• Non ci sono risultati.

Plastidic P2 glucose-6P dehydrogenase from poplar is modulated by thioredoxin m-type: Distinct roles of cysteine residues in redox regulation and NADPH inhibition

N/A
N/A
Protected

Academic year: 2021

Condividi "Plastidic P2 glucose-6P dehydrogenase from poplar is modulated by thioredoxin m-type: Distinct roles of cysteine residues in redox regulation and NADPH inhibition"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Plant

Science

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i

Plastidic

P2

glucose-6P

dehydrogenase

from

poplar

is

modulated

by

thioredoxin

m-type:

Distinct

roles

of

cysteine

residues

in

redox

regulation

and

NADPH

inhibition

Manuela

Cardi

a

,

Mirko

Zaffagnini

b

,

Alessia

De

Lillo

a

,

Daniela

Castiglia

a

,

Kamel

Chibani

c,d,1

,

José

Manuel

Gualberto

e

,

Nicolas

Rouhier

c,d

,

Jean-Pierre

Jacquot

c,d

,

Sergio

Esposito

a,∗

aDipartimentodiBiologia,Univ.diNapoli“FedericoII”,I-80126Napoli,Italy bDipartimentodiFarmaciaeBiotecnologie,Univ.diBologna,I-40126Bologna,Italy

cUniversitédeLorraine,UMR1136InteractionsArbres/Microorganismes,FacultédesSciencesetTechnologies,54506,Vandoeuvre-lès-Nancy,France dINRA,UMR1136InteractionsArbres/Microorganismes,CentreINRANancyLorraine,54280,Champenoux,France

eUniversitédeStrasbourg,InstitutdeBiologieMoléculaireDesPlantes(IBMP),CNRS-UPR2357,67084Strasbourg,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received13June2016

Receivedinrevisedform1August2016 Accepted7August2016

Availableonline8August2016 Keywords:

Cysteine

Oxidativepentosephosphatepathway Populus

Thioredoxins

a

b

s

t

r

a

c

t

AcDNAcodingforaplastidicP2-typeG6PDHisoformfrompoplar(Populustremulaxtremuloides)has

beenusedtoexpressandpurifytohomogeneitythematurerecombinantproteinwithaN-terminus

His-tag.Thestudyofthekineticpropertiesoftherecombinantenzymeshowedaninvitroredoxsensing

modulationexertedbyreducedDTT.Theinteractionwiththioredoxins(TRXs)wastheninvestigated.

Fivecysteinetoserinevariants(C145S–C175S–C183S–C195S–C242S)andavariantwitha

dou-blesubstitutionforCys175andCys183(C175S/C183S)havebeengenerated,purifiedandbiochemically

characterizedinordertoinvestigatethespecificrole(s)ofcysteinesintermsofredoxregulationand

NADPH-dependentinhibition.

Threecysteineresidues(C145,C194,C242)aresuggestedtohavearoleincontrollingtheNADP+access

totheactivesite,andinstabilizingtheNADPHregulatorybindingsite.

OurresultsalsoindicatethattheregulatorydisulfideinvolvesresiduesCys175andCys183inaposition

similartothoseofchloroplasticP1-G6PDHs,butthemodulationisexertedprimarilybyTRXm-type,in

contrasttoP1-G6PDH,whichisregulatedbyTRXf.

Thisunexpectedspecificityindicatesdifferencesinthemechanismofregulation,andredoxsensingof

plastidicP2-G6PDHcomparedtochloroplasticP1-G6PDHinhigherplants.

©2016ElsevierIrelandLtd.Allrightsreserved.

1. Introduction

Glucose-6-phosphate dehydrogenase (G6PDH – EC 1.1.1.49) catalyzes the oxidation of glucose-6-phosphate (G6P) to 6-phospho-glucono-␦-lactone, with the concomitant reduction of

Abbreviations: DTT, dithiothreitol; EDTA, ethylene diaminetetraacetic acid; OPPP, oxidativepentose phosphate pathway; Tris, tris (hydroxymethyl) aminomethane;TRX,thioredoxin.

∗ Correspondingauthorat:DipartimentodiBiologia,UniversitàdiNapoli “Fed-ericoII”,ComplessoUniversitariodiMonteSant’Angelo,ViaCinthia4,80126Naples, Italy.

E-mailaddress:sergio.esposito@unina.it(S.Esposito).

1 Presentaddress:CEITEC—CentralEuropeanInstituteofTechnology, ˇZerotínovo

nám.9,60177Brno,CzechRepublic.

NADP+toNADPH.Thisenzymeisthekeyregulatorofthe Oxida-tivePentosePhosphatePathway(OPPP),aubiquitousmetabolic pathwayinEukaryathatprovidesanalternativerouteto glycoly-sisforG6Poxidation[1].TherearegenerallyfourG6PDHgenesin photosyntheticorganisms(onecodingforacytosolicproteinand thethreeothersforchloroplasticisoforms)asreportedrecentlyin Heveabrasiliensisby[2].

Inthelastyears,considerableworkhasbeenmadeto investi-gatethebiochemicalandregulatoryfeaturesofdifferentG6PDH isoforms fromhigher plants: cytosolic (Cy-G6PDH), chloroplas-tic(P1-G6PDH)andplastidicisoforms(P2-G6PDH),thelasttwo beingexpressedinphotosyntheticandnon-photosynthetictissues, respectively[1,3,4].

Cy-G6PDHwas demonstrated toberedox-insensitive, and a recent studyby[5] demonstratedthat thecytosolic Arabidopsis

http://dx.doi.org/10.1016/j.plantsci.2016.08.003 0168-9452/©2016ElsevierIrelandLtd.Allrightsreserved.

(2)

abscissicacid(ABA)respondingpathwayhasbeenrecently con-firmedintomatoplantssubjecttodrought[6].Cy-G6PDHhasalso beenreportedashavingapositiveroleinresponsetoabioticstress insugarcane[7].

Similarphosphorylationmechanism(s)and associatedkinase havenotbeenidentified,orlinked,toeitherP1-orP2-G6PDHsso far.Infact,theactivityofP1-G6PDH(chloroplastic)isredox sen-sitive,beinginhibitedinvitrobyreduceddithiothreitol(DTT)in adose-andtime-dependentmanner[8].Theredoxregulationof P1-G6PDHthroughdithiol-disulfideexchangereactionswaslater confirmedbothinplants[8,9]andalgae[10].

Redoxmodulationinvolvesthioredoxins(TRXs)asredox cata-lystsandallowsG6PDHinhibitionunderreducingconditions(i.e. underillumination),andfullactivationinthedark,whenthe pro-teinisoxidized.Morerecently,theformationofadisulfidebond betweenCys149andCys157inArabidopsisP1-G6PDHwas demon-stratedtobecrucialinthepositioningofArg131,playingacentral roleinthedockingofNADP+inthebindingsiteofthechloroplastic isoform[11].

P1-G6PDHistheonlyplastidicenzymeredox-regulatedinsuch awaythatitsactivityincreasesinthedark,contrarytowhathas beendescribedforseveralenzymesoftheCalvin-Bensoncycle[12]. Thisoppositeregulationisbelievedtopreventcarbohydrate break-downanddegradationofsugarsbyOPPPinthelight,whichcould competewithphotosyntheticCO2fixation,thuswastingenergyin afutileway[1,13].

