• Non ci sono risultati.

A 3-axis accelerometer and strain sensor system for building integrity monitoring

N/A
N/A
Protected

Academic year: 2021

Condividi "A 3-axis accelerometer and strain sensor system for building integrity monitoring"

Copied!
7
0
0

Testo completo

(1)

SensorsandActuatorsAxxx (2011) xxx–xxx

ContentslistsavailableatSciVerseScienceDirect

Sensors

and

Actuators

A:

Physical

j our na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

A

3-axis

accelerometer

and

strain

sensor

system

for

building

integrity

monitoring

J.

Santana

a,∗

, R.

van

den

Hoven

a

, C.

van

Liempd

a

, M.

Colin

b

, N.

Saillen

c

,

D.

Zonta

d

,

D.

Trapani

d

,

T.

Torfs

e

,

C.

Van

Hoof

a,e

aimec-HolstCentre,Eindhoven,TheNetherlands bMEMSCAP,Grenoble,France

cThermoFisherScientific,Enschede,TheNetherlands dUniversityofTrento,Italy

eIMEC,Leuven,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9August2011 Receivedinrevisedform 10November2011 Accepted11November2011 Available online xxx Keywords: Signal-to-Noiseratio Linearity Bandwidth Sensitivity

Integratednumberofpulses Residualmotion

a

b

s

t

r

a

c

t

AnUltra-Low-PowerreadoutarchitectureforcapacitiveMEMS-basedaccelerometersandstrainsensors

ispresented.Thesystemcanreadbothaccelerometersandstrainsensorsinahalf-bridgeconfiguration.

AnaccurateVerilogAmodelofthesensorwasmadetoimprovesimulations.Thegainofthesystemis

controlledbyintegratingpulsesfromtheexcitationcircuitallowingaccuratecontrolofthe

Signal-to-Noiseratio.AFigure-of-Meritof4.41×10−20F(W/Hz)wasachievedforasensorrangeof±2.0gand

±20,000␮␧ overa100Hzbandwidth.Aminimumof440nWpowerconsumptionwasrecorded.Residual

motionartifactsarealsocancelledbythesystem.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Anaccuratesensingofsignalsrequiresinnovative,flexibleand powerefficientreadoutarchitectures. Infieldssuchas building integritywhichuseawiderangeofcapacitiveMEMS/NEMS-based devices,suchasaccelerometersandstrainsensorswithdifferent actuationvoltages,sensitivitiesandresolutions,thespecifications ofthesensorandsystemareincreasinglydemanding.Resolutions of1mgand10␮␧arerequiredfortheaccelerometerandstrain sen-sorrespectivelyandarangeof±2.0gand±20,000␮␧overa100Hz bandwidthtosenseaccelerationsandstresses.Thisisessentialfor theassessmentofstructuresduringandafterseismicevents.

ThisworkintroducesauniqueUltra-Low-Powersystemwhich canbeappliedtoMEMS-basedcombfingercapacitive accelerome-tersorstrainsensorsinahalf-bridgeconfiguration[1].Anaccurate behavioralmodelofthesensor(inVerilogAlanguage)wasmade inordertosimulatethefullsystemandimproveitsperformance. In comparison with current modulation–demodulation readout techniquesthegainofthesystemcanbesetbythenumberof inte-grationpulsesNcomingfromtheexcitationvoltage,optimizing

∗ Correspondingauthor.Tel.:+31404020548;fax:+31404020699. E-mailaddress:juan.santana@imec-nl.nl(J.Santana).

thenSNRandbandwidthwithpower.Inadditionthearchitecture suppressesmotionartifacts[2,3]suchasresidualmotion.

2. Sensors

Theaccelerometersensorconsistsof2transversecombfinger structures(XandYaxis)and,apendulatingonefortheZaxis(Fig.1). Thesensorsare madeusinga capstructure (Fig.2), its pur-poseistwofold;itprotectstheMEMSstructureandalsoformsthe counterelectrode fortheZsensor.Innovativecapthrough con-nectionswereused.ThecapitselfismountedtotheMEMSwafer byusingametal–siliconeutecticbondingprocesses.Themetalfor thesealingringisalsousedtorealizetheelectricalconnections betweenthecapandtheMEMSwafer.Theaccelerometerwas fab-ricatedwithasurfacemicro-machinedprocessfromaSOIwafer 85␮mthick.Thesensorhas78fingerswithatotalsensitivityof 2.02pF/g.TheZsensorhasanareaof2.17mm2perplate.

