mannelli,98

L. Masetti,98F. Meijers,98S. Mersi,98E. Meschi,98R. Moser,98M. U. Mozer,98M. Mulders,98E. Nesvold,98,b M. Nguyen,98T. Orimoto,98L. Orsini,98E. Perez,98A. Petrilli,98A. Pfeiffer,98M. Pierini,98M. Pimia¨,98G. Polese,98 A. Racz,98J. Rodrigues Antunes,98G. Rolandi,98,xT. Rommerskirchen,98C. Rovelli,98,qqM. Rovere,98H. Sakulin,98

C. Scha¨fer,98C. Schwick,98I. Segoni,98A. Sharma,98P. Siegrist,98M. Simon,98P. Sphicas,98,yD. Spiga,98 M. Spiropulu,98,sF. Sto¨ckli,98M. Stoye,98P. Tropea,98A. Tsirou,98A. Tsyganov,98G. I. Veres,98,mP. Vichoudis,98

M. Voutilainen,98W. D. Zeuner,98W. Bertl,99K. Deiters,99W. Erdmann,99K. Gabathuler,99R. Horisberger,99 Q. Ingram,99H. C. Kaestli,99S. Ko¨nig,99D. Kotlinski,99U. Langenegger,99F. Meier,99D. Renker,99T. Rohe,99 J. Sibille,99,zA. Starodumov,99,aaP. Bortignon,100L. Caminada,100,bbZ. Chen,100S. Cittolin,100G. Dissertori,100

M. Dittmar,100J. Eugster,100K. Freudenreich,100C. Grab,100A. Herve´,100W. Hintz,100P. Lecomte,100 W. Lustermann,100C. Marchica,100,bbP. Martinez Ruiz del Arbol,100P. Meridiani,100P. Milenovic,100,cc F. Moortgat,100P. Nef,100F. Nessi-Tedaldi,100L. Pape,100F. Pauss,100T. Punz,100A. Rizzi,100F. J. Ronga,100

M. Rossini,100L. Sala,100A. K. Sanchez,100M.-C. Sawley,100B. Stieger,100L. Tauscher,100,aA. Thea,100 K. Theofilatos,100D. Treille,100C. Urscheler,100R. Wallny,100M. Weber,100L. Wehrli,100J. Weng,100E. Aguilo´,101

C. Amsler,101V. Chiochia,101S. De Visscher,101C. Favaro,101M. Ivova Rikova,101B. Millan Mejias,101 C. Regenfus,101P. Robmann,101A. Schmidt,101H. Snoek,101Y. H. Chang,102K. H. Chen,102W. T. Chen,102 S. Dutta,102A. Go,102C. M. Kuo,102S. W. Li,102W. Lin,102M. H. Liu,102Z. K. Liu,102Y. J. Lu,102D. Mekterovic,102

J. H. Wu,102S. S. Yu,102P. Bartalini,103P. Chang,103Y. H. Chang,103Y. W. Chang,103Y. Chao,103K. F. Chen,103 W.-S. Hou,103Y. Hsiung,103K. Y. Kao,103Y. J. Lei,103R.-S. Lu,103J. G. Shiu,103Y. M. Tzeng,103M. Wang,103

A. Adiguzel,104M. N. Bakirci,104,ddS. Cerci,104,eeZ. Demir,104C. Dozen,104I. Dumanoglu,104E. Eskut,104 S. Girgis,104G. Gokbulut,104Y. Guler,104E. Gurpinar,104I. Hos,104E. E. Kangal,104T. Karaman,104 A. Kayis Topaksu,104A. Nart,104G. Onengut,104K. Ozdemir,104S. Ozturk,104A. Polatoz,104K. Sogut,104,ff B. Tali,104H. Topakli,104,ddD. Uzun,104L. N. Vergili,104M. Vergili,104C. Zorbilmez,104I. V. Akin,105T. Aliev,105 S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105R. Sever,105