Thephysiological roles of chloroplasticP1-G6PDH and plas-tidicP2-G6PDHaredistinct.ThechloroplasticP1-G6PDHisoform provides NADPH in photosynthetic tissues in the dark, when theCalvin-Benson cycle is halted, thus sustaining basal carbon metabolisminthenight.Incontrast,theplastidicP2-G6DPHplays akeyrole inplantrootmetabolism,beinginvolved indifferent basalprocesses, suchas furnishingof intermediatesfor nucleic acidmetabolisminheterotrophicconditions;orduringnitrogen assimilation[14–16];orinresponsetostress[17–19].

Thegenescodingforthesechloroplasticandplastidicisoforms clusterintwodistinctclassesandthecorrespondingisoformscan bedistinguishedbytheiraffinitiestowardssubstrateand cofac-tor(G6PandNADP+),andtheextentoftheirinhibitionbyNADPH at least in potato and barley [3,8,13,20]. It has been generally observed that P1-G6PDH is strongly inhibited by NADPH (e.g.

lowKiNADPH),whereas P2-G6PDHisoformsaresignificantly less

sensitivetoNADPHinhibition[1,3,20,21].Despite theirmarked differencetowardsNADPHinhibition[13],theconsequenceand influenceoftheredoxstateontheirresponsetoNADPHarenot clearlydefinedyet.

Inthisstudy,weinvestigatedtheredoxsensitivityofplastidic P2-G6PDHandtheinfluenceoftheredoxstateonenzymeactivity. Todo that,we have produced and purified tohomogeneity wild-typeandcysteine variantsofP2-G6PDH andcharacterized themwithrespecttodithiol/disulfideexchangereactions, NADPH-dependentinhibition and specificity towards differentplastidic TRXs.

AmodelfortheregulationoftheP2-G6PDHisoforminhigher plantsisprovided.

2. Materialsandmethods

2.1. Cloning,expressionandpurificationofpoplarP2-G6PDHand site-directedmutagenesis

Thesequence encoding the plastidicP2-G6PDH from poplar (Potri.001G059900)wasamplifiedfromaPopulustremulax

tremu-tionsites(underlinedintheprimers)ofpET15bexpressionvector (Novagen).Thesequence encodesaproteindeprivedofthefirst 66aminoacidscorrespondingtotheputativetargetingpeptide,as comparedtootherknownplastidicP2-G6PDHfromhigherplants (Fig.1A).InthepET15b/P2-G6PDHconstruct,thecDNAsequence forP2-G6PDHwasinframewithanN-terminalHis-tag.

Usingtwocomplementarymutagenicprimers,the5cysteines (Cys145,Cys175,Cys183,Cys194 andCys242)ofPtP2-G6PDHwere individuallysubstitutedintoserines,andadoublemutantinwhich Cys175Cys183aremutagenizedintoserineswasalsogenerated. TheprimersusedarelistedinSupplementalTable1.Allplasmids weresequencedtochecktheintroductionofthedesiredmutations andverifythatnoadditionalmutationswereintroduced.

Forproteinexpression,E.coliBL21(DE3)pSBETstrainwas chem-icallytransformedwiththedifferentrecombinantvectorsallowing expressionofPtP2-G6PDHWTandcysteinemutants P2-G6PDH-C145S (C145S), P2-G6PDH-C175S (C175S), P2-G6PDH-C183S (C183S),P2-G6PDH-C193S(C193S),P2-G6PDH-C242S(C242S),and P2-G6PDH-C175S/C183S(C175S/C183S).Singlecoloniesresistant toampicillinandkanamycinweregrownin100mlofLBmedium inthepresenceofampicillin(50mg/ml)andkanamycin(50mg/ml) overnightat37◦Cinaerobiosis.Afterincubation,theculturewas then transferred in 2.5l of LB medium. When OD600 reached 0.6, protein expressionwas inducedby 100␮M isopropyl- ␤-d-thiogalactopyanoside.Bacteriaweregrownat20◦Covernightwith continuous gentle shaking, and collected by centrifugation for 20minat7000xg.Thepelletwasresuspendedinbuffer[50mM potassiumphosphate,0.3MNaCl,10mMimidazole,(pH8.0)and cellslysedbysonication.Bacterialysateswerecentrifuged45min at20,000xg.Allthesubsequentstepswereperformedat2–6◦C withthesupernatant.

Theextractwasfiltered(0.22␮m)andappliedontoaGE Health-careHiTrapFFcrudecolumn(5ml)connectedtoanAKTAPrime plussystem(GEHealthcare).Proteinpurificationwasperformed accordingtothemanufacturer’sinstructions.

Elutedfractions (1ml) wereassayedfor G6PDH activityand activefractionswerecollected,pooledanddesaltedusingPD-10 columns(GeHealthcare)in30mMTris-HCl,100mMNaCl,5% glyc-erol, pH8.0.Proteinconcentrations weredeterminedusingthe Coomassieproteinassaybased(Bio-Rad),withbovineserum albu-minasthestandard.

Thepurifiedenzymeshoweda specificactivityof8000Umg prot−1 (Table1), andmaintained97%ofitsactivityafter7days, whenstoredat−80◦C.ItshouldbenotedthattheHis-tagdidnot affectthekineticparametersoftherecombinantenzyme[22]. 2.2. IntracellularlocalizationofPtP2-G6PDH

TheG6PDHcodingsequencewasamplifiedbyPCRwithprimers indicated in SupplementalTable 1 and cloned in the NcoI and BamHIsitesofpCK-GFP3vector,upstreamandinframewiththe GFPcodingsequence.YoungleavesofNicotianabenthamianawere transfectedbybombardmentwithaBiolisticPDS-1000/HeTM Sys-tem(BioRad).After18h,thefluorescencesofGFPandchlorophyll wereobservedat505–540nmandbeyond650nm,respectively, afterexcitationat488nmonaZeissLSM700confocalmicroscope. 2.3. Electrophoresisandwesternblottinganalysis

SDS-PAGEwasperformedusinga10%polyacrylamide resolv-inggelwitha4%stackinggel(Bio-RadMini-Protean).Forwestern blotting,separatedpolypeptidesweretransferredfromgelstoa Hybondmembrane(GeHealthcare).Themembranewasthen incu-batedwithprimarypotato antibodiesforP1-G6PDH (1:15.000),

(3)

Fig.1.A–AminoacidsequencealignmentofdifferentplantG6PDHsequences.Mainmotifsareindicatedintheupperlineinboldblack.Highlyconservedresiduesare highlightedinlightgrey;theRossman-fold,theactivesite,andtheNADP+bindingsiteareinboldwhiteletters,highlightedinblack;cysteineresiduesareinboldwhiteon

greyhighlighting.B–Phylogenetictreeofcytosolic,chloroplasticandplastidialG6PDHplantisoforms.C–TransientexpressionofaPtP2-G6PDH-GFPconstructintobacco leaves[29]:brightfieldimage,chlorophyllautofluorescence,GFP-fluorescence,andmergedimagesareshown.

(4)

Cornish-Bodenplots(Cornish-Bowden,1974).Thedetailsofthedeterminationofkineticparameters(apparentKMforG6PandNADP andtheKIforNADPH)areprovided

inthetext.Valuesareaverageof3separatedeterminations±standarderror(se).