The main tradeoff in thedesign of theaccelerometer is the sensitivity–bandwidth–linearityinallthreeaxes,achallengefor thedesigngiventhedifferentusedstructures.

Thestrainsensorisalongitudinalcombfingercapacitor(Fig.3). Thesensorconsistsofthreeparts:theconnectorarea(for connec-tiontothereadout),theflexiblearea(tosustainthestrainandstress ofthebars)andthesensorarea(theactivedevice).Thestrainsensor 0924-4247/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved.

(2)

ARTICLE IN PRESS

GModel

SNA-7579; No.ofPages7

2 J.Santanaetal./SensorsandActuatorsAxxx (2011) xxx–xxx

Fig.1.3-Axisaccelerometerarrangement.

Fig.2.Crosssectionoftheaccelerometersensor.

Fig.3.3Drepresentationofthestrainsensor.

fabricationusesaSOIwaferwitha500␮mthickhandle,50␮m thickfingersand2␮mthickoxidelayerwith400fingersinthe sensorandithasasensitivityof0.133fF/␮␧.

Twoanchorswereetched-outofthesurfacetocreatethe neces-saryclampstoattachthesensortotherebarofapillar.Thefingers areprotectedwitha borosilicateclasscap.Thespecificationsof theMEMS-basedsensorsusedinthisworkaregiveninTable1. Thevoltagevs.frequencyresponseoftheaccelerometeras func-tionofpressureisshowninFig.4.Theplotshowsthetransition oftheaccelerometerfromanover-dampedsystem(at820Torr)to anunder-dampedsystem(at3Torr).Thetemperaturedependence oftheaccelerometerandstrainsensoriscompensatedbyusinga temperaturesensorclosetotheaccelerometer/strainsensorand usinglookuptablesforcalibration.Nolongtermdriftisexpected becauseofthegoodagingpropertiesofsiliconinthecapwafer. Fineleakscouldappearinthebondinglayerswhichwillmakethe

Table1

Accelerometerandstrainsensorspecifications.TheX,YaxissensorsandZaxisare givenseparate.

Parameter Accelerometer Strainsensor

Basic 20pF(X,Y) 5.3pF

Capacitance 20pF(Z)

0.34mg(X,Y) –

0.5mg(Z)

Mechanicalsensitivity 0.4–0.06␮m/g 3nm/␮␧ Electricalsensitivity 0.23–2.02pF/g(X,Y) 0.133fF/␮␧

0.38–0.94pF/g(Z)

Resonant 785–2080Hz(X,Y) 56kHz

Frequency 780–1015(Z)

Pull-involtage 2.3–5.4V(X,Y) –

0.95–1.3V(Z)

Fingergap 3␮m 4␮m

pressuretoriseinsidetheMEMScavitybuttheseissuesarebeyond thescopeofthepaper.

Fig.5 showsthefabricatedsensorsandthereadoutASIC.As mentionedinpreviousparagraphsthesamereadoutASICisused forboththeaccelerometerandstrainsensors,makingthisa cost-effectivesolutionwhencomparedtoothersystems.

3. Behavioralmodelofthesensor

AsmentionedinSection1anaccuratemodelofthesensoris necessaryinordertooptimizethedesignofthereadout.Asthe trendforlow-powercontinuestorequirepowersavingsystems anoptimumtrade-offbetweensensorsandreadoutisnecessary toreachsuchdemandingexpectations,thereforeaccurate mod-elsofthesensorswhichcanbeusedalonginthetransistor-level simulationsarerequired.Suchmodelshavebeenknownfor sev-eralyearsandinseveralforms,look-uptables,behavioralmodels, macro-models,etc.Inthisstudyabehavioraldescriptionlanguage waschosentomodelthesensor,namelyVerilogA,mainlybecause itisatoolincludedintheuseddesignenvironment.