U. E. Surat,105E. Yildirim,105M. Zeyrek,105M. Deliomeroglu,106D. Demir,106,ggE. Gu¨lmez,106A. Halu,106 B. Isildak,106M. Kaya,106,hhO. Kaya,106,hhS. Ozkorucuklu,106,iiN. Sonmez,106,jjL. Levchuk,107P. Bell,108

F. Bostock,108J. J. Brooke,108T. L. Cheng,108E. Clement,108D. Cussans,108R. Frazier,108J. Goldstein,108 M. Grimes,108M. Hansen,108D. Hartley,108G. P. Heath,108H. F. Heath,108B. Huckvale,108J. Jackson,108 L. Kreczko,108S. Metson,108D. M. Newbold,108,kkK. Nirunpong,108A. Poll,108S. Senkin,108V. J. Smith,108

S. Ward,108L. Basso,109,llK. W. Bell,109A. Belyaev,109,llC. Brew,109R. M. Brown,109B. Camanzi,109 D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109B. W. Kennedy,109E. Olaiya,109D. Petyt,109 B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109W. J. Womersley,109S. D. Worm,109

R. Bainbridge,110G. Ball,110J. Ballin,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110 M. Cutajar,110G. Davies,110M. Della Negra,110J. Fulcher,110D. Futyan,110A. Guneratne Bryer,110G. Hall,110

Z. Hatherell,110J. Hays,110G. Iles,110G. Karapostoli,110L. Lyons,110A.-M. Magnan,110J. Marrouche,110 R. Nandi,110J. Nash,110A. Nikitenko,110,aaA. Papageorgiou,110M. Pesaresi,110K. Petridis,110M. Pioppi,110,mm


D. M. Raymond,110N. Rompotis,110A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110A. Sparrow,110A. Tapper,110 S. Tourneur,110M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110D. Wardrope,110T. Whyntie,110M. Barrett,111 M. Chadwick,111J. E. Cole,111P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leslie,111W. Martin,111I. D. Reid,111 L. Teodorescu,111K. Hatakeyama,112T. Bose,113E. Carrera Jarrin,113C. Fantasia,113A. Heister,113J. St. John,113 P. Lawson,113D. Lazic,113J. Rohlf,113D. Sperka,113L. Sulak,113A. Avetisyan,114S. Bhattacharya,114J. P. Chou,114

D. Cutts,114A. Ferapontov,114U. Heintz,114S. Jabeen,114G. Kukartsev,114G. Landsberg,114M. Narain,114 D. Nguyen,114M. Segala,114T. Speer,114K. V. Tsang,114M. A. Borgia,115R. Breedon,115

M. Calderon De La Barca Sanchez,115D. Cebra,115S. Chauhan,115M. Chertok,115J. Conway,115P. T. Cox,115 J. Dolen,115R. Erbacher,115E. Friis,115W. Ko,115A. Kopecky,115R. Lander,115H. Liu,115S. Maruyama,115 T. Miceli,115M. Nikolic,115D. Pellett,115J. Robles,115S. Salur,115T. Schwarz,115M. Searle,115J. Smith,115 M. Squires,115M. Tripathi,115R. Vasquez Sierra,115C. Veelken,115V. Andreev,116K. Arisaka,116D. Cline,116 R. Cousins,116A. Deisher,116J. Duris,116S. Erhan,116C. Farrell,116J. Hauser,116M. Ignatenko,116C. Jarvis,116

C. Plager,116G. Rakness,116P. Schlein,116,aJ. Tucker,116V. Valuev,116J. Babb,117R. Clare,117J. Ellison,117 J. W. Gary,117F. Giordano,117G. Hanson,117G. Y. Jeng,117S. C. Kao,117F. Liu,117H. Liu,117A. Luthra,117 H. Nguyen,117B. C. Shen,117,aR. Stringer,117J. Sturdy,117S. Sumowidagdo,117R. Wilken,117S. Wimpenny,117