SpecificActivity(U/mg) KM,G6P(mM) KM,NADP+(␮M) KiNADPH(␮M) InhibitionbyNADPH

WT 8000 1.06±0.06 15±3 74.1±2.5 competitive C145S 5700 1.05±0.26 71±18 73.4±2* 23.0±3.6** competitive* uncompetitive** C194S 4500 1.15±0.37 53±18 --- noinhibition C242S 6000 0.70±0.12 55±9 --- noinhibition C175S 1400 2.42±0.78 30±9 15.5±2.8 uncompetitive C183S 1500 2.31±1.00 77±7 23.9±3 uncompetitive C175S-C183S 1360 2.38±0.87 103±19 27.9±3.6 uncompetitive

P2-G6PDH(1:10.000)andCy-G6PDH(1:50.000)isoforms[8],and

Anti-His6(Roche)(1:6000).Potatoantiserawerepreviouslyproven toreactwithanddiscriminatethedifferentbarleyG6PDHisoforms [3,19].Afterincubatingthemembranewithsecondaryantibodies (anti-rabbit,1:16.000),cross-reactingpolypeptideswerestained foralkalinephosphataseactivityorbyenhanced chemilumines-cence[22,23].

2.4. G6PDHactivityassayanddeterminationofthekinetic parameters

G6PDHactivitywasassayedbymonitoringNADP+reductionat 340nm.Theassaymixturecontained50mMTris-HClpH8.0,5mM MgCl2,150␮MNADP+and3mMG6P.Enzymeactivity measure-mentswereperformedinduplicateagainstablankwithoutG6P. TheactivitywasexpressedasnmolesofNADP+reducedmin−1or pers−1,andexpressedasml−1ormg−1protein.

Kineticparameters(KmG6PandKmNADP+)weredeterminedby varyingtheconcentrationsofG6Pfrom0to30mM,andNADP+ con-centrationfrom0to150␮M.Kineticparameterswerecalculatedby non-linearregressionusingtheMichaelis-Mentenequationwith GraphPadPrism4.0software.

TheinhibitionpatternandconstantsforNADPH(KiNADPH)were determinedbyDixonplot[24]andCornish-Bowdenplot[25]after assayingproteinactivityatsubsaturatingconcentrationsofNADP+ (15,30, 50␮M)in the presence of NADPHranging from15 to 150␮M[23].

2.5. RedoxtreatmentsofPtP2-G6PDH

Recombinantenzymes(bothWTandcysteine variants)were purified under non-reducingconditions allowingthe formation ofregulatorydisulfidebond(s).Toconfirmthatrecombinant pro-teinswerefullyoxidizedafterpurification,wetestedtheeffectof oxidizeddithiothreitol(DTT)onG6PDHactivity.Asexpected,no variationofmaximalproteinactivitywasobservedindicatingthat nofurtheroxidationwasrequiredtoreachitsmaximalactivation state(datanotshown).InordertoevaluateG6PDHsensitivityto reducingtreatments,PtP2-G6PDHWTandcysteinemutants(2␮M) wereincubatedinthepresenceofvaryingDTTconcentrations rang-ingfrom5to100mM.PtP2-G6PDHWTinactivationwasalsotested inthepresenceofpurifiedchloroplasticf-(spinach),m-(spinach) andz(Populustrichocarpa) −typeTRXs (1,5, or10␮M) supple-mentedwith5mM reducedDTTtoallowfull reduction ofTRX [26].Attheindicatedtimes,analiquotwaswithdrawntoassay forenzymeactivity.Forotherredoxtreatments,PtP2-G6PDHwas incubatedwithvaryingconcentrationsofGSHorGSSG(0.5,1or 5mM).Attheindicatedtimes,analiquotwaswithdrawntoassay enzymeactivity.Allredoxtreatmentswerecarriedoutat25◦Cin 50mMTris-HCl,1mMEDTA,pH7.9.

2.6. Midpointredoxpotential

Redoxtitration experimentswerecarriedouttomonitorthe redoxstateoftheregulatorydisulfideofPtP2-G6PDHWTinthe presenceof mixturesof oxidizedandreduced DTTtopoisethe ambientredoxpotential.RecombinantPtP2-G6PDH(1␮M)inits initialredoxstatewasincubatedfor2hat25◦Cin100mM Tris-HCl,pH7.9,1mMEDTA,20mMreduced/oxidizedDTTinvarious dithiol/disulfideratios and TRX m(spinach) (0.2␮M) [26]. Fol-lowingincubation,NADP-dependentG6PDHactivitywasassayed as described above. Results were fitted by non-linear regres-sion(CoStat,CoHortSoftware)totheNernstequation(n=2,one dithiol/disulfide[26]).Midpointredoxpotentialsarereportedas means±standarddeviationsoftwoindependentexperiments. 2.7. Replicates

Alloftheresultsreportedarerepresentativeofatleastthree independentexperimentsandexpressedasmeans±S.D.,unless otherwisestated.

3. Resultsanddiscussion

3.1. Proteinsequenceanalysisandsubcellularlocalizationof PtP2-G6PDH

AputativeplastidicG6PDH(PtP2-G6PDH)sequencehasbeen identifiedinthePopulustrichocarpagenome(Potri.001G059900, http://phytozome.jgi.doe.gov/). The analysis of the protein sequence reveals the presence of typical motifs belonging to dehydrogenasesfamily:aRossman-foldmotif(G57ASGDLAKK65) andaNADP+-bindingsite(N416ELVIRV422)(Fig.1A).Inaddition, theactivesite region(F220RIDHYLGKE229)presentsa phenylala-nineresidue,typicaloftheplastidicisoforms,whichisgenerally replacedbyatyrosineinthecytosolicisoforms[6,13,22,27,28].

AcomparisonofPtP2-G6PDHwithotherplastidic, chloroplas-ticand cytosolic G6PDHsfromplantsclearly indicatesthat this sequencebelongstoplastidicP2-G6PDH isoforms(Fig.1B). Pre-dictionsperformedbytheTargetPbioinformaticsoftware(http:// www.cbs.dtu.dk/services/TargetP/)indicatedthatthePtP2-G6PDH sequence likelypossesses a 66amino acid-longtransitpeptide. Inordertoverifythesubcellularlocalization,aPtP2-G6PDH-GFP fusionproteinwasgeneratedandusedfortransientexpressionin tobaccocells[29].Theresultsindicatedthatthetransitpeptideof PtP2-G6PDHdirectedtheconstructintoplastidsasexpectedfrom thepredictions(Fig.1C).

Inthematureenzyme,therearefiveCysresidues(Cys145,Cys175, Cys183,Cys194andCys242;Fig.1A),twoofthem,Cys175andCys183, areinapositionsimilartothetworegulatorycysteinesinvolvedin theformationofthedisulfidebondinP1G6PDH,assuggestedfor thepotato(Cys156-Cys161,[27,13]),barley(Cys159-Cys167,[22]),and Arabidopsisthaliana enzymes(Cys169-Cys177,[30])(Fig.1A).The

(5)

Fig.2.A–SDSPAGEofsamplesatdifferentpurificationstepsofPtP2-G6PDH;B– WesternblottingofthepurifiedPtP2-G6PDHusingantiP2-G6PDH,antiCy-G6PDH antibodies;andC–anti-Hisantibodies.