Avariablecapacitorwiththreeterminalswasmadeto simu-latethesensors;thethirdterminalsimulatesthedisplacementof themasswhenanexternalforceisappliedtotheaccelerometer, suchasthatcomingfromanearthquake,orstressinthecaseofthe stresssensor.Ineithercasethemodelcanbeeasilycustomizedto eachsensor,aparameterizedmodelwasdevelopedsotobeeasily adaptedtodifferentrequirements.

(3)

J.Santanaetal./SensorsandActuatorsAxxx (2011) xxx–xxx 3

Fig.5.Microphotographoftheaccelerometer,strainsensorandreadoutASICchip.

4. Readoutarchitecture

Thereadoutarchitectureofthesystemhasbeendescribed else-where[10].Itsmaincharacteristicsaresummarizedinthenext paragraphs.Theprincipleofoperationisbasicallytheonedepicted inFig.6.Whenanaccelerationforceappearsinthesensor,Fig.6(a), theanti-phaseactuationvoltagesappliedtothecapacitorsshown inFig.6(b)aremodulated.Currentpulsesflowintwodirections,as showninFig.6(c).AteveryrisingedgetheswitchesS1andS2are openwhiletheINTEGRATEswitchisclosed(Fig.7).

Thecurrent pulseis integrated inthefeedback capacitorCf, showninFig.6(d).Thesystemhasseveraladvantagesthathelpto compensateproblemsrelatedwiththesensorsuchasoffsets, non-linearity,intrinsicgain,sensor’smismatch,etc.Varyingtheduty cycleoftheactuationvoltage,forexample,cansettheoptimum SNRandgainforthesensorsinvolved.Varyingtheamplitudeofone oftheexcitationvoltageswithrespecttotheothercancompensate foroffsetsornon-linearities.Forthecaseofthestrainsensorsimilar behaviorissimulatedwiththeonlydifferencethatthefrequency ofthesignalisclosetoDCandthemassofthesensorissmall.

Fig.6. Variablecapacitorelectricalmodelresults.(a)Proof-massdisplacementattheinputofthemodel,(b)excitationvoltages,(c)currentpulsesatoutputofhalf-bridge, and(d)onlypositivepulsesareintegrated.

(4)

ARTICLE IN PRESS

GModel

SNA-7579; No.ofPages7

4 J.Santanaetal./SensorsandActuatorsAxxx (2011) xxx–xxx

Fig.7.ArchitectureofasinglechannelofthereadoutASICandsin(x)/xresponseofthesystem(inset).

Fig.7showssinglechannelarchitecturereadoutaswellasthe sin(x)/xsystemresponse.Itdiffersfromcommonlyuseddesigns

[2,3]bydecouplingtheoutputofthesensorfromtheinputofthe

chargeamplifier(OTA)byaseriescapacitorC1andswitches con-nectedtoarbitraryvariablereferencevoltagesVREF1andVREF2. Thefunctionof C1is levelshifting, toallowa different operat-ingpotential betweentheoutput of thesensors and theinput of the OTA. In this way the excitation voltages of the sensor canbeunipolar, while still allowingDC signalprocessing from thesensorssignals.Thearchitecturedifferssignificantlyfromthe modulation–demodulationapproach,whichisregularlyusedfor similardevicesandusesmorepower.

Architectureshavebeenreported[1–4]inwhichlinearity, res-olution,bandwidthor gain isalwaysmatched totheparticular typeof device.In somedesignsthechannel architectureis tai-loredtothepropertiesofthesensorand,althoughsomeflexibility is added as shown in [7–9], its performance is not optimum (FOM=1.0×10−18F√(W/Hz)).

