• Non ci sono risultati.

Probiotic supplementation affects the glycan composition of mucins secreted by Brunner's glands of the pig duodenum.

N/A
N/A
Protected

Academic year: 2021

Condividi "Probiotic supplementation affects the glycan composition of mucins secreted by Brunner's glands of the pig duodenum."

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Annals

of

Anatomy

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a a n a t

Probiotic

supplementation

affects

the

glycan

composition

of

mucins

secreted

by

Brunner’s

glands

of

the

pig

duodenum

Gianluca

Accogli

a

,

Alberto

Maria

Crovace

b

,

Maria

Mastrodonato

c

,

Giacomo

Rossi

d

,

Edda

G.

Francioso

a

,

Salvatore

Desantis

a,∗

aSectionofVeterinaryClinicsandAnimalProductions,DepartmentofEmergencyandOrganTransplantation(DETO),UniversityofBariAldoMoro,S.P.

CasamassimaKm3,70010Valenzano,Bari,Italy

bDottoratodiRicercainSanitàeScienzeSperimentaliVeterinarie,UniversityofPerugia,Perugia,Italy cDepartmentofBiology,UniversityofBari“AldoMoro”,ViaE.Orabona4,70124Bari,Italy

dSchoolofBiosciencesandVeterinaryMedicine,UniversityofCamerino,ViaCirconvallazione93/95,62024Matelica,MC,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received24October2017

Receivedinrevisedform21March2018 Accepted29March2018 Keywords: Mucins Glycohistochemistry Lectins Probiotics Diet Swine

a

b

s

t

r

a

c

t

Theeffectofadietaryprobioticblendonthecarbohydratecompositionofmucinssecretedbythe Brun-ner’sglandsintheduodenumofgrowing-finishingpigswasinvestigatedbymeansofconventional (periodicacid-Schiff,AlcianBluepH2.5,highirondiaminestaining)andlectin(15lectins) histochem-istry.Pigswereassignedtotwodietarytreatments:acontrolbasaldietwithouttheprobioticblend (No-Pro)andatestdietthatincludedtheprobioticblend(Pro).Duodenaltissuefragmentswerefixedin 4%phosphate-buffered-saline-bufferedparaformaldehyde,dehydratedthroughagradedalcoholseries, andembeddedinparaffinwax.ThesecretorycellsoftheBrunner’sglandsfromNo-Propigsprimarily producedneutralglycoproteinsandasmallamountofacidicnon-sulphatedmucins.Thisglycan pat-ternwasoppositethatoftheBrunner’sglandsfromProanimals.Acomparisonoflectin-bindingprofiles ofthesecretorycellsofBrunner’sglandsinthesetwogroupsshowedthatinPropigs,therewas(i)a decreaseinN-linkedglycanscontaining␣1,2-linkedfucose(ConA,UEAI);(ii)alossofcomplextypesof N-glycans(PHA-L,PHA-E)terminatingwithlactosamine(RCA120),␣1,6-and␣1,3-linkedfucose(LTA),and

␣-galactose(GSAI-B4),aswellasofO-glycanswithterminalGal␤1,3GalNAc(PNA);and(iii)anincrease

inO-glycanscontainingGalNAcHPA.No-ProandProsamplesshowednochangeintheexpressionof␣2,6 sialoglycansandterminalGlcNAcresiduesandnoaffinityforMALII,DBA,andSBA.Theseresults indi-catethatprobioticsupplementationaffectstheglycancompositionofmucinsproducedintheBrunner’s glandsofgrowing-finishingpigs.Thesechangescouldeffectivelyactonthegastrointestinalfunctionand healthstatusoftheseanimalsbecausetheprobioticblendinducedhighergrowthperformanceandmeat qualityinthetestprobioticgroupthanitdidinthecontrolbasaldietgroup(Tufarellietal.,2017).

©2018ElsevierGmbH.Allrightsreserved.

1. Introduction

Brunner’s glands, or duodenal glands, are specific to

mam-mals and are located in the submucosa of the duodenalwall,

althoughtheycanbefound,evenifdiscontinuously,inthejejunum

ofbigherbivores and pigs (Krause, 2000).Brunner’s glands are

mucin-secretingtubulo-alveolarglands.Mucinsconstitutea

fam-ilyofdenselyglycosylatedproteins,thehighglycosylationgiving

themgel-likepropertiesandtheabilitytoresistproteolysisand

holdwater(Perez-VilarandHill,1999).Thehighlyviscousmucus

夽 ThispaperbelongstothespecialissueAnimalAnatomyIII. ∗ Correspondingauthor.

E-mailaddress:salvatore.desantis@uniba.it(S.Desantis).

secretedbyBrunner’sglandsprotectstheunderlyingmucosafrom

mechanicalinsults,neutralizestheacidityofgastricjuice(Florey

andHarding,1933),modulatesabsorptionofingesta,inhibitsattack

bypathogens,andmaintainsbacterialmicroflora(Krause,2000;

FlemstromandIsenberg,2001).