Legend:M,Markers;Control,bacteriatransformedwithan“empty”plasmid;pellet ofbacterialysate;S,surpernatantofbacteriallysate;purifiedproteinfromsoluble fraction.Thearrowindicatesthesubunitmolecularweight(61kDa)ofthe over-expressedPtP2-G6PDH,calculatedwiththerelativemobilityfactormethod.

conservationofregulatorycysteineswasindeedsuggestivethat P2-G6PDHisoformscouldalsoberegulatedthroughdithiol/disulfide exchangereactionsasdescribedforchloroplasticP1-G6PDH[9]. 3.2. PurificationofrecombinantPtP2-G6PDH

TherecombinantPtP2-G6PDHwasproducedasamature pro-teinfusedwithaHis6-tag,exhibitingaMWof61kDa(Fig.2A).The constructionwasdesignedinsuchawaythattheputative tran-sitpeptidewaseliminatedandanN-terminalHis-tagwasfused totheprotein(seeMethods).Therecombinantenzymewas sol-ubleandcouldbepurifiedtohomogeneityusinganimmobilized nickelmetalaffinitychromatography(IMAC),withafinalyieldof 0.8–3mgperlitreofculture.

Thepurifiedproteinreactedpositivelywithpotatoplastidic P2-G6PDH[8];(Fig.2B)andantiHis-tagantibodies(Fig.2C),whileno reactionwasobservedusingapotatocy-G6PDHantiserum(Fig.2B). Moreover,ithadtheexpectedsizeforafusionproteinwithaHis-tag anddeprivedofthetransitsequence.

3.3. RedoxpropertiesofrecombinantWTPtP2-G6PDHandofCys toSermutants

PlastidicG6PDHsarestronglyinhibitedbyincreasinglevelsof artificialreductants, suchasDTT; incontrast,whentheprotein isfullyoxidized,theenzymeexhibitsitsmaximalcatalyticrate [8,27,31].

In order to test the redox sensitivity of recombinant PtP2-G6PDH, the purified enzyme was incubated with different concentrationsofDTT.Theactivitywasreducedinadose-and time-dependentmanner,retaining 50%ofitsinitialrateafter60min incubationinthepresenceof25mMDTT,orafter20minwhen exposedto100mMDTT(Fig.3A).On theotherhand,insimilar experimentalconditionsP2G6PDHactivitywasnotaffectedby themonothiolglutathioneeitherinthereduced(GSH)oroxidized (GSSG)form,upto5mM(SupplementalFig.1AandB).

Basedonthesensitivity toreduced DTT,themidpointredox potentialofthepurifiedrecombinantPtP2-G6PDHwasdetermined afterproteinincubationinthepresenceofdifferentDTTred/DTTox ratiospoisingvariableredoxpotentials.AsshowninFig.3B,G6PDH

activityisfullydependentontheredoxpotentialanddata interpo-lationwiththeNernstequation,includingasingledithiol/disulfide redoxpair(n=2),givesastandardredoxpotentialof−332.7mV (pH7.9).Thisvalueislessnegativethantheoneofbothf-and m-typeTRXs(−351and−358mV,respectively[32]),thussuggesting thatPtP2-G6PDHcouldbefavourablyreduced,butlessfavourably oxidizedbytheseTRXtypes.Asacomparison,Arabidopsisthaliana P1-G6PDH,whichisregulatedbyTRXfexhibitsanEmof329.9mV

[9].

Toinvestigatetheregulatoryfunctionsplayedbythedifferent cysteines,eachresiduewassubstitutedintoserinebysite-directed mutagenesis. These recombinant proteins were overexpressed andpurifiedfollowingthesameproceduredescribedfortheWT enzyme,andsimilaryieldswereobtained(0.5–2mg perlitreof culture−notshown).Specificactivitiesandotherkinetic proper-tiesofthepurifiedmutatedenzymesincomparisonwiththewild typePtP2-G6PDHareindicatedinTable1.

Theredoxpropertiesofthesecysteinevariantswerethen exam-inedand,basedontheirsensitivitytoDTT-dependentinhibition, theycouldbedividedintotwodistinctgroups.Thefirstcluster comprises C145S,C194Sand C242Smutants, exhibiting a DTT-sensitivitysimilartotheWTPtP2-G6PDH(Fig.3C),suggestingthat these residues are not involved in the redox regulationof the enzyme.

ThesecondgroupincludestheC175S,C183Svariantsandthe doublemutantC175S-C183S,whicharecompletelyinsensitiveto DTT(Fig.3C),indicatingthatthesetworesiduesareindeedthose responsiblefortheredoxsensitivityoftheenzyme,andtherefore verylikely involvedintheformationof theregulatorydisulfide bond.

3.4. Localizationofcysteinesinthe3DmodelofPtP2-G6PDH BasedonPtP2-G6PDHaminoacidsequence,aputative3Dmodel wasgeneratedusingthestructureofhumancytosolicG6PDHasa template(Fig.3D).Incidentally,humancytosolicG6PDHexhibitsits highestcatalyticrateasatetramer,formedbyactivehomodimers linkedtogetherbysalinebonds[33].

Duetothewell-knownregulatoryroleofthedisulfidein plas-tidic G6PDHs, includingPtP2-G6PDH[8,13,22,27],we speculate thatthereisaconformationalchangeinducedbyformationofthe Cys175-Cys183bond.TheregulatoryCys175andCys183are surface-exposed,and locatedinanunstructuredloopintheN-terminal region of the protein (Fig. 3D). Intriguingly, human cytosolic G6PDH,whichisnotredox-regulated(thisisalsotrueforhigher plantcy-G6PDH,[28]),isabletoformastructuraldisulfidebond (Cys13-Cys446)inthesameregionofthe3D-structure[33].Ithas beenproposedthatthisdisulfidemaypreventtheunstructured N-terminalregiontointerferewiththecatalyticactivityoftheenzyme [34].Similarly,thedisulfideCys175-Cys183presentinthefullyactive plastidicenzymewouldallowaneasieraccessofthesubstratesto theactivesite,bystabilisingtheflexibleloopattheN-terminus.

It shouldbenoted that inthis model thepositionof Cys145 isquiteclosetotheregulatorydisulfidewhereas theothertwo residues(Cys194andCys242)wouldbelocatedindifferentpartsof thestructure,fartherfromtheactivesite.

3.5. PtP2-G6PDHispreferentiallyregulatedbym-typeTRX

Higherplantplastidscontainatleast5conventionalTRXtypes, namelyf,m,x,yandz[35,36],aswellasseveralotherTRXswith atypicalactivesitesequences[29,37].

Generally, the m- and f-type TRXs are implicated in the regulation of enzymes involved in photosynthesis and carbon metabolism,whiletheotherTRXsareassociatedtotheanti-oxidant response [35,38–40]and TRX zplaysa role linkedtoorganelle

(6)

Fig.3. A–EffectsofDTTredonPtP2-G6PDHactivity.Thepurifiedenzymewasincubatedfor20min(blackbars)or60min(greybars)atdifferentconcentrationsofDTTred,

andG6PDHactivitydetermined.B–DeterminationofthemidpointredoxpotentialofthepurifiedrecombinantPtP2-G6PDH.C–EffectsofDTTredonPtP2-G6PDHcysteine

mutants.Purifiedenzymeswereincubatedfor60minintheabsence(greybars)orinthepresence(blackbars)of25mMDTTred,andG6PDHactivitydetermined.D–3D

modelofPtP2-G6PDHmonomerstructure.Theasterisksonbarsindicateap<0,05withrespecttocontrols.

