• Non ci sono risultati.

Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications

N/A
N/A
Protected

Academic year: 2021

Condividi "Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications"

Copied!
12
0
0

Testo completo

(1)

Available

online

at

www.sciencedirect.com

ScienceDirect

j ou rn a l h o m epa ge :w w w . i n t l . e l s e v i e r h e a l t h . c o m / j o u r n a l s / d e m a

Aging

resistance,

mechanical

properties

and

translucency

of

different

yttria-stabilized

zirconia

ceramics

for

monolithic

dental

crown

applications

E.

Camposilvan

a,b

,

R.

Leone

c

,

L.

Gremillard

a

,

R.

Sorrentino

c

,

F.

Zarone

c

,

M.

Ferrari

d

,

J.

Chevalier

a,∗

aUniversitédeLyon,INSAdeLyon,MATEISCNRSUMR5510,7Av.JeanCapelle,69621Villeurbanne,France bDepartmentofMaterialsScienceandMetallurgicalEngineering,UniversitatPolitècnicadeCatalunya,C/Eduard

Maristany,10-14,08930Barcelona,Spain

cDepartmentofNeurosciences,ReproductiveandOdontostomatologicalSciences,ProsthodonticArea,University

“FedericoII”,NapoliItaly

dDepartmentofProsthodonticsandDentalMaterials,UniversityofSiena,V.leBracci1,57100,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15July2017 Receivedinrevisedform 24February2018 Accepted12March2018 Keywords: Cubiczirconia Hydrothermaldegradation Monolithiczirconia Dentalcrown Translucentzirconia Aging

a

b

s

t

r

a

c

t

Objectives.Thedentalmarketmovestowardshigh-translucencymonolithiczirconiadental crowns,whichareusuallyplacedeitherwith–orwithout–athinglazelayer.The microstruc-turalfeaturesandthemechanicalperformancesofthesematerialsarestillcontroversial,as wellastheirsusceptibilitytoaging.Thispaperaimsatstudyingtheseaspectsinthecurrent generationofzirconiadentalcrownsshowingdifferentdegreesoftranslucency.

Methods. Fourdifferentcommercialzirconia materialswere investigated,including one standard ‘full-strength’ 3Y-TZP and three grades with improved translucency. The microstructuralfeatures(phase compositionandassemblage,grainsize)werecarefully studied,aswellasmechanicalproperties(biaxialbendingstrengthandindentation tough-ness),translucencyandagingbehavior(inautoclaveat134◦C).Agingwasconductedon crownswithandwithoutglazetobetterrepresentclinicaluses.

Results.Importantdifferencesarefoundintermsofmicrostructuresamongthematerialsin termsofcubicphasecontentandyttriainthetetragonalphase,leadingtodifferentoptical, mechanicalandagingresistanceproperties.Weshowthathighercubicphasecontentleads tobettertranslucencyandstabilityinwatersteam,butattheexpenseofstrengthand toughness.Acompromiseisalwaysinevitablebetweentranslucencyandagingresistance ononesideandmechanicalpropertiesontheotherside.

Significance.

- Evensocalled‘hightranslucent’zirconiaceramicstestedinthisworkshouldbe consid-eredasmediumtranslucencymaterials.

- Agingoccursinstandardstate-of-the-artdentalzirconiaandglazingdoesnotfullyavoid thisissue.However,agingdidnotcompromisestrengthevenafterprolongedduration.

Correspondingauthor.

E-mailaddress:jerome.chevalier@insa-lyon.fr(J.Chevalier). https://doi.org/10.1016/j.dental.2018.03.006

(2)

Amongceramicmaterials,polycrystallinetetragonalzirconia stabilizedwith3mol.%ofyttria(3Y-TZP)hasbecomeone ref-erenceindentistry,duetoitsexcellentmechanicalproperties andgoodaestheticsthankstoitswhitecolorandtooth-like appearance[1].Especiallyintermsofstrength,3Y-TZPisthe onlysingle-oxideceramicthatguaranteesvaluesabove1GPa inbending,allowingthedesignofthin-walledandmulti-unit restorations[2].

Nonetheless,when zirconiawas introducedin the mar-ket,its opacityobliged dental technicians toapply several layersofveneeringceramicsinordertoincreasethe super-ficialtranslucency.Indeed,polycrystallinetetragonalzirconia exhibitsmoderatetranslucency:sincetherefractiveindexn

isdifferentalongthemaincrystalaxesofthetetragonal sym-metry,bothreflectionandrefractionoccuratgrainboundaries leadingtoareductionofthelighttransmittance[3,4]. How-ever,veneeringisasensitiveandtime-consumingprocedure, eventuallyincreasingtheriskofchipping[1–5].

Moretranslucentfull-ceramicmaterials,basedon leucite-reinforced glass-ceramics (first generation) and lithium disilicate(secondgeneration)werethendeveloped success-fully,ascompetitivealternatives tozirconiaintheanterior sites[6,7]. Evenifthe strength ofthesematerials (approxi-mately350–400MPainthecaseoflithiumdisilicate)ismuch lowerthan3Y-TZP,theycanbeusedwithlittleorno veneer-ing,soofferinginsomecasesacomparableperformancefor the sametotal wallthickness[7].Some zirconia-reinforced lithiumsilicateglass-ceramicshavebeenrecentlyintroduced formonolithicrestorationsandshowanincrementalbut sig-nificant increaseof their strength,with reportedvalues of morethan400MPa[8].