Theimportanceoftheintestinalmicrobiotaforgastrointestinal

functionandhealthhasbeenshowninmanystudies(Heinritzetal.,

2013;BüsingandZeyner,2015;Huetal.,2015;Liuetal.,2017).In

particular,probioticshaveastimulatingeffectonthedigestive

pro-cessesandimmunityofanimals(Fuller,2006;Mengetal.,2010).

Therefore,theiruseissuggestedasanalternativetoantibioticsor

anti-inflammatorydrugs.However,themodeofactionofprobiotics

ispoorlyunderstoodandthereportedmechanismsofactionare

oftentheresultsofinvitroexperiments.Theseresultsshould

there-https://doi.org/10.1016/j.aanat.2018.03.008 0940-9602/©2018ElsevierGmbH.Allrightsreserved.

(2)

forebeconfirmedbyinvivostudies(Oelschlaeger, 2010).More

recently,theuseofaprobioticcomplex(SivoyTM,SLAB51)hasbeen

showntoenhancethegrowthperformanceandmeatqualityof

growing-finishingpigsandtoreducepollutionfromanimalexcreta

(Tufarellietal.,2017).

Despitethephysiologicalimportanceofthemucinssecretedby

Brunner’sglands, todate nothingis knownabouttheeffects of

microbiotaonthecompositionofthemucinssecretedbythese

glands. Previous studies have, however, demonstrated that the

compositionofmucinsfromBrunner’sglandscouldbeaffectedby

dietarychange(seeKrause,2000,forreference).

Theaimofthepresentstudywastoexaminetheinsitueffect

of a dietary probiotic complex (SivoyTM, SLAB51) on the

gly-cancompositionofmucinsproducedin theBrunner’s glandsof

growing-finishingpigs.Weusedbothconventionalandlectin

his-tochemistry.The conventional technicalapproach discriminates

neutral and acidic classes of glycoconjugates, whereas lectins

allowanalysisofthecarbohydratecompositionofcomplexglycans

(Spicer and Schulte, 1992; Sharon and Lis, 2004). The

inves-tigation was carried out in pigs. Because of their anatomical,

physiological,andgeneticcomparabilitytohumans,they

repre-sentapromisinganimalmodeltodeterminequestionsofbasic,

applied,andtranslationalbiomedicalresearch(Aigneretal.,2010;

Stramandinoli-Zanicottietal.,2014),includingstudiesofhuman

nutritionandhealthproblems(Guilloteauetal.,2010;Vermaetal.,

2011;Pratheretal.,2013;Gonzalezetal.,2015).

2. Materialsandmethods

2.1. Probioticsources

The probiotic preparation used in the present trial was

obtainedfromacommercialcompany(SLAB51,MendesSA,Lugano,

Switzerland).TheprobioticSLAB51iscomposedofablendofthe

followingstrains:StreptococcusthermophilesDSM32245,amixture

ofthetwostrainsBifidobacteriumanimalisssp.lactisDSM32246and

DSM32247,LactobacillusacidophilusDSM32241,Lactobacillus

hel-veticusDSM32242,LactobacillusparacaseiDSM32243,Lactobacillus

plantarumDSM32244,andLactobacillusbrevisDSM27961.

2.2. Animals

ThetrialreceivedethicalapprovalfromtheItalianMinistryof

Health(n.597/2015-PRdel23/06/2015)andwasconductedinstrict

accordancewiththerecommendationsoftheGuidefortheCare

andUseofLaboratoryAnimalsoftheNationalInstitutesofHealth

(Art.18D.L.4March2014,no.26).

Twentypigs[(Landrace×Yorkshire)×Talent]withanaverage

initialbodyweight(BW)of22.80±0.95kg(SE)wereusedina

12-weekexperiment.Pigswereassignedtotwodietarytreatments:

thecontrolbasaldietwithouttheprobioticblend(No-Pro)andthe

experimentaldietthatincludedtheprobioticblend(Pro).The

pro-bioticmixturewasusedasadietarysupplementforthepigsduring

theentirefeedingperiodatadoseof100mg/kgofBW.Thebasal

dietwasformulatedtomeetorexceedthenutrientrequirements

ofpigsaccordingtotheNRC(1998).Pigswerehousedinan

envi-ronmentallycontrolledroomwithaconcretefloorandwerefedad

libitum.

2.3. Samplingandhistologyprocessing

Attheendofthetrial,pigswereslaughteredandspecimensof

duodenaltissuewereimmediatelyremovedfrom5cmofthecaudal

partofthepyloricregionandfixedin4%(v/v)

phosphate-buffered-saline-buffered paraformaldehydefor 24hat 4◦C. Thesamples

werethendehydratedthroughagradedalcoholseriesand

embed-ded inparaffinwax.Serialsections(4-␮mthick) werecutand,

afterbeingde-waxedwithxyleneandhydratedinanethanolseries

ofdescendingconcentrations,stainedwithhematoxylin-eosinfor

morphologicalandmorphometricstudiesandbyconventional

his-tochemicalproceduresorlectinhistochemistryforglycoconjugate

characterization.