W. Andrews,118J. G. Branson,118G. B. Cerati,118E. Dusinberre,118D. Evans,118F. Golf,118A. Holzner,118 R. Kelley,118M. Lebourgeois,118J. Letts,118B. Mangano,118J. Muelmenstaedt,118S. Padhi,118C. Palmer,118 G. Petrucciani,118H. Pi,118M. Pieri,118R. Ranieri,118M. Sani,118V. Sharma,118,bS. Simon,118Y. Tu,118A. Vartak,118

F. Wu¨rthwein,118A. Yagil,118D. Barge,119R. Bellan,119C. Campagnari,119M. D’Alfonso,119T. Danielson,119 K. Flowers,119P. Geffert,119J. Incandela,119C. Justus,119P. Kalavase,119S. A. Koay,119D. Kovalskyi,119 V. Krutelyov,119S. Lowette,119N. Mccoll,119V. Pavlunin,119F. Rebassoo,119J. Ribnik,119J. Richman,119 R. Rossin,119D. Stuart,119W. To,119J. R. Vlimant,119A. Bornheim,120J. Bunn,120Y. Chen,120M. Gataullin,120

D. Kcira,120V. Litvine,120Y. Ma,120A. Mott,120H. B. Newman,120C. Rogan,120V. Timciuc,120P. Traczyk,120 J. Veverka,120R. Wilkinson,120Y. Yang,120R. Y. Zhu,120B. Akgun,121R. Carroll,121T. Ferguson,121Y. Iiyama,121

D. W. Jang,121S. Y. Jun,121Y. F. Liu,121M. Paulini,121J. Russ,121N. Terentyev,121H. Vogel,121I. Vorobiev,121 J. P. Cumalat,122M. E. Dinardo,122B. R. Drell,122C. J. Edelmaier,122W. T. Ford,122A. Gaz,122B. Heyburn,122 E. Luiggi Lopez,122U. Nauenberg,122J. G. Smith,122K. Stenson,122K. A. Ulmer,122S. R. Wagner,122S. L. Zang,122

L. Agostino,123J. Alexander,123A. Chatterjee,123S. Das,123N. Eggert,123L. J. Fields,123L. K. Gibbons,123 B. Heltsley,123W. Hopkins,123A. Khukhunaishvili,123B. Kreis,123V. Kuznetsov,123G. Nicolas Kaufman,123

J. R. Patterson,123D. Puigh,123D. Riley,123A. Ryd,123X. Shi,123W. Sun,123W. D. Teo,123J. Thom,123 J. Thompson,123J. Vaughan,123Y. Weng,123L. Winstrom,123P. Wittich,123A. Biselli,124G. Cirino,124D. Winn,124

S. Abdullin,125M. Albrow,125J. Anderson,125G. Apollinari,125M. Atac,125J. A. Bakken,125S. Banerjee,125 L. A. T. Bauerdick,125A. Beretvas,125J. Berryhill,125P. C. Bhat,125I. Bloch,125F. Borcherding,125K. Burkett,125 J. N. Butler,125V. Chetluru,125H. W. K. Cheung,125F. Chlebana,125S. Cihangir,125M. Demarteau,125D. P. Eartly,125

V. D. Elvira,125S. Esen,125I. Fisk,125J. Freeman,125Y. Gao,125E. Gottschalk,125D. Green,125K. Gunthoti,125 O. Gutsche,125A. Hahn,125J. Hanlon,125R. M. Harris,125J. Hirschauer,125B. Hooberman,125E. James,125 H. Jensen,125M. Johnson,125U. Joshi,125R. Khatiwada,125B. Kilminster,125B. Klima,125K. Kousouris,125 S. Kunori,125S. Kwan,125C. Leonidopoulos,125P. Limon,125R. Lipton,125J. Lykken,125K. Maeshima,125 J. M. Marraffino,125D. Mason,125P. McBride,125T. McCauley,125T. Miao,125K. Mishra,125S. Mrenna,125 Y. Musienko,125,nnC. Newman-Holmes,125V. O’Dell,125S. Popescu,125,ooR. Pordes,125O. Prokofyev,125 N. Saoulidou,125E. Sexton-Kennedy,125S. Sharma,125A. Soha,125W. J. Spalding,125L. Spiegel,125P. Tan,125 L. Taylor,125S. Tkaczyk,125L. Uplegger,125E. W. Vaandering,125R. Vidal,125J. Whitmore,125W. Wu,125F. Yang,125