In the quest towards a higher translucency of zirconia restorations,novelzirconiagradeshavebeendevelopedand commercializedinthelastyears[9,10].Moreover,pre-sintered blocks are both available as pre-shaded in several tonali-tiesandmultilayeredwithgradientsofchromaanddifferent degreesoftranslucency[11].Thankstotheimproved aesthet-ics,therestorationsmadewithsuchmaterialscanbeplaced without any veneering ceramic(a thin,few microns thick, glazecoatinglayermaybeaddedinvisibleregions),allowinga furtherreductionoftherestorationthickness.Moreover,such so-called‘monolithic/full-contour’restorationsallow decreas-ingtherisksofchipping,theprostheticcostandproduction time[12].

Obtaininga highertranslucency inzirconia can be pur-suedwithseveralstrategies:(a)reducingtheresidualporosity, for example by adding a glassy phase or some sintering

ablythegrainsizesotohavelessgrainboundaries[12],and/or (d)introducingsignificantamountsofcubicphase,whichis opticallyisotropicanddoesnotinducebirefringence[4].All thesestrategiescanbefoundindifferentcommercial zirco-niawithaclaimedimprovedtranslucency.Inparticular,we maynowfindnovelyttria-stabilizedgradeswithahigher con-tentofyttria,whichinturnsleadtoahighercontentofcubic grains[14].However,notonlydothesemicrostructural varia-tions implysubstantial improvementsintheoveralloptical performanceofzirconia, but theyalso inevitablyintroduce noticeablechangesinitsmechanicalpropertiesandlong-term stability,asrecentlyshownbyZhangetal.[15].Concerning long-termstability,ithastoberemindedatthisstagethat (3Y-TZP)isknowntobesusceptibletotheso-called‘hydrothermal degradation’,asuperficialagingphenomenonthatmaytake place,dependingonmicrostructure,compositionandstress state,whenthesurfaceisexposedtohumidenvironmentand moderatetemperatures,includingthosefoundinthehuman body [16]. This agingprocess consists inaslow tetragonal tomonoclinictransformationofthegrainsatthesurfacein contactwithwatermolecules[17].Thissurface transforma-tion isassociatedtotheformationofupliftsonthesurface andeventuallymicro-crackingandgrainpull-out,whichmay induceaprogressivedeteriorationofmechanicalproperties [18].

The first objective ofthis work is to better understand hownewlydeveloped‘highlytranslucent’zirconiagradesare designedinterms ofphaseassemblage(cubicand tetrago-nalphase content)and grain sizetomeet thedemandfor monolithictranslucentzirconiarestorations.Special empha-sisisgiventonovelso-called‘cubic’zirconia,whichhavea limitedfollow-upintermsofmicrostructure-properties rela-tions,includingagingassessment.Itisalsoouraimtostudy themechanicalpropertiesandagingresistanceofthesenew zirconiagradesincomparisonwithstandard3Y-TZPgrades. Mostofagingstudiesofdentalrestorationmaterials(andthis appliestoRef.[15])aregenerallydoneonflatlab-scalesamples andliteratureissparseconcerningrealrestorationsfrom cur-rentzirconiagradesafterachair-sideclinically-representative preparation, whilesurface preparationis known to havea potentialeffectonagingrates[19].Inordertogoastep for-ward, aging studies were thus performed on real crowns, preparedinthesameconditionthanforclinicaluse,withor without the presenceofathin glaze thatisoftenusedfor aestheticalreasons.

(3)

Table1–Summaryofspecimens’labelingandpreparationprocedures. Label Commercial

name

Category NominalY2O3 content (mol.%)

Al2O3 content (wt%)

Heating Hold Cooling

ST AadvaST Full-strength 3 0.2 8◦C/minto

900◦C+10◦C/minto 1500◦C 2h 8◦/min toTamb EI AadvaEI Enhanced translucency 3 0.05

NT AadvaNT Hightranslucency 5.5 0.05 2h 10◦C/mintoTamb

ML KatanaUTML Hightranslucency

multi-layered

>6 Un-known 10◦C/minto1550◦C 2h 10◦C/mintoTamb

- Higher translucency in newly developed zirconia grades mightbeduetoanincreaseingrainsizeand/oranincrease ofthecubicphasecontent,

- Thischangeinmicrostructuralfeaturesshouldmodifytheir stabilityundermoistureandtheirmechanicalproperties, - Thepresenceofaglazeinmonolithicrestorationsmay

mod-ifytheagingprocessbyprovidingaprotectionlayer,ifthe glazeisabletocovertheentiresurfaceincontactwithwater.

2.

Experimental

2.1. Materials

Fourdifferentcommercialzirconiamaterialswerestudied: - Oneconventional‘full-strength’3Y-TZPgrade“AadvaST”

(StandardTranslucency–STgroup),

- Onewithimprovedtranslucency“AadvaEI”(Enamel Inten-sive–EIgroup),

- Onehighlytranslucentandpartiallycubic“AadvaNT” (Nat-uralTranslucent–NTgroup),

- Onehighlytranslucent,partiallycubicandmulti-layeredin chroma“KatanaUTML”(UltraTranslucentMultiLayered).

Allthematerialswereprovidedintheformofcommercial pre-sintered98.5mmdisks.Thefirstthreezirconiaceramics wereprovidedbyAadva,GCTech,Leuven,Belgiumandthe fourthonebyKurarayNoritakeDentalInc.,Aichi,Japan.From thesepre-sinteredblocks,bothfull-contourmolar-crownsand diskswereprepared,accordingtotheproceduresdescribed below.