2.4. Conventionalhistochemistry

Sectionsweretreatedwith(1)periodicacid-Schiff(PAS)

reac-tionforneutralglycoconjugates(McManus,1948);(2)AlcianBlue

pH2.5(AB2.5)forsulphateestersandcarboxylgroupsin

glycocon-jugates(Pearse,1968);and(3)combinedhighirondiamine-Alcian

BluepH2.5(HID-AB2.5)forsimultaneousstainingofsulphated

(brown-black) and non-sulphated (blue) acidic glycans (Spicer,

1965).Torevealcellularcombinationsofbothacidicandneutral

glycoconjugates,weperformedAB2.5/PASandHID/AB2.5staining

sequences.

2.5. Lectinhistochemistry

Thebindingof15lectinswastestedtoinvestigatethe

compo-sitionanddistributionofoligosaccharidicchainsintheBrunner’s

glandsofthepigs(Table1).AlllectinswerepurchasedfromVector

LaboratoriesInc.(Burlingame,CA,USA).

Tissue sectionsstained with fluorescent lectins were rinsed

in0.05MTris–HCl-bufferedsaline(TBS)pH7.4andincubatedin

appropriatedilutionsofeachlectindilutedinTBS(Table1)for1h

atRTinthedark.AfterthreerinsesinTBS,slidesweremountedin

Vectashieldmountingmedium(VectorLaboratories,Burlingame,

CA,USA).Tissuesectionsstainedwithbiotinylated MALIIwere

immersedin3%v/vsolutionofH2O2inmethanolfor10minto

sup-presstheendogenousperoxidaseactivity,rinsedinTBSpH7.4,and

incubatedinalectinsolution(25␮g/mlfor1hatRTinthedark).

AfterthreerinsesinTBS,thesectionsweretreatedwith

strepta-vidin/peroxidasecomplexfor30minandsubsequentlywith0.05%

(w/v)3,3-diaminobenzidine(VectorLaboratories,Burlingame,CA,

USA)plus 0.003%(v/v)H2O2 in0.05MTBS (pH7.6)for10min.

SectionsweredehydratedandmountedusingEukitt.

Eachexperimentwasrepeatedtwiceforeachsample.Controls

forlectinstainingincluded(1)substitutionofthesubstratemedium

withbufferwithoutlectinand(2)incubationwitheachlectinin

thepresenceofitshaptensugar(0.5MinTBS).Allcontrol

experi-mentsgavenegativereactions.Slideswereobservedwiththelight

photomicroscopeEclipseNi-U(Nikon,Japan)at20×magnification

and photographedwitha digital camera(DS-U3, Nikon,Japan).

Theimageswereanalyzedbytheimage-analyzing programNIS

ElementsBR(Version4.20)(Nikon,Japan).

2.6. Morphometryandstatisticalanalysis

ThediameterofBrunner’sglandadenomeresfrombothNo-Pro

and Prosampleswasmeasuredon15microphotographicfields

casuallydetectedandphotographedwithadigitalcamera(DS-U3,

Nikon,Japan)connectedtothelightphotomicroscopeEclipse

Ni-U(Nikon,Japan),usinga20×lens.Imageswereanalyzedbythe

image-analyzingprogramNISElementsBR(Vers.4.30)(Nikon,JP).

Eachfieldsurfacewas140,000␮m2.Wemeasuredthediameter

of450transversallycutadenomeresofBrunner’sglandfromthe

No-ProandProsamples.Valueswereexpressedasmeans±SD.The

resultswereevaluatedforstatisticalsignificancebyStudent’sttest

andthecompareddatawereconsideredstatisticallysignificantat

(3)

Table1

Lectinsused,theirsugarspecificities,andtheinhibitorysugarsusedincontrolexperiments.

Lectinabbreviation Sourceoflectin(␮g/ml) Sugarspecificity Inhibitorysugar

MALIIa Maackiaamurensis 25 NeuNAc˛2,3Gal␤1,3(±NeuNAc␣2,6)GalNAc NeuNAc

SNA Sambucusnigra 15 Neu5Ac˛2,6Gal/GalNAc NeuNAc

PNAb Arachishypogaea 25 Gal␤1,3GalNAc ␤-D-Gal

RCA120 Ricinuscommunis 20 Gal␤1,4GlcNAc Gal

GSAI-B4 Griffoniasimplicifolia 20 ␣Gal Gal

DBA Dolichosbiflorus 25 GalNAc␣1,3(LFuc␣1,2)Gal␤1,3/4GlcNAc␤1 D-GalNAc

SBAb Glycinemax 20 ␣/␤GalNAc D-GalNAc

HPA Helixpomatia 20 ␣GalNAc D-GalNAc

ConA Canavaliaensiformis 15 ␣Man>␣Glc Man

PHA-E Phaseolusvulgaris 20 Gal␤l,4GlcNAc␤1,2Man␣1,6 Man

PHA-L Phaseolusvulgaris 20 GlcNAc␤l,2Man,triantennarycomplexoligosaccharides Man

succWGAb Triticumvulgaris 15 ␤GlcNAc D-GlcNAc

GSAII Griffoniasimplicifolia 20 D-GlcNAc D-GlcNAc

UEAI Ulexeuropaeus 20 L-Fuc␣1,2Gal␤1,4GlcNAc␤ ␣-L-Fuc

LTA Lotus

tetragonolobus

25 L-Fuc␣1,6GlcNAc

L-Fuc␣1,2Gal␤1,4[L-Fuc1,3]GlcNAc␤1,6R ␣-L-Fuc Fuc:fucose,Gal:galactose,GalNAc:N-acetylgalactosamine,Glc:glucose,GlcNAc:N-acetylglucosamine,Man:mannose,NeuNAc:N-acetylneuraminic(sialic)acid,succ: succinylatedWGA.

aBiotin-labeledlectin.

b Rhodamine-labeledlectin.Non-markedlectinsarefluoresceinisothiocyanate-labeledlectins.