ModellingwasmadeusingSwissProtsoftwarebasedontheknownstructureofahumanG6PDHisoformandvisualizedusingPyMOL[33].TheSwiss-protPDBviewer program(availableat:http://expasy.org/spdbv/)allowedthecolorationofcysteineresiduesaccordingtotheiraccessibilityfromred(lessaccessible)toyellow(more accessible).Shapedportionsoftheproteinappearincyan(␣-helices)andmagenta(␤-sheets)whileunstructuredregionsareinlightpink.

development[36].Itshouldbenotedthatthefirstattemptswhich proposedaspecificroleforTRXmintheregulationofplastidic G6PDHweremadewithcrudeextractofbacteriaoverexpressinga recombinantpotatoplastidicisoform[27].

Havingobtainedapurifiedandstablerecombinantenzyme,we wereabletotesttheeffectofdifferentplastidicTRXs(m-,f-and z-types)onPtP2-G6PDH(Fig.4).ThemostefficientwasTRXm, inhibitingG6PDHactivityby50%after1minat1␮M(Fig.4A).At thesameconcentration,TRXfwaslesseffective,(45%inhibition after20min),and TRXzwasessentiallyinefficient(Fig.4A).By increasingTRXconcentrations(Fig.4BandC),theregulatoryeffects becamemoreevident.At10␮MTRXconcentration,90%inhibition wasreachedafter1minbyTRXmandafter3minbyTRXf;while TRXzonlypromoteda60%inhibitionafter5min.Ourexperiments indicatethattheeffectivenessofthedifferentTRXsonPtP2-G6PDH canbearrangedasTRXm>TRXf>TRXz.

Theseresultssuggestthatdifferentpatternsofredox regula-tionexistforcompartmentedG6PDHsinhigherplants.Specifically, TRXfisthemostefficientintheregulationofchloroplasticG6PDH from both A. thaliana (P1-type AtG6PDH); [9,11] and the psy-chrophilicalgaKoliellaantarctica[41].Itshouldbeunderlinedthat f-typeTRXs are wellknowntoregulatetheactivitiesof redox-sensitiveCalvin-Bensoncycleenzymes,namelyglyceraldehyde-3P dehydrogenase (GAPDH) [42], phosphoribulokinase (PRK) [42], fructose-1,6-bisphosphatephosphatase[43]andsedoheptulose1-7 bisphosphatase[44].

Ontheotherhand,wedemonstrateherethattheactivityof plas-tidicP2-G6PDHismainlyredox-modulatedbyTRXm-type.TRX misgenerallyindicatedasaregulatorofNADP-malate dehydro-genase(EC1.1.1.82),thusplayingacentralroleintheregulation ofredoxpoisebalancingbetweenthechloroplastandthecytosol; recently,progresshasbeendone,describingatleast3–4distinct TRXminchloroplasts,andsuggestingspecificrolesindifferent metabolicprocesses[12].Thus,itcouldbesuggestedaregulation ofP2-G6PDHisoformsbasedonreductionstateoftheplastid(e.g. malatedehydrogenaseactive;TRXmreduced−P2-G6PDH inac-tivated),sensiblydifferentfromthatofP1-G6PDH(Calvin-Benson cycleactive,TRXfreduced,P1-G6PDHinactivated)[11].

ThismodelwouldimplythatP1-G6PDHmustbemostly inac-tiveinthelight,whileP2-G6PDHregulationisindependentoflight (asexpectedforanenzymeexpressedinheterotrophiccells),and appearsmore strictlyrelated totheprimary metabolismofthe organelle.

3.6. KineticpropertiesofrecombinantPtP2-G6PDHWTand cysteinemutants

To our knowledge, the activity of plastidic P2-type G6PDH isoforms hasbeen investigated in thepast only withbacterial lysates,orusingpartiallypurifiedpreparationsfromplantmaterial [3,8,16,20,21].Therefore,duetotheinstabilityofthisisoform,the biochemicalpropertiesofPtP2-G6PDHhavebeenproperly

(7)

inves-Fig.4.EffectsofTRXsonPtP2-G6PDH.Activityofpurifiedenzymeswasdetermined afterincubationfordifferenttimesinthepresenceof5mMDTTalone(control,open circles)orsupplementedwith:A–1␮M;B–5␮M;C–10␮MofTRXm(closed squares),TRXf(opensquares),TRXz(closedcircles).

tigatedonlyrecentlywithapurified recombinantenzymefrom barleyroots,buteventhough,thispreparationwasfarlessstable thanthepoplarenzymegeneratedhereandthusthekineticdata presentedherearethemostreliable[22].

Recombinant,his-tagged PtP2-G6PDHwaspurified fully oxi-dized,andshowedaspecificactivityof8000nmolmin−1 NADP+ reducedmg prot−1 (Table1).Thekinetic analysisrevealedthat PtP2-G6PDHdisplaysaKM,G6Pof1.06±0.06mMandKM,NADP+of 15.0±3.2␮M(Table1),similarlytovaluesobservedforotherplant P2-G6PDHs[22,30].

TheinhibitionconstantforNADPH(KI,NAPDH)wasfoundtobe 74␮M(Table1),avaluecomparabletobarley[3,22],andpotato P2-G6PDHs[8].ThecomparisonofDixonandCornish-Bowdenplots [45]revealedacompetitiveinhibitionbyNADPHofPtP2-G6PDH (Fig.5A).ItisnoteworthythatNAPDHexertsasimilarinhibitory

mechanismonrecombinantbarleyCy-G6PDH[28],althoughthe KI,NAPDHisconsiderablylowerforcytosolicisoforms(10–25␮M).

Moreover, it should be underlined that this combination of kinetic properties undoubtedly categorises the enzyme as a plastidicP2-G6PDH,andcandiscriminateitfromchloroplastic P1-G6PDHs[8,18,22]andCy-G6PDHs[28,46].

Notably,itshouldbeexpectedthatthelightinactivationof P1-G6PDH shouldbeaccompaniedby ahighsensitivity toNADPH inhibition(NADPH/NADP+ratioare>2inthelight)[47];while P2-G6PDHshouldbemostlyinsensitivetoNADPH,becauseofitsmain roleinthesupplyofreducingequivalents(i.e.NADPH)forplastidic biosynthesessuchasnitritereduction[14],nitrogenassimilation [15,16,21],orlipidmetabolism[48].

ThusithasbeenproposedthatpartofP2-G6PDHactivitycould beretainedevenunderlightconditionsinchloroplaststosustain activenutrientassimilation[3],evenwhenphotosynthesiscouldbe partiallyinhibitedbystomataclosureandoxidativestress;anyway, itshouldbeunderlinedthatadefinitiveevidenceforthepresence ofP2-G6PDHinchloroplastsisstilllacking.

Mutant enzymes lacking non-regulatory cysteines (C145S; C194S;C242S)exhibitedspecificactivitiesandKm,G6P similarto WTPtP2-G6PDH;a3.5-4.5foldincreaseinKm,NADP+wasobserved (Table1).

Bycontrast,C175SandC183Smutantsshowedareduced spe-cific activity (<20% of WT), and a reduced affinity for sugar-P

(Km,G6P=2.3–2.4mM), as expected for an enzyme mimicking a

reduced,partiallyinactivated,WTprotein(Table1).