F. Yumiceva,125J. C. Yun,125D. Acosta,126P. Avery,126D. Bourilkov,126M. Chen,126G. P. Di Giovanni,126 D. Dobur,126A. Drozdetskiy,126R. D. Field,126M. Fisher,126Y. Fu,126I. K. Furic,126J. Gartner,126S. Goldberg,126

B. Kim,126S. Klimenko,126J. Konigsberg,126A. Korytov,126A. Kropivnitskaya,126T. Kypreos,126K. Matchev,126 G. Mitselmakher,126L. Muniz,126Y. Pakhotin,126C. Prescott,126R. Remington,126M. Schmitt,126B. Scurlock,126 P. Sellers,126N. Skhirtladze,126D. Wang,126J. Yelton,126M. Zakaria,126C. Ceron,127V. Gaultney,127L. Kramer,127

L. M. Lebolo,127S. Linn,127P. Markowitz,127G. Martinez,127J. L. Rodriguez,127T. Adams,128A. Askew,128 D. Bandurin,128J. Bochenek,128J. Chen,128B. Diamond,128S. V. Gleyzer,128J. Haas,128S. Hagopian,128

V. Hagopian,128M. Jenkins,128K. F. Johnson,128H. Prosper,128L. Quertenmont,128S. Sekmen,128 V. Veeraraghavan,128M. M. Baarmand,129B. Dorney,129S. Guragain,129M. Hohlmann,129H. Kalakhety,129


R. Ralich,129I. Vodopiyanov,129M. R. Adams,130I. M. Anghel,130L. Apanasevich,130Y. Bai,130V. E. Bazterra,130 R. R. Betts,130J. Callner,130R. Cavanaugh,130C. Dragoiu,130E. J. Garcia-Solis,130L. Gauthier,130C. E. Gerber,130

D. J. Hofman,130S. Khalatyan,130F. Lacroix,130M. Malek,130C. O’Brien,130C. Silvestre,130A. Smoron,130 D. Strom,130N. Varelas,130U. Akgun,131E. A. Albayrak,131B. Bilki,131K. Cankocak,131,rrW. Clarida,131F. Duru,131

C. K. Lae,131E. McCliment,131J.-P. Merlo,131H. Mermerkaya,131A. Mestvirishvili,131A. Moeller,131 J. Nachtman,131C. R. Newsom,131E. Norbeck,131J. Olson,131Y. Onel,131F. Ozok,131S. Sen,131J. Wetzel,131 T. Yetkin,131K. Yi,131B. A. Barnett,132B. Blumenfeld,132A. Bonato,132C. Eskew,132D. Fehling,132G. Giurgiu,132

A. V. Gritsan,132Z. J. Guo,132G. Hu,132P. Maksimovic,132S. Rappoccio,132M. Swartz,132N. V. Tran,132 A. Whitbeck,132P. Baringer,133A. Bean,133G. Benelli,133O. Grachov,133M. Murray,133D. Noonan,133 V. Radicci,133S. Sanders,133J. S. Wood,133V. Zhukova,133T. Bolton,134I. Chakaberia,134A. Ivanov,134 M. Makouski,134Y. Maravin,134S. Shrestha,134I. Svintradze,134Z. Wan,134J. Gronberg,135D. Lange,135 D. Wright,135A. Baden,136M. Boutemeur,136S. C. Eno,136D. Ferencek,136J. A. Gomez,136N. J. Hadley,136 R. G. Kellogg,136M. Kirn,136Y. Lu,136A. C. Mignerey,136K. Rossato,136P. Rumerio,136F. Santanastasio,136 A. Skuja,136J. Temple,136M. B. Tonjes,136S. C. Tonwar,136E. Twedt,136B. Alver,137G. Bauer,137J. Bendavid,137