Fig.1. LightmicrographofpigduodenumshowingBrunner’sglands(Bg)and duodenalvilli(dv).Notetheduct(arrowhead)ofaBrunner’sglandpiercingthe muscularismucosae(asterisk)andenteringtheoverlyingduodenalmucosa.Inset displaysthedetailsofanacinousadenomere(a)andduct(d).Hematoxylin-eosin staining.

3. Results

3.1. Morphology

SwineBrunner’sglandsweretubulo-acinouswithamain

excre-toryduct opening at the base of the duodenal crypts (Fig. 1).

MorphologicalanalysisofBrunner’sglandsdidnotreveal

signif-icantdifferencesbetweentheNo-ProandProsamples.Therewas

alsonosignificantdifferenceinadenomerediameter,which

mea-sured42.66±7.38␮mintheNo-Proand44.3±6.32␮minthePro

specimens.

3.2. Glycohistochemistry

Theresultsofconventionalandlectinstainingpatternsof

Brun-ner’sglandsofbothNo-ProandPropigsaresummarizedinTable2.

ThecombinationAB2.5/PASprocedurerevealedthewidespread

presenceofPAS-positive(magenta)cellsandafewAB2.5-positive

(blue)cellsintheBrunner’sglandsfromNo-Prosamples(Fig.2A).

Thisstaining pattern was reversed in the Pro group Brunner’s

Table2

ConventionalandlectinhistochemistrystainingpatternoftheduodenalBrunner’s glandsofno-probioticandprobiotic-fedpigs.

No-probiotic Probiotic PAS + * AlcianBluepH2.5 * ++ HID − − SNA +/++lc +/++lc PHA-L +/++lc −/++lc PHA-E ±/++lc −/±lc succinylWGA −/+lc −/+lc GSAII ++ ++ ConA ++ + UEAI + ± GSAI-B4 ++ − LTA + − PNA + − RCA120 ± − HPA + ++ MALII − − DBA − − SBA − −

Lc:luminalcontent,*:fewreactivecells,−:negativereaction,±:faintlyvisible reaction,+:weakpositivereaction,++:intensepositivereaction.

glands(Fig.2B).ThecombinationHID/AB2.5methodsrevealedthe

absenceofHIDreactivity(brown)inbothProandNo-ProBrunner’s

glands(Fig.2C,D).

Comparisonof lectin reactivity in No-Pro and Pro Brunner’s

glandsshowedseveraldifferentbindingpatterns.ExceptforMALII,

DBA,andSBA,whichwereunreactivewithBrunner’sglandsfrom

bothNo-ProandPropigs,theotherlectinsboundtheglandularcells

and/ortheluminalcontent(SNA,PHA-L,PHA-E,succinylWGA)or

onlytheadenomericcells(GSAII,ConA,UEAI,GSAI-B4,LTA,PNA,

RCA120,HPA).TheresultsaresummarizedinTable2.

Inparticular,SNAdisplayednochangeinthestainingintensity

ofthesecretorycellsandtheadenomericluminalcontentof

Brun-ner’sglandsfrombothNo-ProandProanimals(Fig.3A,B);PHA-L

reactedwiththeadenomericcellsandtheluminalcontentof

No-ProBrunner’sglands(Fig.3C)and withtheadenomericluminal

contentoftreatedanimals(Fig.3D);PHA-Eboundweakly with

theadenomeresandstronglywiththeirluminalcontentinNo-Pro

specimens(Fig.3E),whereasitdidnotbindtheadenomeresbut

weaklystainedtheluminalcontentoftreatedpigs(Fig.3F);and

succinylWGAshowednoreactionwiththesecretorycells,whereas

itstainedtheluminalcontentinallinvestigatedBrunner’sglands

(4)

Fig.2.Duodenumfromno-probiotic(A,C)andprobiotic-fedpigs(B,D),stainedwithPAS/AlcianBlue(AB)2.5(A,B)andHID/AB2.5(C,D)procedures.(A)No-probiotic Brunner’sglandsexhibitbroadPASpositivity(magenta)andafewAB2.5-positive(blue)cells.(B)Brunner’sglandsofprobiotic-fedpigsshowbroadAB2.5positivityand somePAS-positivecells.(A)and(B)demonstrateAB2.5-positivegobletcellsinduodenalvilli(dv).(C,D)HID/AB2.5methodsrevealedtheabsenceofHID(brown)reactivity intheBrunner’sglandsofbothno-probioticandprobiotic-fedanimals.ThereliabilityofHIDstainingwasdemonstratedbytheHIDpositivityofthegobletcells(arrow)in duodenalvilli(dv).Bg,Brunner’sgland.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Concerningthelectinsthatboundonlytheadenomericcells,

GSAIIexhibitednodifferenceinthestainingintensitybetween

No-ProandProsamples.ConA(Fig.4A,B)andUEAI(Fig.4C,D)showed

strongeraffinityintheNo-Pro samplesthanintheProsamples.