Inthisworkthenumberofpulses(N)canhoweverbe arbitrar-ilysetdependingonthedesiredSNR,bandwidthorgain.Tofirst ordertheseparametersarerelatedbythefollowingrelationships: thegainisproportionalwithN,sinceallNintegratedpulsesare added.ThebandwidthisproportionaltotheinverseofN,sincethe samplingtimeisproportionaltoNandtheSNRisproportionalto thesquarerootofNbecausegainisincreasingwithNandnoiseis onlyincreasingwithsquarerootofN.Thisisoneofthekeyissuesof theproposedarchitecture,itsolvestheissueofsettingthegainof thesystembyincreasing/decreasingthenumberofpulsesinstead ofswitchingbetweenintegratingcapacitorsofdifferentsizes.The readoutgainhaslittletemperaturedependency,non-linearityand hysteresis,sincetheintegratedcapacitorCf,theOTAperformance andclockfrequencyareverystable.

Thedevelopedsystemhastheaddedadvantagethatthesame readoutcanbeusedtosenseaccelerationandstrainwiththe pur-poseof reducing powerconsumption and making it more cost effective,thereisnoneedtofabricatetwodifferentreadoutsto processtheinformationcomingfromthetwotypesofsensors.In principlethesignalsfromthetwotypesofsensorscouldbe mul-tiplexedattheinputofthereadout,thus usingonlyonesingle channeltoamplifytheirsignalsbyalternatingthereadingofthe sensorsinapredeterminedsequence.Neverthelessthe accelerom-eterhas tobe alwaysswitched-on. One way toovercome this

requirementisbyoperatingthereadoutinalow power(lower bandwidthandSNR)modeandswitchedtohighresolution acqui-sitionmodeincaseofanearthquakeevent.Thestrainsensoris usedforcertainperiodsoftimeandatime-sharingschemewould makethedecisiontoalternatebetweentheaccelerometerandthe strainsensorwithoutjeopardizingthedataacquisitionbandwidth andSNRimmediateafteranearthquakeoccurred.

4.1. Measurements

Forthepurposeofsimulationofthewholesystembothsensors weremodeledinahighleveldescriptionlanguage,namely Ver-ilogA,asapairofvariablecapacitorsproducinga10%Cfullscale. Themodelallowsthedesignertoaccuratelyassessthegain,noise, sensitivityandmotionartifactswithinthecircuitdesign environ-mentwithlesscomputationaleffort.Resultsareingoodagreement withsimulations;thenextparagraphsshowthemeasurements.

Fig.8showsthemeasurementsoftheaccelerometersensorwith theproposedreadout.Inthefigurethreechannelsareplotted cor-respondingtoX,YandZdirectionsandcomparedtocommercially available accelerometers, namely PCB piezoelectric transducers model393-B12and393-B31[11].TheWLdatacorrespondstothe sensorsandreadoutdesignforthisworkwhereastheBdata corre-spondtothecommercialdevices.Bothsystemsandobtaineddata complywithspecificationsforbuildingintegrity monitoringbut thedevelopedreadoutconsumeslesspowerthanthecommercial one.

Asshownin[10]theresolutionis80dB(13-bit)forvibration tonesbetween10and100Hzandnon-linearity<1%.The accelera-tionmeasurementsaremeantforrecordingthebuilding’sresponse during an earthquake event; the measured system noise floor (readoutplussensor)of70␮g/√Hziswellinlinewiththepurpose oftheapplicationanddoesnotdegradetheexpectedperformance ofthesystemasshownin[13].MEMS-basedaccelerometerslike theSTMicroelectronicsLIS3L02ALhavea50␮g/√Hznoisefloor fora±2grange[14]andtheCrossbowCXL10TG3a20␮g/√Hzfor a±2grange[15]buttheirpowerconsumptionisintheorderof mW,smalleraccelerationrangeandarelargerinsize,therefore notsuitableforoperationoverextendedperiodsoftimewithout rechargingorreplacingbatteries.

ThereadoutisDCcoupledthereforeabletoreadverylow fre-quencysignals.Thisrepresentsanadvantagecomparedtostandard

(5)

J.Santanaetal./SensorsandActuatorsAxxx (2011) xxx–xxx 5

Table2

PowerconsumptionatVDD=1.6V.