W. Busza,137E. Butz,137I. A. Cali,137M. Chan,137V. Dutta,137P. Everaerts,137G. Gomez Ceballos,137 M. Goncharov,137K. A. Hahn,137P. Harris,137Y. Kim,137M. Klute,137Y.-J. Lee,137W. Li,137C. Loizides,137

P. D. Luckey,137T. Ma,137S. Nahn,137C. Paus,137D. Ralph,137C. Roland,137G. Roland,137M. Rudolph,137 G. S. F. Stephans,137K. Sumorok,137K. Sung,137E. A. Wenger,137S. Xie,137M. Yang,137Y. Yilmaz,137 A. S. Yoon,137M. Zanetti,137P. Cole,138S. I. Cooper,138P. Cushman,138B. Dahmes,138A. De Benedetti,138 P. R. Dudero,138G. Franzoni,138J. Haupt,138K. Klapoetke,138Y. Kubota,138J. Mans,138V. Rekovic,138R. Rusack,138

M. Sasseville,138A. Singovsky,138L. M. Cremaldi,139R. Godang,139R. Kroeger,139L. Perera,139R. Rahmat,139 D. A. Sanders,139D. Summers,139K. Bloom,140S. Bose,140J. Butt,140D. R. Claes,140A. Dominguez,140M. Eads,140

J. Keller,140T. Kelly,140I. Kravchenko,140J. Lazo-Flores,140C. Lundstedt,140H. Malbouisson,140S. Malik,140 G. R. Snow,140U. Baur,141A. Godshalk,141I. Iashvili,141S. Jain,141A. Kharchilava,141A. Kumar,141 S. P. Shipkowski,141K. Smith,141G. Alverson,142E. Barberis,142D. Baumgartel,142O. Boeriu,142M. Chasco,142

S. Reucroft,142J. Swain,142D. Wood,142J. Zhang,142A. Anastassov,143A. Kubik,143N. Odell,143 R. A. Ofierzynski,143B. Pollack,143A. Pozdnyakov,143M. Schmitt,143S. Stoynev,143M. Velasco,143S. Won,143 L. Antonelli,144D. Berry,144M. Hildreth,144C. Jessop,144D. J. Karmgard,144J. Kolb,144T. Kolberg,144K. Lannon,144 W. Luo,144S. Lynch,144N. Marinelli,144D. M. Morse,144T. Pearson,144R. Ruchti,144J. Slaunwhite,144N. Valls,144

J. Warchol,144M. Wayne,144J. Ziegler,144B. Bylsma,145L. S. Durkin,145J. Gu,145C. Hill,145P. Killewald,145 K. Kotov,145T. Y. Ling,145M. Rodenburg,145G. Williams,145N. Adam,146E. Berry,146P. Elmer,146D. Gerbaudo,146 V. Halyo,146P. Hebda,146A. Hunt,146J. Jones,146E. Laird,146D. Lopes Pegna,146D. Marlow,146T. Medvedeva,146

M. Mooney,146J. Olsen,146P. Piroue´,146X. Quan,146H. Saka,146D. Stickland,146C. Tully,146J. S. Werner,146 A. Zuranski,146J. G. Acosta,147X. T. Huang,147A. Lopez,147H. Mendez,147S. Oliveros,147J. E. Ramirez Vargas,147

A. Zatserklyaniy,147E. Alagoz,148V. E. Barnes,148G. Bolla,148L. Borrello,148D. Bortoletto,148A. Everett,148 A. F. Garfinkel,148Z. Gecse,148L. Gutay,148Z. Hu,148M. Jones,148O. Koybasi,148M. Kress,148A. T. Laasanen,148

N. Leonardo,148C. Liu,148V. Maroussov,148P. Merkel,148D. H. Miller,148N. Neumeister,148I. Shipsey,148 D. Silvers,148A. Svyatkovskiy,148H. D. Yoo,148J. Zablocki,148Y. Zheng,148P. Jindal,149N. Parashar,149 C. Boulahouache,150V. Cuplov,150K. M. Ecklund,150F. J. M. Geurts,150J. H. Liu,150B. P. Padley,150R. Redjimi,150