GSAI-B4,LTA,RCA120,andPNAboundtheadenomericcellsofthe

Brunner’sglandsfromNo-Propigs,whereasitdidnotreactwiththe

secretoryepitheliumofProBrunner’sglands(Fig.4E,F).HPAwas

thesolelectinshowinga decreaseinreactivityintheBrunner’s

glandsofNo-PropigscomparedwiththatintheBrunner’sglands

ofPropigs(Fig.4G,H).

4. Discussion

Thisis thefirststudy todemonstratethat feedingof a

pro-biotic complex affects the glycosylation pattern of the mucins

secretedbypigBrunner’sglands.Thisinvestigationfollowsarecent

reportdemonstratingthattheuseofadietaryprobioticcomplex

(SivoyTM,SLAB51)enhancesgrowthperformanceandmeatquality

ingrowing-finishingpigs(Tufarellietal.,2017).

ConventionalhistochemistryrevealedthatBrunner’sglandsof

no-probiotic-fedpigsproduceprimarilyneutralglycoproteins(PAS

reaction),asmallamountofacidiccarboxylatedmucins(AB2.5

positivity), and no sulfoglycans (HID negativity). These results

are consistentwith those of previousstudies onthe Brunner’s

glandsofseveralmammals(Krause,2000;Verdiglioneetal.,2002;

Schumacheretal.,2004;ScillitaniandMentino,2015),including

youngadultpigs(TakehanaandAbe,1986).

Using15differentlectins,wecharacterizedthecarbohydrate

compositionofthemucinsfromBrunner’sglandsmorethoroughly.

Thesecretory epithelium ofBrunner’s glands from No-Pro pigs

showedthepresenceofbothN-andO-linkedglycans.N-Glycans

werehighmannose(ConA)andcomplextypes(PHA-L,PHA-E).

O-GlycanscontainedtheterminaldisaccharideGal␤1,3GalNA(PNA)

andthesimplestmucinO-glycanmadebyasingleGalNAclinkedto

serineorthreonine(HPA).Moreover,weobservedglycans

termi-natingwithfucose(LTA,UEAI),GlcNAc(GSAII),galactose(GSA

I-B4), lactosamine (RCA120), and Neu5Ac␣2,6Gal/GalNAc (SNA).

AlthoughourresultsagreewithpreviousreportsonpigBrunner’s

glands(TakehanaandAbe,1986;Gelbergetal.,1992),ourstudy

providesamorein-depthcharacterizationoftheoligosaccharide

chainsofBrunner’sglandglycoproteinsbecauseSNA,PHA-L,

PHA-E,LTA,andHPAhavenotbeenusedpreviously.Theluminalcontent

accumulatedhighmannoseandcomplextypesofN-glycansaswell

asglycanswithinternalGlcNAc(succinylWGA)andterminal

␣2,6-linkedsialicacid(SNA).Theroleofsugarresiduesinthesecretory

glycoproteins ofBrunner’s glands is not wellknown. However,

oligosaccharidechainscontaininglactosamineinhigh

mannosy-latedN-glycanshavebeenobservedinthehumanmucinMUC6

(Toribaraetal.,1997).Notably,thegeneencodingthelattermucin

isalsoexpressedinhumanBrunner’sglands(Bartmanetal.,1998).

Concerningsialic acid,thenegativechargeof thismoleculehas

beenshowntohavearoleinthetransportofchloride,

bicarbon-ate,water,andprotonsinBrunner’sglands(Collacoetal.,2013).

Insecretedmucus,sialicacidcancontributetotheviscosityand

protectionoftheunderlyingepitheliumfromlysisbygastricjuice

andbacteria(Schauer,2004)andcanactasaligandforseveral

symbioticandpathogenicmicroorganisms(Lehmannetal.,2006).

GalNAcandGalresidualscaninhibitthecellbindingofthe

tropho-zoitesofEntamoebahistolytica,thecausativeagentofamoebiasis

(RalstonandPetri,2011).Regardingfucosylatedresiduals,theycan

beimportantinboththemaintenanceofthebacterialflorainvolved

inthedegradationoffucosefromfood(BeckerandLowe,2003)and

inincreasingtheviscosityofmucus(Liquorietal.,2012).O-Glycans

(5)

nat-Fig.3.LectinbindingpatternofBrunner’sglandsfromno-probioticandprobiotic-fedpigs.NotethedecreasedreactivityofPHA-LandPHA-EinBrunner’sglandadenomeres ofprobiotic-fedanimals.Bg,Brunner’sgland;dv,duodenalvilliwithpositivegobletcells;arrow,Brunner’sglandluminalcontent;arrowhead,basementmembrane.(A–F): FITC-conjugatedlectins;(G,H)rhodamine-labeledsuccinylatedWGA.

uralantibioticandasatumorsuppressorfordifferentiated-type

adenocarcinoma(Nakayama,2014).