Current Power Amplitude Non-linearity

2.51␮A 4.00␮W 57.1mV/g 1.24%

0.44␮A 0.70␮W 52.7mV/g 1.05%

0.33␮A 0.52␮W 43.5mV/g 1.73%

0.19␮A 0.30␮W 21.6mV/g 6.30%

modulation–demodulationschemes,whicharealwayslimitedtoa specificlowfrequencyvalue,thusallowingforthereadoutof sig-nalssuchasthosefromastrainsensor.Fig.9showstheresultsof strainsensormeasurementswhenmountedonatestrebar.

Testsweretakenoveratimespanofover2000sunder con-tinuoustensilestrainandreleasetosimulatethestraincondition expectedinthesteelreinforcementofaconcretebuildingduringan

earthquakeaction.Thesteelbarwastakenbeyonditselasticlimit, correspondingtoaloadcapacityofapproximately140kNanda yieldstrainof2000␮␧.Thedatawerecomparedtocommercially availablesystemscompliantwiththespecifications.More specif-icallythereferencesensorsareresistivemetalfoilstraingauges HBMmodel LY41-3/700[12].Consistentlywithpreviousresults

[10],thetestconfirmsthatsensorsandreadoutareableto mea-sureoverarangeof±20,000␮␧,whichcorrespondstotheultimate designstrainconditionofsteelreinforcementundersevereseismic action.

Fig.10showsthemeasurementsofthesensitivityversusthe integratednumberofpulsesNfortheaccelerometer.Asexpected thesensitivityofthereadoutisproportionaltothenumberofpulses N,whiletheintegratednoiseisproportionalto√N.The measure-mentsweretakenwitharateof200samples/s.

Fig.8.MeasuredaccelerationsignalsforX,YandZchannelscomparedtocommercialdevices(N=24pulses).

Fig.9. (a)Testrebarmountingofthestrainsensoralongwiththereferencegauge(topright).(b)Loadvs.strainplotfortest(WLdata)andreferencesensors(SGdata).(c) Strainvs.timehistorymeasurements.Thepositionofthesensorintherebarisalsoshownintheinset.

(6)

ARTICLE IN PRESS

GModel

SNA-7579; No.ofPages7

6 J.Santanaetal./SensorsandActuatorsAxxx (2011) xxx–xxx

Table3

Comparisonwithstate-of-the-artcapacitivereadouts.

Parameter Denison[5] Paavola[6] Thiswork

Accel/strainsensorrange ∼±1g ±2g ±2.5g

±20,000␮␧

Supplyvoltage 1.7–2.2V 1.0V 1.6/3.0V

Power 1.5␮W 1.5␮W 440nW/15␮W

Sensitivity 125mV/g – Variable

Noisefloor(acceler.) 1mg/√Hz 704␮g/√Hz 70␮g/√Hz

Non-linearity <1% – <1%(accel.)

<0.6%(strainsensor)

Bandwidth 10Hz 1Hz 100Hz

Figure-of-Merit 8.1×10−22F(W/Hz) 4.41×10−20F(W/Hz)

1400␮W␮g/Hz 881␮W␮g/Hz

Technology 0.8␮mCMOS 0.25␮mCMOS 0.25␮mCMOS

Activearea – 2.25mm2 2mm2

Fig.10.Measuredsensitivityandtotalintegratednoisefortheaccelerometervs. numberofpulsesN.

Thesensitivityandrangeofacceleration(orstrain)canbeset accordingtothedeviceandapplicationspecifications.Alternative methodshavebeenreportedelsewhere;thesettingsof reconfig-urablebuildingblockscreateanadaptablegenericarchitecturefora widerangeofcapacitivesensors[9].Neverthelesspower consump-tionremainshighandnotadequateforlowpowerapplications.In thisworkthereadoutwasdesignedtooptimizepower consump-tion.Previousresultsshownin[10],withVDD=3.0Vshowapower

consumptionof15␮W.Withabiasvoltageof1.6V,improved lev-elsofpowerconsumptionforthereadoutcircuitcanbereachedas showninTable2.

Theamplitudeofthesignaldecreasesbyafactorof10butthe powerconsumption decreasesbyafactorof 100while keeping therestoftheparametersasinthecaseof3.0V.Theresultsin thetableshowalsothenon-linearityvalueswhicharestillwithin specifications.Attheminimumpowerconsumptionof330nWthe non-linearityincreasesto6.30%whichistheextremecaseofthe operatingrangeofthesensorsystem.Theexperimentalresultsare showninFig.11.