Correspondingly,theregulatorycysteine toserinemutations decreased their affinity for NADP+ (30␮M<K

m,NADP+<100␮M). Theseresultswouldsupportaroleforthedisulfideinthe stabil-isationoftheenzyme-substratebinding,assuggestedforhuman G6PDH[34].

Then,theNADPH-dependentinhibitionofPtP2-G6PDHactivity wasfurtherinvestigatedoncysteinemutants.

TheC145SmutantshowedamixedinhibitionbyNADPH;the competitiveinhibition(ic)constantwasidenticaltoWTenzyme, indicating that C145 is not directly involved in the regulation of activity;ontheotherhand, theCornish-Bowdenplotfitsan uncompetitiveinhibition (iu) KiuNADPH=23␮M, suggesting that C145mighthaveastructuralroleinthedockingofNADP+,itsaffinity being3.5-foldlowerthantheonemeasuredfortheWT(Fig.5B).

Itshouldbenotedthatthemodelofthe3Dstructureindicates thatC145islocatedclosetoNADP+bindingsite,andlikelytothe disulfideC175-C183(Fig.3D).

Both C194 and C242 are somehow structurallyimportant for NADP+/NADPHbinding.Interestingly,thesubstitutionofC194and C242toserinesprecludedNADPHinhibition(Fig.5B),andcaused a 3-foldincreaseof KM,NADP+ (Table1), althoughthese residues seemtobeburiedinthe3D-modeloftheenzyme(Fig.3D).This suggeststhattheseresiduesarepossiblyinvolvedintheoptimal foldingoftheNADP+bindingsite,improvingsubstrateaffinityand modulatingthebindingoftheinhibitoryNADPH.

A different scheme applies to the mutants lacking regula-torycysteines(C175S,C183S,anddoublemutantC175S-C183S), allexhibitinganuncompetitiveinhibitionbyNADPH(Fig.5D–F; KiuNADPH of15–24␮M),andastrongdecreaseintheaffinityfor G6P(Table1).Theseresultssuggestthatthereductionofthe disul-fideinducesachangeinconformation,resultingintheabilityof theenzymetobindNADPHaftertheformationofthe enzyme-substrate complex, with an increased affinity for the inhibitor NADPHandaloweraffinityforthesubstrates(Table1).

(8)

Fig.5.DeterminationofthetypeofinhibitionandinhibitionconstantvaluesofwildtypeandmutatedPtP2-G6PDHs.Thedescriptionoftheinhibition,andKI,NAPDHare

indicated.

A–WildtypePtP2-G6PDH(WT);Dixonplot(left)andCornish-Bowdenplot(right).B–DixonPlotforC194S(up)andC242S(below).C–C145SDixonplot(left)and Cornish-Bowdenplot(right).D–C175SDixonplot(up)andCornish-Bowdenplot(below).E–C183SDixonplot(up)andCornish-Bowdenplot(below).F–C175S-C183S Dixonplot(up)andCornish-Bowdenplot(below).

4. Conclusion

Byusingacombinationofkineticanalysis,site-directed muta-genesistogetherwith 3D-structuremodelling,we wereableto proposeamodeloftheredoxmodulationofapoplarP2-G6PDH activity.

ThekineticparametersobservedforPtP2-G6PDHsuggestthat thisisoformcouldnotbeinhibitedbyNADPHlevelsunder physio-logicalconditions,especiallyinthedark;but,possiblyevenunder

lightconditions–whenphotosynthesisisactive,andproducing moietiesofreductants–theenzymewouldretainitsactivity(and function) in order to sustain nutrients’ assimilation and stress response[3,4].

Inhigherplantsandalgae,theredoxregulationof chloroplas-tic P1-G6PDHisoformshasbeen recentlylinkedtof-type TRXs [9,11,41].Nevertheless, previousreports generallyindicated m-typeTRXscouldbephysiologicallyinvolvedinthemodulationof plantcompartmentedG6PDH[27].

(9)

TheresultsherepresentedsuggestthatPtP2-isoformwouldbe (andactivated)bym-typeTRXs, generallyintendedasthemain regulatorsofthechloroplastcatabolism,andnotbyf-typeTRXs whicharemorestrictlyrelatedtophotosynthesis[9].

Amongthefivecysteinespresentintheactiveproteinsequence, C194andC242playaroleinthestabilizationandpropertiesofNADP+ site,whileC145,althoughveryclosetotheregulatoryC175-C183 disulfide,seemstointerferewiththebindingofNADP+duringthe formationoftheenzyme-substratecomplex.

Here,ourresultsshowedthatthedisulfideC175-C183presentin plastidicP2-G6PDHisbetterreducedbym-typeTRXandtoalesser extentbyf-typeTRX;inaddition,z-typeTRXdoesnotseemtoplay asignificantroleforitsreduction.

Thus,theP1andP2isoformsmaybetargetsofdifferentTRXs. Ontheonehand,TRXfpreferentiallycontrolschloroplasticG6PDH activity (i.e. P1-G6PDH), as occurring for the redox-modulated enzymesinvolvedintheCalvin-Bensoncycle[49].

Ontheotherhand,theactivityofnon-photosyntheticG6PDH (P2-G6PDH) is better controlledby m-type TRX, which is well knowntoregulateNADP+-malatedehydrogenase,althoughthef −typeTRXwasfoundtobeabetterreductantafterall[50,51].

Finally,TRX-mdisulfide-dependentredoxregulationof PtP2-G6PDH would control the supply of reductants during active nutrient assimilation(e.g.nitrogen,sulfur) [21] or understress conditions(drought,salinity)[4,6,19].

Therefore,thereisanurgentneedtoget3Dstructuresofreduced and oxidized enzymesto understandtheinvolvement of these regulatorycysteinesinthestructuralchangesrequiredforthe for-mationofastableandactiveG6PDH.

Acknowledgments

ResearchsupportedbyLeggeRegionaledellaCampania5/2002 (2007),CUPE69D15000270002.

ManuelaCardiacknowledgesEGIDEfundingfromFrench Min-istryofForeignAffairs(grant672700K;years2009and2010/11); and Project FORGIARE (Formazione Giovani alla Ricerca) V-10/FORG/ST/2012/5(2012–2015)byCompagniadiSanPaolo.

UMR1136 is supported by a grant overseen by the French NationalResearch Agency(ANR)aspartofthe“Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

TheAuthorsthankverymuchAntjevonSchaewen(Muenster– Germany)forthegenerousgiftofG6PDHantibodies.

Noconflictsofinterestdeclared. AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.plantsci.2016.08. 003.

References

[1]N.J.Kruger,A.vonSchaewen,Theoxidativepentosephosphatepathway: structureandorganisation,Curr.Opin.PlantBiol.6(3)(2003)236–246. [2]X.Long,B.He,Y.Fang,C.Tang,Identificationandcharacterizationofthe

glucose-6-phosphatedehydrogenasegenefamilyinthepararubbertree, Heveabrasiliensis,Front.PlantSci.7(February)(2016)1–14.

[3]S.Esposito,G.Guerriero,V.Vona,V.DiMartinoRigano,S.Carfagna,C.Rigano, Glutamatesynthaseactivitiesandproteinchangesinrelationtonitrogen nutritioninbarley:thedependenceondifferentplastidicglucose-6P dehydrogenaseisoforms,J.Exp.Bot.56(409)(2005)55–64.