Theprobioticblendinduceda greatchangeinthe

glycosyla-tionpathwayoftheepitheliumofBrunner’sglands.Conventional

histochemistryshowedadrasticreductioninneutralmucinsand

theprimarypresenceofcarboxylacidicglycoproteins.Inaddition,

lectinhistochemistryrevealedareductioninhighmannose(Con

A)and␣1,2-linkedfucosylatedglycans(UEAI)andthe

disappear-anceofcomplextypesofN-glycans(PHA-L,PHA-E)terminating

withlactosamine(RCA120)andfucosylatedoligomersbindingLTA,

aswellasO-linkedglycansterminatingwithGal␤1,3GalNAc(PNA)

and terminal galactose (GSA I-B4). Moreover, theluminal

con-tentofBrunner’sglandsexhibitedareducedamountofbisecting

GlcNAc-and Gal-bearingglycoproteins(PHA-E)whencompared

withthatfromprobiotic-fedpigs.However,thedietaryprobiotic

(6)

Fig.4. LectinbindingpatternofBrunner’sglandsfromno-probioticandprobiotic-fedpigs.NoteConA,UEAI,andPNA(B,D,F)decreasedreactivity,aswellasHPA(H)increased affinityintheBrunner’sglandsofprobioticfedpigs.Bg,Brunner’sgland;dv,duodenalvilli;it,interstitialtissue.(A–D,G,H)FITC-conjugatedlectins;(E,F)rhodamine-labeled PNA.

O-linkedglycansterminatingwithGalNAc(HPA).Thesefindings

areinlinewiththeevidencethatcomponentsofthedietandthe

gutmicrofloraareincontactwithintheintestinaltractandthat

dietarycomposition may influence thecarbohydrate structures

ofthemucosaland mucinglycoconjugateswithmarked

conse-quencesfortheadherenceofmicrofloraandforthegutitself(Kelly

etal.,1992).Somestudiesdemonstratedthatpre-treatmentwith

probioticsincreasedtheexpressionofMUC2,MUC5AC,andMUC6

in ratstomach(Caballero-Franco etal., 2007;Lam et al.,2007;

Gomietal.,2013).Moreover,experimentalevidencesupportsthe

hypothesisoftheadaptabilityofBrunner’sglandmucinstodietary

changes(Krause,2000;Desantisetal.,2011).

Inconclusion,this studydemonstratesthatprobiotic

supple-mentationaffectstheglycancompositionofthemucinsproduced

intheBrunner’sglandsofgrowing-finishingpigs.Sinceprobiotics

haveastimulatingeffectondigestiveprocessesandtheimmune

systemofpigs(Mengetal.,2010;Huetal.,2015;Liuetal.,2017)

(7)

meatqualitythandidthecontrolbasaldiet(Tufarellietal.,2017),

webelievethattheobservedchangesinthecompositionofthe

secretorymucinsfromBrunner’sglands couldacteffectivelyon

thegastrointestinalfunctionandhealthstatusofanimals.However,

furtherstudiesarenecessarytounderstandthemechanismof

pro-bioticactionontheglycosylationpathwayofthemucinssecreted

byBrunner’sglands.

References

Aigner,B.,Renner,S.,Kessler,B.,Klymiuk,N.,Kurome,M.,Wünsch,A.,Wolf,E., 2010.Transgenicpigsasmodelsfortranslationalbiomedicalresearch.J.Mol. Med.Berl.Ger.88,653–664.

Bartman,A.E.,Buisine,M.P.,Aubert,J.P.,Niehans,G.A.,Toribara,N.W.,Kim,Y.S.,Kelly, E.J.,Crabtree,J.E.,Ho,S.B.,1998.TheMDC6secretorymucingeneisexpressed inawidevarietyofepithelialtissues.J.Pathol.186,398–405.

Becker,D.J.,Lowe,J.B.,2003.Fucose:biosynthesisandbiologicalfunctionin mam-mals.Glycobiology13,41R–53R.

Büsing,K.,Zeyner,A.,2015.EffectsoforalEnterococcusfaeciumstrainDSM10663 NCIMB10415ondiarrhoeapatternsandperformanceofsuckingpiglets.Benef. Microbes6,41–44.

Caballero-Franco,C.,Keller,K.,DeSimone,C.,Chadee,K.,2007.TheVSL#3probiotic formulainducesmucingeneexpressionandsecretionincolonicepithelialcells. Am.J.Physiol.Gastrointest.LiverPhysiol.292,G315–G322.

Collaco,A.M.,Jakab,R.L.,Hoekstra,N.E.,Mitchell,K.A.,Brooks,A.,Ameen,N.A.,2013. RegulatedtrafficofaniontransportersinmammalianBrunner’sglands:arole forwaterandfluidtransport.Am.J.Physiol.Gastrointest.LiverPhysiol.305, G258–G275.

Desantis,S.,Zizza,S.,Accogli,G.,Tufarelli,V.,Laudadio,V.,2011.Morphometric featuresandglycoconjugatepatternofrabbitintestineareaffectedbyparticle sizeofpelleteddiets.Anat.Rec.294,1875–1889.