Inspiteoftheamplitudeofthesignalbeinglowerthesystemcan compensatebyintegratingmorepulses,asmentionedinprevious paragraphs,andthereforerestoretheDynamicRangetofull rail-to-rail.Thesystemresponsetimewilldecreasebutforthetarget applicationsthisdoesnotrepresentamajorproblem.

5. Conclusions

Results show that the readout architecture can work with Ultra-Lower-Powerconsumptionwhilekeepinglinearityunderthe expectedperformance.Batterylifetimeisthenextended to sev-eralyears’operation.Comparedtothefiguresofmeritproposed

in[5,6]thisworkhas4.41×10−20F√(W/Hz)and881␮W␮g/Hz,

Fig.11.Signalamplitudeat1.6Vforseveralbiascurrentvalues.

respectively.Theproposedarchitecturehasthelowestreported equivalentaccelerationnoiselevel,highestbandwidthandhasthe uniqueadvantageofofferingtradeoffbetweenSNR,bandwidthand power.Whencomparedtocommercialaccelerometersandstrain sensorsthereadoutofferstheusercompetitivespecifications.The designwasfabricatedonTSMC0.25␮mCMOSwithM-i-M capac-itors.Thetotalpowerconsumptionof the3channelsis15␮W. The clock and excitation voltages for the sensors are external. Recentmeasurementsshowthatthearchitecturecanworkwith lesspowerconsumption(0.52␮W)stillwithintheexpectedrange ofaccelerationandstrain(Table1).

Table 3 shows thebenchmarking of the proposed

architec-ture.No similarsystem hasbeenreportedwhich handles both accelerometers and strain sensors with a minimum of power consumption,lownoisefloor,variablesensitivityandlarger band-width.Mostofthesystemsreportedarecustom-madesystemsfor aparticularsensor(whichusuallyhasalargesensitivityina nar-rowband)withlow-powerconsumption.AlsoshowninTable3is thelowestpowerconsumptionmeasurementreported.

The presentedsystem candeal withdifferent sensors with-outjeopardizingthepowerconsumption,importantin building integritymonitoringwhichrequiresbatteryoperatedsystemsfor severalyears.Italsorepresentsaverycosteffectivesolutionsince thesamereadoutcanbeusedforaccelerometersorstrainsensors, makingtheintegrationofthefinalmonitoringsystemsimplerand cheaper.

Flexibilityis alsoa majorassetfor thesystem,sensors with differentsensitivities,offsetsandmismatchcanbeeasilyreadout modifyingthetiminganddutycycleoftheexcitationpulsesand thenumberofintegratedones.Asinglereadoutsystemforboth accelerometersand strain sensorsmakesthesystemmore cost effectiveandpowersaving.

(7)

J.Santanaetal./SensorsandActuatorsAxxx (2011) xxx–xxx 7

Acknowledgments

ThisworkispartoftheHuman++Programofimec-HolstCentre, TheNetherlands,andpartiallyfundedbytheMEMSCONproject (EC SeventhFramework ProgrammeGrant Agreement n. CP-TP 212004-2).

References

[1] M.Suster,etal.,AhighperformanceMEMScapacitivestrainsensingsystem, JournalofMicroelectromechanicalSystems15(5)(2006)1069–1077. [2]C.Yi-Chen,LinearProgrammableSwitch-CapacitanceGainamplifier,USPatent

No.2008/0297243,December4,2008.

[3] M.Weng,etal.,Ahigh-speedlow-noiseCMOS16-channelcharge-sensitive preamplifierASICforAPD-basedPETdetectors,IEEETransactionsonNuclear Science5(4)(2005)898–902.

[4]ADXL330Datasheet,Small,LowPower,3-Axis±3giMEMSAccelerometer, AnalogDevices,Inc.,2007.

[5] T.Denison,etal.,A2␮Wthree-axisMEMS-basedaccelerometer,in: Instru-mentationandMeasurementTechnologyConference–IMTC2007,Warsaw, Poland,May1–3,2007.