2.2. Samplepreparation:experimentalcrownsand disks

Foreachmaterial,full-contourmolar-crownspreformswere milledbyCAD-CAMtechnologyfromthepre-sintereddisks. Toobtain thesepreforms, human, sound, intact mandibu-larthirdmolarsextractedforperiodontalreasonswerefirst preparedaccordingtothefollowingstandardizedpreparation geometries:0.5mm circumferential chamferplaced0.5mm above the cementum-enamel junction, axial reduction of 1.2mm, total occlusal convergence of 10◦, occlusal reduc-tion of 1.5mm; all preparation angleswere rounded. Each preparedtoothwas thencoveredwithapowderfordigital scanning(CerecOptispray,SironaDental,Salzburg,Austria) andthree-dimensionally scannedbymeans ofalaboratory opticaldigitalscanner(GCAadvaLabScan,GC,Tokyo,Japan).

The3Dshapeofeachtoothwasdigitized,soastouseitfor thefabricationofCAD–CAMmonolithiccrownsbymeansofa CADsoftware(Exocad,DentalCAD,ExocadGmbH,Darmstadt, Germany).Thefollowingconfigurationofthedigitaldieswas used:coreminimalthickness0.6mm,cementlayerspacing 0.05mm,cementlayerstarting1.3mmfromthefinishingline. Thepreformswerethensinteredaccordingtothe manu-facturer’sspecifications,assummarizedinTable1.Onehalf ofeach crownwas manuallyglazedwithaglaze thickness ranging between 10 and 100␮m, whilethe other half was leftuncoated(seeFig.1).Twodifferentglazesproposed com-merciallywere used:CeraFusion(Komet), basedonlithium disilicate, whichwasfiredat1005◦C during15, andMagic GlazeFlu,firedat900◦Cduring15(WielandZenostar,Ivoclar Vivadent).

Similarly,20disks1.5mminthicknessand12mmin diam-eterwerealsopreparedwithCAD-CAMtechnologyfromeach material.GCdiscsweremilledattheAadvaCAD-CAM Produc-tion Centre(GCEurope,Leuven,Belgium)whiletheKatana discs were milled with Roland DWX-50 milling machine (RolandDGACorporation,Irvine,CA,USA).Theyweresintered underthesameconditionsasthecrowns,soastoexhibitthe samemicrostructureandphaseassemblage.Thespecimens werepreparedandwet-finishedinagrinder/polishermachine with600gritpaperuntiltheexperimentaldimensionswere obtained.Then,thespecimenswerewet-polishedwith1200 and2400gritpaperandmirror-polishedwithdiamondpastes (downto1-␮m).Attheendoftheprocess,theroughnessRa wasmeasuredtobelessthan20nm.Finally,thespecimens wereultrasonicallycleanedindistilledwaterfor10minbefore measurementprocedure.

Thedisks wereusedformechanicaltests aswellasfor translucencymeasurement(afterreducingtheirthicknessto 1mminthatcase,andthenwiththesamepolishing proce-dureasdescribedabove).Fig.1showstheappearanceunder transmittedlightofthe4typesofspecimens,obtainedwith astereoscopeOlympusSZX10underthesameillumination andbackgroundconditions.

2.3. Methods

The experimentalcrowns and disks underwent a seriesof characterization,assummarizedinTable2.Diskswereused to characterizethe grainsize, phaseassemblage and com-positionsincegrainsizemeasurementandX-raydiffraction (XRD)analysisaremoreaccurateonflatsamples.Theywere alsousedtomeasurethemechanicalproperties(strengthand indentation fracture toughness).Onthe other side, crowns wereusedtomeasureartificialagingkineticsinautoclaveand

(4)

Fig.1–(a)Appearanceofthe1mmthicksamplesafterpolishingundertransmittedlight,obtainedwithastereoscope OlympusSZX10underthesameillumination,captureandbackgroundconditions.Fromlefttoright:ST,EI,NT,ML.(b) Imageofafull-contourmolar-crown,withonesideglazedandtheothernot.

Table2–Summaryofcharacterizationmethodsconductedonexperimentalcrownsordisks. Sample

geometry

Grainsize Rietveldanalysis

Translucency Indentationfracture Biaxialstrength

Agingkinetics inautoclave

FocusedIon Beamafteraging

Crowns X X

Disks X X X

theywerealsoinspectedbyFocusedIonBeam(FIB)afteraging, asdescribedbelow.

2.3.1. Microstructure,phaseassemblageandcomposition The microstructures were analyzed by scanning electron microscopy (SEM)on the disks surface after polishing and thermaletchingat1200◦C,1h.

XRD patterns were collected on disks and analyzed for different incident angle ranges with a Bruker D8 Advance equipment,usingaCuK␣radiation.10–75◦2patternswere collected from polished disks to quantify the respective amountoftetragonaland cubicphasesintheas-processed crownsbyaRietveldanalysisemployingthesoftwareTopas 4.0.TheXRDdiagramswerecalculatedusingbothcubicand tetragonalphasesofzirconia.Afirstcalibrationoftheir lat-ticeparametersversus Yttriumconcentration[YO1.5],using datafromScott[20,21]andfromPDFfiles[22],showedthat thelatticeparametersvaryas:

2at.√2=5.078495599+0.003767349·[YO1.5]

ct=5.192521486−0.002903167·[YO1.5]

ac=5.113195432+0.001731149·[YO1.5]

Thus,inthetetragonalphase,atandctlatticeparameters

whereconstrainedusingthefollowingequation: ct=9.10607452−1.08981088.at

Rietveld calculationofthe latticeparametersconducted usingthismethodgaveaccesstotheyttriaconcentrationin eachphase.Italsoenabledtocalculatetheconcentrationof bothcubicandtetragonalphases.