J. Roberts,150J. Zabel,150B. Betchart,151A. Bodek,151Y. S. Chung,151R. Covarelli,151P. de Barbaro,151 R. Demina,151Y. Eshaq,151H. Flacher,151A. Garcia-Bellido,151P. Goldenzweig,151Y. Gotra,151J. Han,151 A. Harel,151D. C. Miner,151D. Orbaker,151G. Petrillo,151D. Vishnevskiy,151M. Zielinski,151A. Bhatti,152 R. Ciesielski,152L. Demortier,152K. Goulianos,152G. Lungu,152C. Mesropian,152M. Yan,152O. Atramentov,153

A. Barker,153D. Duggan,153Y. Gershtein,153R. Gray,153E. Halkiadakis,153D. Hidas,153D. Hits,153A. Lath,153 S. Panwalkar,153R. Patel,153A. Richards,153K. Rose,153S. Schnetzer,153S. Somalwar,153R. Stone,153S. Thomas,153

G. Cerizza,154M. Hollingsworth,154S. Spanier,154Z. C. Yang,154A. York,154J. Asaadi,155R. Eusebi,155 J. Gilmore,155A. Gurrola,155T. Kamon,155V. Khotilovich,155R. Montalvo,155C. N. Nguyen,155I. Osipenkov,155

J. Pivarski,155A. Safonov,155S. Sengupta,155A. Tatarinov,155D. Toback,155M. Weinberger,155N. Akchurin,156 J. Damgov,156C. Jeong,156K. Kovitanggoon,156S. W. Lee,156Y. Roh,156A. Sill,156I. Volobouev,156R. Wigmans,156

E. Yazgan,156E. Appelt,157E. Brownson,157D. Engh,157C. Florez,157W. Gabella,157W. Johns,157P. Kurt,157 C. Maguire,157A. Melo,157P. Sheldon,157S. Tuo,157J. Velkovska,157M. W. Arenton,158M. Balazs,158S. Boutle,158


M. Buehler,158S. Conetti,158B. Cox,158B. Francis,158R. Hirosky,158A. Ledovskoy,158C. Lin,158C. Neu,158 R. Yohay,158S. Gollapinni,159R. Harr,159P. E. Karchin,159P. Lamichhane,159M. Mattson,159C. Milste`ne,159 A. Sakharov,159M. Anderson,160M. Bachtis,160J. N. Bellinger,160D. Carlsmith,160S. Dasu,160J. Efron,160 L. Gray,160K. S. Grogg,160M. Grothe,160R. Hall-Wilton,160,bM. Herndon,160P. Klabbers,160J. Klukas,160 A. Lanaro,160C. Lazaridis,160J. Leonard,160R. Loveless,160A. Mohapatra,160D. Reeder,160I. Ross,160A. Savin,160

W. H. Smith,160J. Swanson,160and M. Weinberg160

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

31Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33

Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

34E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 35Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

36RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 37RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 38RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

39Deutsches Elektronen-Synchrotron, Hamburg, Germany 40University of Hamburg, Hamburg, Germany 41Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 42

Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

43University of Athens, Athens, Greece 44University of Ioa´nnina, Ioa´nnina, Greece

45KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 46Institute of Nuclear Research ATOMKI, Debrecen, Hungary

47University of Debrecen, Debrecen, Hungary 48Panjab University, Chandigarh, India


49University of Delhi, Delhi, India 50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research–EHEP, Mumbai, India 52Tata Institute of Fundamental Research–HECR, Mumbai, India 53Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

54aINFN Sezione di Bari, Bari, Italy 54bUniversita` di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55a

INFN Sezione di Bologna, Bologna, Italy

55bUniversita` di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Catania, Italy

56bUniversita` di Catania, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversita` di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59INFN Sezione di Genova, Genova, Italy 60aINFN Sezione di Milano-Biccoca, Milano, Italy