[6]M.Paavola,etal.,Amicropower-basedinterfaceASICforacapacitive 3-axismicro-accelerometer,IEEEJournalofSolid-StateCircuits44(11)(2009) 3193–3210.

[7] B.Boser,T.Howe,Surfacemicromachinedaccelerometers,IEEEJournalofSolid StateCircuits31(March(3))(1996)366–375.

[8]S.R.Hunter,LowNoiseRadiationSensor,USPatentNo.2008/0122453,May29, 2008.

[9] W.Bracke,etal.,Genericarchitecturesanddesignmethodsforautonomous sensors,SensorsandActuatorsA:Physical135(2)(2007)881–888. [10]J.Santana,etal.,A3-axisaccelerometerandstrainsensorsystemfor

build-ingintegritymonitoring,in:ProceedingsoftheTransducers2011Conference, Beijing,China,2011,pp.36–39.

[11] http://www.pcb.com/specsheet.asp?model=393C.

[12]http://www.disensors.com/downloads/products/Y%20Series%20Strain %20Gauges333.pdf.

[13] A.Amditis,etal.,Wirelesssensornetworkforseismicevaluationofconcrete buildings,in:Proc.5thEuropeanWorkshoponStructuralHealthMonitoring (EWSHM2010),Sorrento,Italy,29June–02July,2010.

[14] http://datasheet.octopart.com/LIS3L02AL-STMicroelectronics-datasheet-603974.pdf.

[15] http://pdf.directindustry.com/pdf/crossbow/the-tg-series-accelerometers/19299-72237-2.html.

Biographies

JuanSantanaobtainedhisPhDinSemiconductorDevicesfromtheUniversityof Lancaster,U.K.andin1992joinedtheengineeringdepartment.In1997hejoined CINVESTAV,aresearchcentreinMexico.From1998to2001hedirectedthe Semi-conductorTechnologyCentre(CTS)ofCINVESTAV.Heworkedasacommissioned engineerinseveralASICprojectsforautomotiveapplicationsforATMELCorp.,in Columbia,Maryland.In2001hejoinedtheMotorolaCenterforSemiconductor Tech-nology.Since2006heworksforHolstCentre,TheNetherlands.Hehaspublished morethan30papersininternationaljournals,supervisedseveralM.Sc.dissertations andholdsonepatent.

RichardvandenHovenstudiedElectronicsattheTechnicalUniversityin Eind-hoven,wherehegraduatedin2006atthegroupMixedSignalMicroElectronics on“Apre-correctionmethodforimprovedstaticlinearityusingparallelDACs”.In

2006hejoinedPhilipsSemiconductors(NXP)inEindhoven,theNetherlands.Since 2007heworksforHolstCentreintheNetherlands,onASICdesignofAnalogto Dig-italconversionandcapacitivereadout.Hehaspublishedtwopapersandholdsone patent.

ChrisvanLiempdisaSeniorResearcheratHolstCentresince2009.Hehasbeen systemarchitectatPhilipsSemiconductors,NXPandSunext.In1998hebecame partofthePhilipsOpticalStoragegroupandplayedamajorroleinseveralprojects inthisgroup.Hehasmorethan30yearsexperienceinanalogelectronics engi-neering.Heis currentlyworkingonDC–DCand AC–DCconvertersforpower managementandenergyharvesting.Hehaspublishedseveralpapersandholds patents.

MikaelColinreceivedaPostgraduatedegreeinOpticsin2000fromthe Univer-sityofSaint-Etienne,France.HesubsequentlyjoinedBookhamTechnologies,UK (2000),andOpsitech,France(2002),asanR&Dengineerwherehemainlyworked indesigningintegratedcomponentsforOpticalNetworks.In2004,hemovedto Memscap,France,asaMEMSdesigner.Hisworkmainlyfocusedonthedesign ofinertialcomponentsforMilitary,Space,BiomedicalandIndustrialapplications andonEnergyscavengingsolutionsusingtheMEMStechnology.Since2011,he worksonthedevelopmentofimplantableenergyscavengersattheTIMAlaboratory, France.