2.3.2. Agingkinetics

26–33◦2XRDscanswereperformedoncrowns(bothglazed and non-glazed)atleveloftheoutersurfaceattime0and after2,6,18,54hofartificialaginginautoclave(134◦C,2bar steampressure).Suchacceleratedagingtestinautoclaveis proposedintheISO13356standardonflatsamples,upto5h duration[23].Inthiswork,ourgoalwastoassessagingkinetics ontherealfinalproduct(asagingmaybesensitivetosurface preparation)anduptolongerduration,keepinginmindthat onehourofsuchanacceleratedtreatmentat134◦Cisroughly equivalentto2–4yearsat37◦C[17].Thesurfacemonoclinic content was quantifiedbymeasuringthe areas ofselected peaksandapplyingtheformulasofGarvieandNicholson[22] andTorayaetal.[24].Between26and33◦,thevolumefraction ofmonoclinicphaseisgivenby:

Vm= 1.311Xm

(5)

Fig.2–SEMimagesshowingthemicrostructureofthe4materialsstudied:ST,EI,NT,ML. where Xm= I ¯111 m +I111m I¯111 m +I111m +I101t withIhkl

p istheareaofthediffractionpeakofthephasep

relatedtotheplane(hkl).

Whenanalyzingtheglazedsurface,adeeperpenetration oftheX-raybeamisneeded.ThusXRDexperimentswerealso performedathigherangles,between53◦and65◦2.

Inthiscase,themonoclinicfractioniscalculatedas: Vm=R+R0.26, with R= 0.448A4 A5−A6, with: A4=Im(003)+Im(221)+Im(122)+Im(310)+Im (−311)+Im(031)+Im(−113)+Im(−131) A5=Im(−222)+Im(131)+Im(−203)+It(103)+It(211) A6=Im(311)+Im(−312)+Im(113)+It(202)

These areas cover the respective angular range: 54◦≤A4<58◦; 58◦≤A5<61◦; 61◦≤A6<64◦. This method isbasedon therelative intensitiesoftheabove diffraction linescalculatedintheoreticaldiffractiondiagrams.

Inordertostudyindetailsthelocaleffectofaglazingon aging, FocusedIon Beam(FIB,nVision40dualbeamstation –CarlZeissAG,Germany)wasemployedtocutandpolisha trenchbetweenaglazedareaandanon-glazedspotofselected aged crowns,after depositing a stripof protectiveCarbon. Thesub-surfacemicrostructure wasthen observedby Sec-ondaryElectron(SE) andbackscattered(BSE)images,which canrevealthepresenceofphasetransformationafteraslight imagetreatment.

Measuringmechanicalpropertiesofcrownsispossible,but islessreproduciblethanmaking simplebiaxialtesting and needsspecialcautionintheanalysis,especiallywhenweare willing toobtain astrength data. Therefore, aging kinetics weremeasuredoncrownsbuttheeffectofprolongedagingon themechanicalintegrityofthematerialswasdoneonsimple geometries.10STand10EIdisksweresubjectedtoartificial degradationfor18hinordertoassesspotentialeffectofa pro-longedagingonbiaxialbendingstrength,obtainingsamples that werelabeled, respectively,ST-A andEI-A. Indeed,only thesematerialswereshowingsignificanttetragonalto mon-oclinictransformationonexperimentalcrowns(seeSection 3).

2.3.3. Mechanicalandopticalproperties

Biaxialstrengthwasmeasuredondisksbymeansof piston-on-three-ballsstrengthtests,accordingtoISO6872standard using10diskspergroup.Thefracturesurfaceofaged materi-alswasobservedbySEM.Indentationfracture(IF)toughness andhardnesstestswereperformedonpolisheddisksurfaces

(6)

Fig.3–XRDrepresentativepatternsofthematerials studied.

byusingaVickersindenterandanappliedloadof10kgfor 10s.TheIFtoughnessvalueswerecalculatedfromthe sur-facelengthofthecracksdevelopingatthecornersofVickers indentusingtheformulaproposedbyNiihara[25].These val-uesaremeanttohaveonlyacomparativesignificance,since thispracticalmethodpresentsseverallimitations,especially whenappliedtophase-transformingmaterials[26].

Total transmittance (Tt%) and Contrast Ratio (CR) were measuredbya spectrophotometer(JascoY-670, France),on thedisksafterhavingreducedtheirthicknessto1mmand finepolishing(1-␮mdiamondpaste).TheCRgivesan indi-cationoftheopacityandistheratiobetweentheluminous reflectanceofa specimenover a blackbackground tothat overawhite backgroundofaknownreflectance.CRranges from0(totaltranslucency)to1(totalopacity)[27].Thevalues measuredat555nmwavelengthwerechosentocomparethe differentmaterials,accordingtothedefinitionofthe Interna-tionalCommissiononIllumination[28].

Theresultsweretreatedstatisticallywithone-wayanalysis ofvariance(ANOVA)withaTukeypost-hoctest,employingthe softwareMinitab.p-valuewassetat0.05.Meanvaluesplus standarddeviationsarepresentedintheresults,whileletters onthechartsindicatethestatisticallysignificantdifferences.

3.

Results

SEM images of the samples microstructure are shown in Fig. 2. Thegrain size, measured by the intercept method, is reported in Table 3. ST shows a classical grain size of 0.43␮mfora3Y-TZP,whilethisvalueisreducedto0.33␮m inEI. Both microstructuresare quitehomogenous, whilea bimodalappearanceisfoundinthehighlytranslucent mate-rials,wherethegrainsizeismuchbigger,especiallyinML.

TheresultsofContrastRatio(CR)andtotaltransmittance (Tt%)measurementsarereportedinthesameTable3,showing significantdifferencesinbothparameters.Inorderof increas-ingtranslucency,wefind:ST,EI,ML,NT.