60bUniversita` di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

62aINFN Sezione di Padova, Padova, Italy 62bUniversita` di Padova, Padova, Italy 62cUniversita` di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63b

Universita` di Pavia, Pavia, Italy

64aINFN Sezione di Perugia, Perugia, Italy 64bUniversita` di Perugia, Perugia, Italy

65aINFN Sezione di Pisa, Pisa, Italy 65bUniversita` di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Roma, Roma, Italy 66bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

67aINFN Sezione di Torino, Torino, Italy 67bUniversita` di Torino, Torino, Italy

67cUniversita` del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversita` di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea

71Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 72Korea University, Seoul, Korea

73University of Seoul, Seoul, Korea 74Sungkyunkwan University, Suwon, Korea

75Vilnius University, Vilnius, Lithuania

76Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 77Universidad Iberoamericana, Mexico City, Mexico

78Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 79

Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

80University of Auckland, Auckland, New Zealand 81University of Canterbury, Christchurch, New Zealand

82National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

84Soltan Institute for Nuclear Studies, Warsaw, Poland

85Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 86Joint Institute for Nuclear Research, Dubna, Russia

87Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 88

Institute for Nuclear Research, Moscow, Russia

89Institute for Theoretical and Experimental Physics, Moscow, Russia 90Moscow State University, Moscow, Russia

91P. N. Lebedev Physical Institute, Moscow, Russia


93University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 94Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain

95Universidad Auto´noma de Madrid, Madrid, Spain 96Universidad de Oviedo, Oviedo, Spain

97Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 98CERN, European Organization for Nuclear Research, Geneva, Switzerland

99Paul Scherrer Institut, Villigen, Switzerland

100Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 101

Universita¨t Zu¨rich, Zurich, Switzerland

102National Central University, Chung-Li, Taiwan 103National Taiwan University (NTU), Taipei, Taiwan

104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas 76706, USA 113Boston University, Boston, Massachusetts 02215, USA 114Brown University, Providence, Rhode Island 02912, USA 115University of California, Davis, Davis, California 95616, USA 116University of California, Los Angeles, Los Angeles, California 90095, USA


University of California, Riverside, Riverside, California 92521, USA

118University of California, San Diego, La Jolla, California 92093, USA 119University of California, Santa Barbara, Santa Barbara, California 93106, USA

120California Institute of Technology, Pasadena, California 91125, USA 121Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 122University of Colorado at Boulder, Boulder, Colorado 80309, USA

123Cornell University, Ithaca, New York 14853-5001, USA 124Fairfield University, Fairfield, Connecticut 06824, USA

125Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA 126University of Florida, Gainesville, Florida 32611-8440, USA 127Florida International University, Miami, Florida 33199, USA 128Florida State University, Tallahassee, Florida 32306-4350, USA 129Florida Institute of Technology, Melbourne, Florida 32901, USA 130University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA

131The University of Iowa, Iowa City, Iowa 52242-1479, USA 132Johns Hopkins University, Baltimore, Maryland 21218, USA

133The University of Kansas, Lawrence, Kansas 66045, USA 134Kansas State University, Manhattan, Kansas 66506, USA

135Lawrence Livermore National Laboratory, Livermore, California 94720, USA 136University of Maryland, College Park, Maryland 20742, USA 137Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

138University of Minnesota, Minneapolis, Minnesota 55455, USA 139University of Mississippi, University, Mississippi 38677, USA 140

University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111, USA

141State University of New York at Buffalo, Buffalo, New York 14260-1500, USA 142Northeastern University, Boston, Massachusetts 02115, USA 143Northwestern University, Evanston, Illinois 60208-3112, USA

144University of Notre Dame, Notre Dame, Indiana 46556, USA 145The Ohio State University, Columbus, Ohio 43210, USA 146Princeton University, Princeton, New Jersey 08544-0708, USA

147University of Puerto Rico, Mayaguez, Puerto Rico 00680 148Purdue University, West Lafayette, Indiana 47907-1396, USA