NicolasSaillenisaMEMSProductEngineerwithaM.Sc.degreeinMicroSystems EngineeringfromEPFL,Lausanne.Hehas5yearsexperienceinMSTprocess,product development,andinternationalprojectmanagementatThermoFisherScientific (previouslyC2V).Hisworkinvolves,amongotherthings,thedevelopmentofmicro componentssuchas:aflowsensor,forcesensor,apiezodriveninkjetnozzle,and fluidicvalves.

DanieleZontaachievedhisDoctorateinStructuralMechanicsattheUniversity ofBolognain2000.HeworkedasaPost-DoctoralresearcherattheUniversityof California,SanDiego,intheperiod2000–2001.Hehasbeenvisitingscholaratthe UniversityofMichigan(2010)andatPrincetonUniversity(2009and2011).Since 2001,heisAssistantProfessorofStructuralEngineeringattheUniversityofTrento, teachingprecastconcretebridgedesignandsmartstructures.Hisresearchactivity includes:bridgemanagement;Bayesiandecision-making,structuralhealth moni-toring;fiberopticsandsmartsensortechnologies;allasappliedtocivilstructures. Heisauthorofoveronehundredtechnicalpublications.

DavideTrapanigraduatedin2010incivilengineeringattheUniversityofTrento.He iscurrentlyResearchAssistantintheIntelligentInfrastructuregroupatthesame Universityworkingonthelaboratoryvalidationofsmartsensortechnologies.He authoredfourtechnicalpapers.

TomTorfsreceivedthedegreeofIndustrialEngineerinElectronics,specialization DesignTechnologyin2001fromDeNayerInstitute,Belgium.Heissince2001a systemsdesignengineerinthesensorelectronicsgroupatIMEC.Hehasdesigneda rangeoflowpowerwirelesssensormodules,withafocusonbiopotentialacquisition systemsforbodyareanetworksandautonomoussystems.Hehasalsobeenactive indevelopingdemonstratorsusingIMEC’s3Dand2Dintegrationtechnologyaswell asparticipatinginthedesignofa3Dmodularneedlearrayforinvivoapplications (NeuroprobesEUproject).

ChrisVanHoofisProgramDirectorofMorethanMooreSIPSystemsatIMECin Leuven.HeisalsoAssociateDepartmentDirectorofInterconnect,Packagingand SystemIntegration.HereceivedaPhDinElectricalEngineeringfromtheUniversity ofLeuvenin1992.AtIMEC,hebecamesuccessivelyheadofthedetectorsystems group,DirectoroftheMicrosystemsDepartmentandIntegratedSystems Depart-ment,andProgramDirector.Hisresearchconcernsautonomoussensornodes, focusingonadvancedpackagingandinterconnecttechnologyandsystem integra-tion.Since2000heisaprofessorattheUniversityofLeuvenadvising12doctoral students.

Riferimenti

Documenti correlati

stipulati da autorità diverse dal sovrano e quindi prive di efficacia vincolante per gli Stati. Utilizzando il termine «sponsio», Grozio, si riferiva alla distinzione prevista

body there are at least three planes, called principal planes, with normal vectors, called principal directions, where the corresponding strain vector is perpendicular to the

Users can be given authorization on views, without being given any authorization on the relations used in the view definition!. Ability of views to hide data serves both to

By following the structure of the literature on speculative attacks on fixed exchange rates, it should be considered not only the point of view of the public and private

In particular, this thesis focuses on the presentation of three achieve- ments. The first goal has been to improve the closed-loop control with force feedforward in order to reach

Il nascente sex symbol Valentino, vestendo i panni dell’argentino Julio, in un film che ereditava e potenziava lo spirito patriottico e francofilo dell’autore letterario

Per analizzare l’effetto del carico e delle barriere sulle CWC, vengono proposte le curve ottenute con il pilota nominale. Ad alte velocità la differenza tra la configurazione 12 e

Esistono problemi sempre più pressanti di architettura della rete, di accesso, di interconnessione, di servizio universale, di tutela della privacy, che vanno affrontati