Fig.3showsXRD patternstakenfrom polished surfaces ofthefourmaterialsbeforeagingtreatments.STanEIhave similarpatternsrepresentativeofthetetragonalphase (dou-bletsaround 2=35◦ and 2=60◦),whileinNTand MLthe tetragonaldoubletsalmostfusetogetherinsingle,largepeaks.

Fig.4–Evolutionofthemonocliniccontentmeasuredby XRDafterartificialaging.

Theselargepeaksareinfacttriplets,constitutedbythesum of tetragonal doublets and a single, dominant cubic peak betweenthedoublets,representativeofalargevolume frac-tionofcubicphase.Duetothelargeryttriacontentpresentin NTandMLtetragonalphase(thusasmallertetragonality),the tetragonalpeaksarelessseparatedthaninSTandEI.Rietveld analysisshowedthatallthematerialsarecomposedbya mix-tureofcubicandtetragonalphases,whereapproximately30% of cubic phaseis found inhighly translucent crowns, and about20%isfoundbothinSTandEImaterials,asindicated inTable3.

The aging behavior of the four classes of materials is reportedinFig.4,intermsofmonoclinicvolumefractionat thesurfaceofthenon-glazedsideofthecrownversustime.

NTandMLarefullyresistanttophasetransformationfor theagingtimesappliedhereandnomonocliniccontentwas observedevenafterprolongedduration.Ontheotherside,ST andEImaterialsshowsignificantphasetransformation, start-ingfromveryshortagingtimes(2h).EIisagingfasterthanST until18hofexposure,whiletheyreachsimilarvaluesat54h. Ithastobeconsideredatthatstagethatthepenetrationof theX-raysisabout5␮minzirconia.Moreover,themonoclinic contentobtainedbyXRDisaconvolutedvalueforwhichthe surfacehasahigher‘weight’.Inotherwords,XRDcapturesthe t-mtransformationmostlyfromthefirst1–2␮m.After54hof aging,itislogicaltoseeasaturationofthemonoclinic con-tent,becausethismeansthatallthetetragonalgrainshave transformedonthis5␮m-thicklayer.

Diffractionpatternstakenfromtheglazedsideofdental crowns were readable as well and allowedtomeasure the amount ofmonoclinic phase, since X-rays could generally penetratethroughtheglazelayerandreachzirconiasurface. Insomethickerglazesections,26–33◦2readingsdidnotshow zirconiapeaks,meaningthattheXRDbeamdidnotreachthe zirconiasubstrateforthoseangles.53–65◦2wereusedinthe lattercase.

(7)

Table3–Grainsize,phaseanalysisafterRietveldrefinementandopticalproperties(CRandTt%)forthefourmaterials studied.

Grade Grainsize(nm) Group Tetrag.(%) Cubic(%) %Y2O3intetrag. CR–group Tt%–group

ST 432±40 a 76.8 23.2 2.4 0.74±0.01a 36.9±0.15a

EI 333±27 b 80.3 19.7 2.5 0.70±0.01b 38.4±0.07b

NT 770±93 c 67.8 32.2 6.1 0.62±0.01c 43.4±0.13c

ML 1718±327 d 68.9 31.1 5.9 0.69±0.01d 36.0±0.07d

Fig.5–FIBstudyofanunglazedspotlocalizedinthehighlightedareaof(a),inthemesialsurfaceofanEImonolithic crown.Thespotisobservableathighermagnificationin(b),wherethelineindicatethelocationofthetrench,andthe arrowsthedirectionofFIBmilling.In(c),theunglazedspotidvisibletotheleftwherethearrowsindicatethedirectionof spreadingofthedegradationfromthespot.Thepresenceofglazeisalsorecognizablebythedarkercolorwithrespectto thezirconiasurface.ByimagingtheFIBtrenchwithbackscatteredelectrons,thetransformedvolumearoundthespot becomesclearlyvisiblein(d).Unaffectedmicrostructureisobservableontherightsideofthetrench,wellbelowtheglazed region.Thedashedlineseparatestheagedandnon-agedzirconia.Microstructuraldifferencesareillustratedinthedetail pictures(e)and(f).

No monoclinic phase was found in any of the glazed zirconiaceramics,whatever thetypeofglaze (‘CeraFusion’ or ‘MagicGlaze Flu’), even after prolonged aging exposure, exceptforsomeisolatedcases.Opticalmicroscopy observa-tions revealed that in these cases a significant portion of thesurfacewasleftunglazed.Thesubsurfacearoundsome unglazedspotsofanEIcrownwasthereforestudiedbyFIB (Fig.5)after54hartificialaging,whereSEManalysisrevealed thataging progressedfrom the exposedspot bothtowards thebulkandthesides,inahemisphericalvolumeofradius ∼16␮m.Atthesametime,noagingwasfoundattheinterface zirconia-glazebeyondthisdistance.

Fig.6summarizesthemechanicalpropertiesobtainedfor thedifferentmaterials.STexhibitstrengthvalueswellabove 1000MPa,whileslightlylowervaluesarereportedforEI.For NTandMLthestrengthissimilar,around450MPa.

Hardnesswassimilarforthefourmaterialstested, observ-ing minor differences of less than 0.5GPa. In order of increasinghardness,wefindST,EI,ML,NT.IFtoughnesswas similar between ST and EI (∼4.7MPa√m) and significantly lowerforbothNTandML(∼3.8MPa√m).

Thebiaxialstrengthdidnotshowanyvariationafter18hof artificialagingforST-Amaterials,whileresultssuggestaslight increase(evenifnotstatisticallysignificant)forEI-Asamples. InthecaseofNTandMLmaterials,strengthtestswerenot performedafteragingsinceitwasshownthatthesedonot undergoanyphasetransformationfortheapplied hydrother-malexposure.