Purdue University Calumet, Hammond, Indiana 46323, USA

150Rice University, Houston, Texas 77251-1892, USA 151University of Rochester, Rochester, New York 14627-0171, USA 152The Rockefeller University, New York, New York 10021-6399, USA


154University of Tennessee, Knoxville, Tennessee 37996-1200, USA 155Texas A&M University, College Station, Texas 77843-4242, USA

156Texas Tech University, Lubbock, Texas 79409-1051, USA 157Vanderbilt University, Nashville, Tennessee 37235, USA 158University of Virginia, Charlottesville, Virginia 22901, USA

159Wayne State University, Detroit, Michigan 48202, USA 160University of Wisconsin, Madison, Wisconsin 53706, USA


bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at Universidade Federal do ABC, Santo Andre, Brazil.

dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. eAlso at Suez Canal University, Suez, Egypt.

fAlso at Fayoum University, El-Fayoum, Egypt.

gAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.

hAlso at Massachusetts Institute of Technology, Cambridge, MA, USA. iAlso at Universite´ de Haute-Alsace, Mulhouse, France.

jAlso at Brandenburg University of Technology, Cottbus, Germany. kAlso at Moscow State University, Moscow, Russia.

lAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. mAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

nAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India. o

Also at University of Visva-Bharati, Santiniketan, India.

pAlso at Facolta` Ingegneria Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. qAlso at Universita` della Basilicata, Potenza, Italy.

rAlso at Universita` degli studi di Siena, Siena, Italy.

sAlso at California Institute of Technology, Pasadena, CA, USA. tAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. uAlso at University of California, Los Angeles, Los Angeles, CA, USA. vAlso at University of Florida, Gainesville, FL, USA.

wAlso at Universite´ de Gene`ve, Geneva, Switzerland. xAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy. yAlso at University of Athens, Athens, Greece.

zAlso at The University of Kansas, Lawrence, KS, USA.

aaAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. bbAlso at Paul Scherrer Institut, Villigen, Switzerland.

ccAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. dd

Also at Gaziosmanpasa University, Tokat, Turkey. eeAlso at Adiyaman University, Adiyaman, Turkey.

ffAlso at Mersin University, Mersin, Turkey.

ggAlso at Izmir Institute of Technology, Izmir, Turkey. hhAlso at Kafkas University, Kars, Turkey.

iiAlso at Suleyman Demirel University, Isparta, Turkey. jjAlso at Ege University, Izmir, Turkey.

kkAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.

llAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. mmAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

nnAlso at Institute for Nuclear Research, Moscow, Russia.

ooAlso at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania. ppAlso at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy.

qqAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. rr


FIG. 1 (color online). Normalized dijet angular distributions in several M jj ranges, shifted vertically by the additive amounts
FIG. 2 (color online). Observed CL s (solid line) and expected


Documenti correlati

Although foreign firms, and in particular exporters, pay lower average wages to unskilled workers – both male and female – we find evidence that they significantly contribute

1 Department of Dynamic and Clinical Psychology, Sapienza University of Rome 2 Italian Association for the Study of Emotion Dysregulation Disorders, Rome 3 Integrated Department

Biochemical studies of Aloe vera (Aloe barbadensis Miller) gel of the field grown and micropropagated plants at different developmental stages. La Sabila (Aloe spp.):

The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations,

A retrospective single cohort study was conducted between January 2006 and December 2013, including all patients with a diagnosis of cervical cancer who underwent a sonographic

Esso apre il Titolo V del Testo unico, interamente dedicato ai servizi e agli interventi pubblici locali, e pertanto funge (o, comunque, dovrebbe fungere) da “bussola”

Evaluation of Legionella air contamination in healthcare facilities by different sampling methods: An Italian multicenter study. Evaluation of bioaerosol sampling techniques

Il volume si propone dunque di esaminare le modalità in cui l’Albania sta cercando di istituzionalizzarsi, cioè di rafforzare l’autorevolezza delle istituzioni e lo fa