Flemstrom,G.,Isenberg,J.I.,2001.Gastroduodenalmucosalalkalinesecretionand mucosalprotection.NewsPhysiol.Sci.16,23–28.

Florey,H.W.,Harding,H.E.,1933.ThefunctionofBrunner’sglandsandpyloricglands ofthestomach.J.Pathol.Bacteriol.37,431–453.

Fuller,R.,2006.Reasonsfortheapparentvariationintheprobioticresponse. Biolo-gia,Bratislava61,751–754.

Gelberg,H.,Whiteley,H.,Ballard,G.,Scott,J.,Kuhlenschmidt,M.,1992.Temporal lectinhistochemicalcharacterizationofporcinesmallintestine.Am.J.Vet.Res. 53,1873–1880.

Gomi,A.,Harima-Mizusawa,N.,Shibahara-Sone,H.,Kano,M.,Miyazaki,K.,Ishikawa, F.,2013.EffectofBifidobacteriumbifidumBF-1ongastricprotectionandmucin productioninanacutegastricinjuryratmodel.J.DairySci.96,832–837. Gonzalez,L.M.,Moeser,A.J.,Blikslager,A.T.,2015.Porcinemodelsofdigestive

dis-ease:thefutureoflargeanimaltranslationalresearch.Transl.Res.166,12–27. Guilloteau,P.,Zabielski,R.,Hammon,H.M.,Metges,C.C.,2010.Nutritional

program-mingofgastrointestinaltractdevelopment.Isthepigagoodmodelforman? Nutr.Res.Rev.23,4–22.

Heinritz,S.N.,Mosenthin,R.,Weiss,E.,2013.Useofpigsasapotentialmodelfor researchintodietarymodulationofthehumangutmicrobiota.Nutr.Res.Rev. 26,191–209.

Hu,Y.,Dun,Y.,Li,S.,Zhang,D.,Peng,N.,Zhao,S.,Liang,Y.,2015.DietaryEnterococcus faecalisLAB31improvesgrowthperformance,reducesdiarrhea,andincreases fecalLactobacillusnumberofweanedpiglets.PLoSOne10,e0116635. Kelly,D.,Begbie,R.,King,T.P.,1992.Postnatalintestinaldevelopment.In:Varley,

M.A.,Williams,P.E.V.,Lawrence,T.L.J.(Eds.),NeonatalSurvivalandGrowth. OccasionalPublicationNo.15,BritishSocietyofAnimalProduction,Edinburgh, UK,pp.63–79.

Krause,W.J.,2000.Brunner’sglands:astructural,histochemicalandpathological profile.Prog.Histochem.Cytochem.35,255–367.

Lam,E.K.,Tai,E.K.,Koo,M.W.,Wong,H.P.,Wu,W.K.,Yu,L.,So,W.H.,Woo,P.C.,Cho, C.H.,2007.EnhancementofgastricmucosalintegritybyLactobacillusrhamnosus GG.LifeSci.80,2128–2136.

Lehmann,F.,Tiralongo,E.,Tiralongo,J.,2006.Sialicacid-specificlectins:occurrence, specificityandfunction.Cell.Mol.LifeSci.63,1331–1354.

Liquori,G.E.,Mastrodonato,M.,Mentino,D.,Scillitani,G.,Desantis,S.,Portincasa,P., Ferri,D.,2012.InsitucharacterizationofO-linkedglycansofMuc2inmouse colon.ActaHistochem.114,723–732.

Liu,C.,Zhu,Q.,Chang,J.,Yin,Q.,Song,A.,Li,Z.,Wang,E.,Lu,F.,2017.Effectsof LactobacilluscaseiandEnterococcusfaecalisongrowthperformance:immune functionandgutmicrobiotaofsucklingpiglets.Arch.Anim.Nutr.71,120–133. McManus,J.F.A.,1948.Histologicalandhistochemicalusesofperiodicacid.Stain

Technol.23,99–108.

Meng,Q.W.,Yan,L.,Ao,X.,Zhou,T.X.,Wang,J.P.,Lee,J.H.,Kim,I.H.,2010. Influ-enceofprobioticsindifferentenergyandnutrientdensitydietsongrowth performance,nutrientdigestibility,meatquality,andbloodcharacteristicsin growing-finishingpigs.J.Anim.Sci.88,3320–3326.

Nakayama,J.,2014.Dualrolesofgastricglandmucin-specificO-glycansin preven-tionofgastriccancer.ActaHistochem.Cytochem.47,1–9.

NRC,1998.NutrientRequirementsofSwine,10threv.ed.NationalAcademiesPress, Washington,DC,pp.110–142.

Oelschlaeger,T.A.,2010.Mechanismsofprobioticactions—areview.Int.J.Med. Microbiol.300,57–62.

Pearse,A.G.E.,1968.HistochemistryTheoreticalandApplied,vol.I.,3rded.Churchill, London.

Perez-Vilar,J.,Hill,R.L.,1999.Thestructureandassemblyofsecretedmucins.J.Biol. Chem.274,31751–31754.