[4]S.Esposito,Nitrogenassimilation,abioticstressandglucose6-phosphate dehydrogenase:thefullcircleofreductants,Plants5(2)(2016),p.24. [5]S.DalSanto,H.Stampfl,J.Krasensky,S.Kempa,Y.Gibon,E.Petutschnig,W.

Rozhon,A.Heuck,T.Clausen,C.Jonak,Stress-inducedGSK3regulatesthe redoxstressresponsebyphosphorylatingglucose-6-phosphate dehydrogenaseinarabidopsis,PlantCell24(August)(2012)3380–3392.

[6]S.Landi,R.Nurcato,A.DeLillo,M.Lentini,S.Grillo,S.Esposito,

Glucose-6-phosphatedehydrogenaseplaysacentralroleintheresponseof tomato(Solanumlycopersicum)plantstoshortandlong-termdrought,Plant Physiol.Biochem.105(2016)79–89.

[7]Y.Yang,Z.Fu,Y.Su,X.Zhang,G.Li,J.Guo,Y.Que,L.Xu,Acytosolic glucose-6-phosphatedehydrogenasegene,ScG6PDH,playsapositiverolein responsetovariousabioticstressesinsugarcane,Sci.Rep.(4)(2014)7090, http://dx.doi.org/10.1038/srep07090.

[8]U.K.Wendt,I.Wenderoth,a.Tegeler,a.VonSchaewen,Molecular

characterizationofanovelglucose-6-phosphatedehydrogenasefrompotato (SolanumtuberosumL.),PlantJ.23(6)(2000)723–733.

[9]G.Née,M.Zaffagnini,P.Trost,E.Issakidis-Bourguet,Redoxregulationof chloroplasticglucose-6-phosphatedehydrogenase:anewroleforf-type thioredoxin,FEBSLett.583(17)(2009)2827–2832.

[10]M.Ferrara,G.Guerriero,M.Cardi,S.Esposito,Purificationandbiochemical characterisationofaglucose-6-phosphatedehydrogenasefromthe psychrophilicgreenalgaKoliellaantarctica,Cell(2013)53–62.

[11]G.Nee,M.Aumont-Nicaise,M.Zaffagnini,S.Nessler,M.Valerio-Lepiniec,E. Issakidis-Bourguet,RedoxregulationofchloroplasticG6PDHactivitybyTRX occursthroughstructuralchangesmodifyingsubstrateaccessibilityand co-factorbinding,Biochem.J125(2013)117–125.

[12]L.Michelet,M.Zaffagnini,S.Morisse,F.Sparla,M.E.Pérez-Pérez,F.Francia,A. Danon,C.H.Marchand,S.Fermani,P.Trost,S.D.Lemaire,Redoxregulationof theCalvin-Bensoncycle:somethingold,somethingnew,Front.PlantSci.4 (November)(2013),p.470.

[13]U.K.Wendt,R.Hauschild,C.Lange,M.Pietersma,I.Wenderoth,a.von Schaewen,EvidenceforfunctionalconvergenceofredoxregulationinG6PDH isoformsofcyanobacteriaandhigherplants,PlantMol.Biol.40(3)(1999) 487–494.

[14]C.G.Bowsher,D.P.Hucklesby,M.J.Emes,Nitritereductionandcarbohydrate metabolisminplastidspurifiedfromrootsofPisumsativumL,Planta177(3) (1989)359–366.

[15]C.Bowsher,E.Boulton,J.Rose,Reductantforglutamatesynthaseingenerated bytheoxidativepentosephosphatepathwayinnon-photosyntheticroot plastids,PlantJ.2(6)(1992)893–898.

[16]S.Esposito,G.Massaro,V.Vona,V.DiMartinoRigano,S.Carfagna,Glutamate synthesisinbarleyroots:theroleoftheplastidicglucose-6-phosphate dehydrogenase,Planta216(4)(2003)639–647.

[17]Y.Nemoto,T.Sasakuma,Specificexpressionofglucose-6-phosphate dehydrogenase(G6PDH)genebysaltstressinwheat(TriticumaestivumL.), PlantSci.2(1–2)(2000)53–60.

[18]Z.Tjaden,E.Weis,A.VonSchaewen,J.Scharte,H.Scho,Isoenzyme replacementofglucose-6-phosphatedehydrogenaseinthecytosolimproves stresstoleranceinplants,PNAS106(19)(2009)8061–8066.

[19]M.Cardi,D.Castiglia,M.Ferrara,G.Guerriero,M.Chiurazzi,S.Esposito,The effectsofsaltstresscauseadiversionofbasalmetabolisminbarleyroots: possibledifferentrolesforglucose-6-phosphatedehydrogenaseisoforms, PlantPhysiol.Biochem.86(2015)44–54.

[20]S.Esposito,S.Carfagna,G.Massaro,V.Vona,V.DiMartinoRigano, Glucose-6-phosphatedehydrogenaseinbarleyroots:kineticpropertiesand localisationoftheisoforms,Planta212(4)(2001)627–634.

[21]S.Esposito,G.Massaro,V.Vona,V.DiMartinoRigano,S.Carfagna,C.Rigano, Ammoniuminductionofanovelisoformofglucose-6Pdehydrogenasein barleyroots,Physiol.Plant.113(4)(2001)469–476.

[22]M.Cardi,K.Chibani,D.Castiglia,D.Cafasso,E.Pizzo,N.Rouhier,J.-P.Jacquot, S.Esposito,Overexpression,purificationandenzymaticcharacterizationofa recombinantplastidialglucose-6-phosphatedehydrogenasefrombarley (HordeumvulgarecvNure)roots,PlantPhysiol.Biochem.73(2013)266–273. [23]D.Castiglia,M.Cardi,S.Landi,D.Cafasso,S.Esposito,Expressionand

characterizationofacytosolicglucose6phosphatedehydrogenaseisoform frombarley(Hordeumvulgare)roots,ProteinExpr.Purif.112(2015)8–14. [24]M.Dixon,ThegraphicaldeterminationofKmandKi,Biochem.J.129(1972)

197–202.

[25]A.Cornish-Bowden,Asimplegraphicalmethodfordeterminingtheinhibition constantsofmixed,uncompetitiveandnon-competitiveinhibitors,Biochem. J137(1)(1974)143–144.

[26]M.Zaffagnini,L.Michelet,V.Massot,P.Trost,S.D.Lemaire,Biochemical characterizationofglutaredoxinsfromChlamydomonasreinhardtiireveals theuniquepropertiesofachloroplasticCGFS-typeglutaredoxin,J.Biol.Chem. 283(14)(2008)8868–8876.

[27]I.Wenderoth,R.Scheibe,a.vonSchaewen,Identificationofthecysteine residuesinvolvedinredoxmodificationofplantplastidic

glucose-6-phosphatedehydrogenase,J.Biol.Chem.272(43)(1997) 26985–26990.

[28]D.Castiglia,M.Cardi,S.Landi,D.Cafasso,S.Esposito,Expressionand characterizationofacytosolicglucose6phosphatedehydrogenaseisoform frombarley(Hordeumvulgare)roots,ProteinExpr.Purif.112(2015)8–14. [29]K.Chibani,L.Tarrago,J.M.Gualberto,G.Wingsle,P.Rey,J.-P.Jacquot,N.