SEM observations performed on the fracture surface of 18hours-ageddisks showed amixed inter/transgranular appearanceinthebulkregionofbothofthem.Closetothe surfacethatwasputintensionduringthestrengthtest,the markedintergranularappearanceproducedbymicrocracking

(8)

Fig.6–Biaxialstrengthbeforeandafter18hartificialagingforthefourmaterialsstudiedarereportedin(a),wherethe suffix“−A”indicatesagedmaterials.HardnessandIFtoughnessvaluesareshownin(b)and(c),respectively.Letters indicatestatisticallysignificantdifferences.

(9)

Fig.7–FracturesurfaceclosetothetensileedgeforST-A(a,b)andanEI-A(c,d)representativesamples,respectively. Dashedlinesindicatetheidentifiedborderbetweentheintergranularappearanceinthesuperficialagedlayerandthe mixedinter/transgranularappearanceinthebulk.

intheagedlayerwasrevealed,allowingtoestimateits thick-ness,asshowninFig.7.Thisthicknesswasof∼2␮mforST-A andof5–6␮mforEI-A,respectively,whichconfirmsprevious XRDfindingsonthecrowns:agingissignificantlyfasterforEI samplesthanforSTsampleseitherintheformof experimen-talcrownsordisks.

4.

Discussion

4.1. Microstructure,composition&translucency

Important differences are found in terms of microstruc-tures among the materials studied. The first reason is indeed the yttria content, which is higher in NT and ML (at least ∼5.5mol.%)with respect toST and EI(∼3mol.%). Theseadditionsallowobtainingacombinedtetragonal-cubic microstructure(inagreementwiththezirconia–yttriaphase diagram[20,21])wherethetranslucencyimprovementshould betwofold:cubicgrainsdonotexhibitbirefringencesincethey areopticallyisotropic;moreover,beingthetetragonalgrains

supersaturatedinyttria,theirtetragonalityisreducedandso aretherefractiveindexandtheamountofbirefringence[4].

Adifferenceingrainsizeanddistributionexistsbetween MLandNT, whichcanbeattributedtothedifferent sinter-ingprotocols.TheirCRandTt%isalsosignificantlydifferent, probably in relation to the presence ofa chroma gradient in ML, as it has been shown in the case of colored and non-colored 3Y-TZP [29]. At the end, the potential better translucency ofMLisnottranslatedonmeasured Contrast Ratios(beingquitesimilartoSTandEI).

ThemaindifferencesbetweenSTandEIarethegrainsize, whichissmallerforEI,andthecomposition.Eveniftheyhave the same amountofyttria, theamount ofaluminais sub-stantiallylowerforEI(0.05wt%).Aluminagrainsarerandomly presentinST,likeinotherstandard3Y-TZP,duetothefactthat tetragonalzirconiaisgenerallysupersaturatedinaluminato improveitsagingbehaviorandreinforcethegrainboundaries [15,30].Anexample isobservableinFig.1a,wheretwo alu-minagrainsappearindarkershade.Therefore,theobserved substantialimprovementinCRandTt%forEIwhencompared

(10)

andtheirapplicationasmonolithiccrownsinaestheticfrontal areasmayfindsomelimitations,evenforNTandMLgrades.

4.2. Agingbehavior

The first and obvious evidence is that highly translucent zirconia with at least 5.5mol.% yttria do not suffer from hydrothermaldegradationevenafter54hofartificialaging.It canthereforebestatedthatthesematerialsarefullyresistant toagingunderinvitroconditionsandnoexternalloadapplied. Thisimpliesthatthetetragonalphasemustbesupersaturated inyttriawithrespectto3Y-TZP,andsolesstransformable,as demonstrated byourRietveld analysis.Thisis trueforthe thermal treatments appliedhere, whilea similar behavior cannotbeassuredforlongersinteringtimesorhigher tem-peratures.Infact,theenhanceddiffusionprocessinthelatter casewouldpromoteamorecompleteseparationoftetragonal andcubicphases,thecubicvolumefractionwouldincrease, pumping yttrium from the tetragonal phase, which would becomelessstable,and,eventually,vulnerableto hydrother-maldegradation[32–34].

Anotherimportantpointtounderline isthat hydrother-maldegradationwasobservedinSTandEIstartingfromquite shortagingtimes(2h).HavingEIsmallergrainsizethanST,a sloweragingprocesscouldexpectedbecauseofalower trans-formability[35].Nonetheless,theobservedkineticsisfaster forEI,whichimplies that theeffectofaluminaaddition is moreimportantthanthedifferenceingrainsize,asreported inRefs.[15,36].

Itisshownthatglazingeffectivelyprotects3Y-TZPagainst agingforthetwo glazesexamined hereand evenfor glaz-ingthicknessesoffewmicrometersand54hofhydrothermal exposure.Ontheotherhand,itwasobservedthataperfect glazing,coating100%ofthesurface,ispracticallyvery diffi-cultorevenimpossibletoobtain.Thiscanbetheconsequence of:(a)insufficientcoverageduringtheglazeprecursor appli-cation,especiallyforlithiumsilicateglazesthatareappliedby sprayinformofpowder,whichtendtoleavesomeunglazed spots inassociation with poorwetting duringthe applica-tion or de-wettingduringthermal treatment (assuggested byFig. 5)or difficulty ofglaze applicationon the marginal edge;(b)chippingoftheglaze,whichmayoccurduring cool-ingdue tothermalresidualstresses(associated tothefact thatzirconiaandtheglazedonotexhibitthesamethermal expansioncoefficient).Therefore,ifthematerialis suscepti-bletohydrothermaldegradation,afterglazingitwillinevitably undergotheagingprocessinsomelocalizedareas,asithas beendemonstratedbytheFIB-SEMobservationssummarized inFig.5.Agingwillspreadfromthenon-glazedspotinradial

isthatthisprocesscreatesdamagedlocalizedspotsinstead ofauniformdegradedlayer.Whileinthecaseof polished-and-agedzirconiathemechanicalstrengthof3Y-TZPisonly slightlyaffectedafterlongandseverehydrothermalexposure, thepresenceofthesemicro-crackedpitscouldleadtostress concentrations,whichmighthavecriticalconsequences espe-ciallyinthemarginalarea.Itcouldbeinterestingtofurther studytheimplicationofthisfindingbylookingattheinfluence ofthis‘pittingagingprocess’onthestrengthofagedsamples.