Prather,R.S.,Lorson,M.,Ross,J.W.,Whyte,J.J.,Walters,E.,2013.Genetically engi-neeredpigmodelsforhumandiseases.Annu.Rev.Anim.Biosci.1,203–219. Ralston,K.S.,PetriJr.,W.A.,2011.TissuedestructionandinvasionbyEntamoeba

histolytica.TrendsParasitol.27,254–263.

Schauer,R.,2004.Sialicacids:fascinatingsugarsinhigheranimalsandman.Zoology 107,49–64.

Schumacher,U.,Duku,M.,Katoh,M.,Jorns,J.,Krause,W.J.,2004.Histochemical similaritiesofmucinsproducedbyBrunner’sglandsandpyloricglands:a com-parativestudy.Anat.Rec.A:Discov.Mol.Cell.Evol.Biol.278,540–550. Scillitani,G.,Mentino,D.,2015.Comparativeglycopatternanalysisofmucinsin

theBrunner’sglandsoftheguinea-pigandthehousemouse(Rodentia).Acta Histochem.117,612–623.

Sharon,N.,Lis,H.,2004.Historyoflectins:fromhemagglutininstobiological recog-nitionmolecules.Glycobiology14,53R–62R.

Spicer,S.S.,1965.Diaminemethodsfordifferentialingmucosubstances histochem-ically.J.Histochem.Cytochem.13,211–234.

Spicer,S.S.,Schulte,B.A.,1992.Diversityofcellglycoconjugatesshown histochem-ically:aperspective.J.Histochem.Cytochem.40,1–38.

Stramandinoli-Zanicotti,R.T.,Carvalho,A.L.,Rebelatto,C.L.K.,Sassi,L.M.,Torres,M.F., Senegaglia,A.C.,Boldrinileite,L.M.,Correa-Dominguez,A.,Kuligovsky,C., Brof-man,P.R.S.,2014.Brazilianminipigasalarge-animalmodelforbasicresearch andstemcell-basedtissueengineering:characterizationandinvitro differen-tiationofbonemarrow-derivedmesenchymalstemcells.J.Appl.Oral.Sci.Rev. F.O.B.22,218–227.

Takehana,K.,Abe,M.,1986.Histochemistryofcomplexcarbohydratesinthe duo-denalglandsinthepig.J.Coll.Dairy.11,371–380.

Toribara,N.W.,Ho,S.B.,Gum,E.,GumJr,J.R.,Lau,P.,Kim,Y.S.,1997.The carboxyl-terminalsequenceofthehumansecretorymucinMUC6.Analysisoftheprimary aminoacidsequence.J.Biol.Chem.272,16398–16403.

Tufarelli,V.,Crovace,A.M.,Rossi,G.,Laudadio,V.,2017.Effectofadietaryprobiotic blendonperformance,bloodcharacteristics,meatqualityandfaecalmicrobial sheddingingrowing-finishingpigs.S.Afr.J.Anim.Sci.47,875–882.

Verdiglione,R.,Mammola,C.L.,Filotto,U.,2002.Glycoconjugatehistochemistryof bovineBrunner’sglands.Ann.Anat.184,61–69.

Verma,N.,Rettenmeier,A.W.,Schmitz-Spanke,S.,2011.Recentadvancesinthe useofSusscrofa(pig)asamodelsystemforproteomicstudies.Proteomics11, 776–793.

Figura

Fig. 1. Light micrograph of pig duodenum showing Brunner’s glands (Bg) and duodenal villi (dv)
Fig. 2. Duodenum from no-probiotic (A,C) and probiotic-fed pigs (B,D), stained with PAS/Alcian Blue (AB) 2.5 (A,B) and HID/AB 2.5 (C,D) procedures
Fig. 3. Lectin binding pattern of Brunner’s glands from no-probiotic and probiotic-fed pigs
Fig. 4. Lectin binding pattern of Brunner’s glands from no-probiotic and probiotic-fed pigs

Riferimenti

Documenti correlati

Tiriamosios grupės veršelių išmatose 11 dieną laktobacilų buvo 0,22 log/g daugiau (p<0,05), 16 dieną – 0,21 log/g daugiau (p>0,05) lyginant su

We report on three sets of user studies with staff mem- bers and residents’ family members in four nursing homes, studying current information practices and their impact on

In this study, a randomized, double-blind, placebo- controlled clinical trial with two formulations containing different probiotics was developed and the evaluation of gut

This experiment was conducted to clarify the effects of feeding rice on growth performance and protein (amino acids) metabolism in weaning piglets.. Sixteen weaning piglets with

Our results are also in good overall agreement with previous findings based on the observed X-ray luminosity and temperature functions of clusters (e.g. 2003; Henry 2004), Our result

Division of General Surgery, University Hospital Basel, Vice-Dean of the Medical Faculty, University of Basel.. 4031 Basel Switzerland

Adenoid cystic carcinoma is the most common malignant tumor of minor salivary glands, but it also occurs in the major salivary glands (7,8).. Despite a tendency to grow slowly, it

However, our data demonstrate that APECED in Campania region is more frequent than reported so far and that mutations on exon 1and on region flanking exon 1 of