Rouhier,Atypicalthioredoxinsinpoplar:theglutathione-dependent thioredoxin-like2.1supportstheactivityoftargetenzymespossessinga singleredoxactivecysteine,PlantPhysiol.159(June)(2012)592–605. [30]S.Wakao,C.Benning,Genome-wideanalysisofglucose-6-phosphate

dehydrogenasesinArabidopsis,PlantJ.41(2)(2005)243–256. [31]a.vonSchaewen,G.Langenkämper,K.Graeve,I.Wenderoth,R.Scheibe,

(10)

[32]V.Collin,E.Issakidis-Bourguet,C.Marchand,M.Hirasawa,J.M.Lancelin,D.B. Knaff,M.Miginiac-Maslow,TheArabidopsisplastidialthioredoxins.New functionsandnewinsightsintospecificity,J.Biol.Chem.278(26)(2003) 23747–23752.

[33]S.W.Au,C.E.Naylor,S.Gover,L.Vandeputte-Rutten,D.A.Scopes,P.J.Mason,L. Luzzatto,V.M.Lam,M.J.Adams,Solutionofthestructureoftetramerichuman glucose6-phosphatedehydrogenasebymolecularreplacement,Acta Crystallogr.D.Biol.Crystallogr.55(Pt4)(1999)826–834.

[34]S.W.Au,S.Gover,V.M.Lam,M.J.Adams,Humanglucose-6-phosphate dehydrogenase:thecrystalstructurerevealsastructuralNADP(+)molecule andprovidesinsightsintoenzymedeficiency,Structure8(3)(2000)293–303. [35]S.D.Lemaire,L.Michelet,M.Zaffagnini,V.Massot,E.Issakidis-Bourguet,

Thioredoxinsinchloroplasts,Curr.Genet.51(6)(2007)343–365. [36]K.Petersen,W.Lein,F.Bo,Plastidialthioredoxinzinteractswithtwo

fructokinase-likeproteinsinathiol-dependentmanner:evidenceforan essentialroleinchloroplastdevelopmentinArabidopsisandNicotiana benthamiana,Society22(May)(2010)1498–1515.

[37]K.Chibani,G.Wingsle,J.P.Jacquot,E.Gelhaye,N.Rouhier,Comparative fenomicstudyofthethioredoxinfamilyinphotosyntheticorganismswith emphasisonpopulustrichocarpa,Mol.Plant2(2)(2009)308–322. [38]K.Chibani,L.Tarrago,P.Schürmann,J.Jacquot,N.Rouhier,Biochemical

propertiesofpoplarthioredoxinz,FEBSLett.585(7)(2011)1077–1081. [39]L.Nikkanen,E.Rintama,Thioredoxin-dependentregulatorynetworksin

chloroplastsunderfluctuatinglightconditions,Society(2014)1–7. [40]M.Balsera,E.Uberegui,P.Schurmann,B.Buchanan,NotitleNotitle,Antioxid.

RedoxSignal.21(9)(2014)1327–1355.

[41]M.Ferrara,G.Guerriero,M.Cardi,S.Esposito,Purificationandbiochemical characterisationofaglucose-6-phosphatedehydrogenasefromthe psychrophilicgreenalgaKoliellaantarctica,pp.53–62(2013).

thioredoxinsofcalvincycleenzymesofArabidopsisthalianaassociatedinthe GAPDH/CP12/PRKsupramolecularcomplex,Mol.Plant2(2)(2009)259–269. [43]J.P.Jacquot,J.Lopez-Jaramillo,M.Miginiac-Maslow,S.Lemaire,J.Cherfils,A.

Chueca,J.Lopez-Gorge,Cysteine-153isrequiredforredoxregulationofpea chloroplastfructose-1,6-bisphosphatase,FEBSLett.401(2–3)(1997) 143–147.

[44]D.D.Gütle,T.Roret,S.J.Müller,J.Couturier,S.D.Lemaire,A.Hecker,T. Dhalleine,B.B.Buchanan,R.Reski,O.Einsle,J.-P.Jacquot,ChloroplastFBPase andSBPasearethioredoxin-linkedenzymeswithsimilararchitecturebut differentevolutionaryhistories,Proc.Natl.Acad.Sci.U.S.A.(May)(2016). [45]Cornish,Bowden,Fundamentalsofenzymekineticsbyathelcornish-Bowden,

Fundam.Enzym.Kinet.(2004)113–130,3rdEd.,vol.Chapter5. [46]S.Wakao,C.Andre,C.Benning,Functionalanalysesofcytosolic

glucose-6-phosphatedehydrogenasesandtheircontributiontoseedoil accumulationinArabidopsis,PlantPhysiol.146(1)(2008)277–288. [47]G.Forti,A.Furia,P.Bombelli,G.Finazzi,C.Nazionale,S.Milano,D.Biologia,V.

Celoria,InVivoChangesoftheOxidation-ReductionStateofNADPandofthe ATP/ADPCellularRatioLinkedtothePhotosyntheticActivityin

Chlamydomonasreinhardtii1,vol.132,no.July,pp.1464–1474,2003. [48]D.Hutchings,S.Rawsthorne,M.J.Emes,Fattyacidsynthesisandtheoxidative

pentosephosphatepathwayindevelopingembryosofoilseedrape(Brassica napusL.),56,412,577–585,2005.

[49]L.Michelet,M.Zaffagnini,S.Morisse,F.Sparla,M.E.Pérez-pérez,F.Francia,A. Danon,C.H.Marchand,S.Fermani,P.Trost,S.D.Lemaire,Redoxregulationof theCalvin−Bensoncycle:somethingold,somethingnew,PlantPhysiol.4 (November)(2013)1–21.

[50]J.P.Jacquot,J.Vidal,P.Gadal,Identificationofaproteinfactorinvolvedin dithiothreitolactivationofNADPmalatedehydrogenasefromfrenchbean leaves,FEBSLett.71(2)(1976)223–227.

[51]J.P.Jacquot,J.Vidal,P.Gadal,P.Schürmann,Evidencefortheexistenceof severalenzyme-specificthioredoxinsinplants,FEBSLett.96(2)(1978) 243–246.

Riferimenti

Documenti correlati

The tool can be used for the comparison of the performance in terms of energy requirements and balance between various crops, fields, operational practices and

Some years ago the problem of supplying water was solved, but the water is not drinkable (it comes twice a week). The residents are out to buy the drinkable water.

The failure of the Sgorigrad tailings dam occurred after three days of heavy rains. The basin was in “high pond” conditions and the tailings were saturated. The decant towers had

Text (Natural Language) Semantic Parsing Word Sense Disambiguation Entity Linking Discourse Representation Structure DBPedia Entities WordNet Synsets Semantic Roles FrameNet

When common genes between different gene sets, including targets of viral and human miRNAs and genes downregulated in EBV-positive ID-BL were searched, they significantly

Questo fa della informazione un sistema relazionale, che lega emittente, messaggio e destinatario, piuttosto che la semplice trasmissione di un messaggio; nel senso che il

In questo senso spiega ad Alcibiade che, se desidera continuare ad essere amato da lui, deve impegnarsi ad essere “il più bello possibile” (Alc. È adesso, a suo avviso,

The findings from the micro- level analysis suggest that migrants from Eastern and Southern Europe show impor- tant differences compared to native- born people regarding