4.3. Mechanicalproperties

Theobservedslightvariationsofhardnesscanbeattributed tovariationsofmicrostructureandphasecomposition.Itis well knownfromtheHall–Petch relationthat, forthe same composition,thesmallerthegrainsize,theharderthe mate-rial,asithappensforEIwithrespecttoST.NTisevenharder duetothehighamountofcubicphase,whichisknowntobe harderthanthetetragonalone[38].MLhasalowerhardness withrespecttoNTduetothebiggergrainsize,beingthecubic phasecontentapproximatelyequalforboth.

Important differences were recorded in terms of biax-ial strength, showingthat ST and EI are atleast twice as strongasNTandML,implicatingahighdifferencebetween full-strengthandlastgenerationhighlytranslucentzirconia ceramics. Thisprovesthatthe tetragonalphase inNTand MLisover-stabilized,havingpoorornotransformabilityfor inducingthebeneficialeffectsofthetransformation tough-eningprocess.Thebiaxialstrengthforthepresentlystudied highlytranslucentzirconiagradesisjustlittlebetterthanfor the best glass-ceramicsavailableon themarket,which are indeedmoretranslucent[7].Therefore,itisimportantforthe dentisttoavoidexpectingasimilarmechanicalperformance from both ‘full-strength opaque’ and ‘translucent’ zirconia ceramics.BothSTandEIfulfilltherequirementsfordental ceramicscapableofsupporting4andmoreunits,eventhough thebiaxialstrengthisslightlylowerforEI.Thedifferencein strengthmightbeexplainedbythefactthatsmallergrainsize meansnormallylowertransformability,soEIisless mechani-callytransformablethanST.Inaddition,amoreintergranular appearancewasreportedforfracturesurfacesof3Y-TZPwith 0.05wt%aluminawithrespecttocompositionswith0.25wt% alumina,meaningthatinthelattergrainboundariesare rein-forced[36].Thisaspectmayalsogiveacontributiontothe observedstrengthdifference.

NostrengthvariationwasrecordedforSTafter18haging exposure,whileaslightincreaseintheaveragestrengthwas measuredforEI.Althoughthisdifferenceisnotsignificant,ST

(11)

andST-ApertaintothesamestatisticalgroupasEI-A,while EIdoesnot.Asdemonstrated,bothSTand EIare suscepti-bletohydrothermalt-mtransformation,with∼35Vm%and ∼45Vm%,respectively,recordedbyXRDat18h.Althoughthe monoclinicphasecontentmeasuredbyXRDinnotvery differ-ent(mainlybecauseXRDonlycapturestheveryfirstmicrons oftransformation,asdiscussedabove),thethicknessofaged andmicrocrackedlayerrevealedbythefractographicimages showninFig.7issignificantlyhigherforEI-Asamples.The differentmechanicalbehaviorcanthereforehavetwo possi-blejustifications:(a)theagedlayerinducessomedegreeof“tip blunting”forthebiggestdefects/cracksnaturallypresent in thematerial[39]:inthiscase,eithertheinitialdefectsofEIare differentinnaturethantheonesofSTandsomoreresponsive tothebluntingeffect(bigger,sharper),orthehigheramount ofmonoclinicphaseinEI-Ainducesadeeperbluntingeffect; (b)sinceaginghasprogresseddeeperinEI-A,thecompressive layerwhichnormallyaccompaniestheagingprocessinthe transitionzonebetweendegradedandnon-degradedmaterial isplacedclosertothecriticaldefectstip,inducinga reduc-tion in their stress-intensity factor. These results show at theendthat hydrothermaltransformationdoes notinduce necessarilyadecrease instrength.Theamountofstrength degradation or improvementis dependent on compressive layerthicknessversusdefectsizeratio andon theamount ofmicro-crackingintheprocesszoneandanygeneralization wouldbeun-correct.

IFtoughnessresultssupporttheabovediscussion, indicat-ingsensiblylowervaluesforNTandMLwithrespecttoSTand EI.Thisdifferencecanbeinterpretedaslower transformabil-ityforthehighlytranslucentmaterials.Ontheother hand, IFtoughnessresultsweresimilarbetweenSTandEI,sothe differenceinbiaxial strength betweenthetwo groupsmay eventuallybenotimputabletoadifferentmechanical trans-formability.Nonetheless,weprefernottospeculatefurtheron thisaspectduetotheintrinsiclimitationsoftheIFtoughness testanditsprecision,whichhavebeenextensivelydiscussed (disputed)byQuinnandBradt[26].

4.4. Clinicalimplications

Someconcernssurroundtheapplicationofzirconiain den-tistry due to the risk of hydrothermal degradation. In the presentstudy,ithasbeenshownthathydrothermal degrada-tiontakesplaceinstate-of-the-art3Y-TZPdentalprosthetic applicationspreparedforclinicaluse.Thisphenomenonwas notdetrimentalforstrengthinthestudiedmaterials,inthese invitroexperimentalconditions,evenafterlongexposures. Althoughthepossibility that cyclicfunctionalor parafunc-tionalloadscouldinducemoresevere–andmaybelocalized –agingprocessstillremainsanopenquestion,theseresults arehighlypositiveasfarastheclinicaluseofzirconia den-talrestorationsisconcerned.Giventhelimitationofin-vitro studiestofullycapturethecomplexclinicalsituation,future clinicalstudiesandanalysesofretrievedzirconiarestorations afterinvivoservice,asproposedrecentlyinRef.[40],willbe necessarytogiveadefiniteanswertothisquestion.

On the other hand, the use ofhighly translucent, non-transformablezirconiamaterialsshouldbecarefullyassessed. If it is true that these materials may be more

translu-cent than standard 3Y-TZPand donotsuffer fromin vitro hydrothermaldegradation,theirtoughnessandstrengthare dramaticallylower.Therefore,manipulationandcrown prepa-rationshouldbedonecarefully,avoidingthinwallsandsharp edgesasmuchaspossible.Havingsimilar(orlittlebithigher) mechanical strength than lithiumdisilicate glass-ceramics but lower translucency,the latteror noveloptions suchas zirconia-reinforcedlithiumsilicateglass-ceramicmuststillbe consideredasanalternativechoicetothesematerials.Other aspectsshouldhoweverbetakeninconsiderationasitisthe caseofdissolutionandwearresistancetofullycomparenewly developed‘cubic’translucentzirconiaandlithiumdisilicatein aglobalpicture.Anyway,theterm‘zirconia’mustnothidethe largediversityofmicrostructuresandpropertiespresentedfor thismaterial’sfamilytodayinthedentalcommunity.

Evenifglazeactsasabarrierforthehydrothermal degra-dation,locationsofun-completeglazingarealwayspresent (atleastintheconditionsofthisstudy).Therefore,theglazing proceduredoesnotrepresentarealprotectionagainstaging oftheoverallcrown,soitshouldbeconsideredonlyfor aes-theticalpurposes.

5.

Conclusion

Inthe currentgeneration ofthe so-called‘tetragonal zirco-nia’monolithic crowns,hydrothermaldegradation operates andcanbeobservedforquiteshortagingtimes.Fortunately, atleast inthe invitro conditions ofthis work,aging does notmeanstrengthdegradation,evenforquitelongduration and significantsurfacetransformation.Glazeactsasa bar-rieragainsthydrothermalagingfortheunderlyingzirconia; nonethelessglazingshouldnotbeconsideredasanabsolute protectionagainstaging,sincesomespotsoftherestoration surfacearealwaysleft unglazed,especiallyinthemarginal regions.

Thepresenceofcubicphaseinhighlytranslucentmaterials entailstwomainadvantages:asensibleincreasein translu-cencyandthecompleteabsenceofhydrothermaldegradation. Ontheotherhand,thelackoftransformationtougheningfor cubiczirconiaandthecoarsermicrostructurecauseasevere dropinmechanicalproperties,whichcanrepresenta limita-tionfortheirapplicationinconditionswherehighmechanical stressesareapplied.

r

e

f

e

r

e

n

c

e

s

[1] ZaroneF,RussoS,SorrentinoR.From

porcelain-fused-to-metaltozirconia:clinicaland

experimentalconsiderations.DentMater2011;27(1):83–96. [2] DenryI,KellyJR.Stateoftheartofzirconiafordental

applications.DentMater2008;24(March):299–307. [3] ZhangY.Makingyttria-stabilizedtetragonalzirconia

translucent.DentMater2014;30(10):1195–203. [4] KlimkeJ,TrunecM,KrellA.Transparenttetragonal

yttria-stabilizedzirconiaceramics:influenceofscattering causedbybirefringence.JAmCeramSoc2011;94(6):1850–8. [5] FerrariM,VichiA,ZaroneF.Zirconiaabutmentsand

restorations:fromlaboratorytoclinicalinvestigations.Dent Mater2015;31(3):e63–76.

(12)

[11] YamadaY,MatsumotoA,ItoY.US2016/0074142A1–zirconia sinteredbody,zirconiacompositionandzirconiacalcined body,productionmethodofthese,anddentalprosthesis. [12] MalkonduÖ,TinastepeN,AkanE,Kazazo ˘gluE.Anoverview

ofmonolithiczirconiaindentistry.BiotechnolBiotechnol Equip2016;30(4):644–52.

[13] Anselmi-TamburiniU,WoolmanJN,MunirZA.Transparent nanometriccubicandtetragonalzirconiaobtainedby high-pressurepulsedelectriccurrentsintering.AdvFunct Mater2007;17(16):3267–73.

[14] ShahmiriR,StandardOC,HartJN,SorrellCC.Optical propertiesofzirconiaceramicsforestheticdental restorations:asystematicreview.JProsthetDent 2018;119(1):36–46.

[15] ZhangF,InokoshiM,BatukM,VanMeerbeekB,VleugelsJ. Strength,toughnessandagingstabilityof

highly-translucentY-TZPceramicsfordentalrestorations. DentMater2016;32(12):e327–37.

[16] HaraguchiK,SuganoN,NishiiT,MikiH,OkaK,YoshikawaH. Phasetransformationofazirconiaceramicheadaftertotal hiparthroplasty.JBoneJointSurgBr2001;83(7):996–1000. [17] ChevalierJ,CalesB,DrouinJM.Low-temperatureagingof

Y-TZPceramics.JAmCeramSoc1999;82(8):2150–4. [18] ChevalierJ,GremillardL,DevilleS.Low-temperature

degradationofzirconiaandimplicationsforbiomedical implants.AnnuRevMaterRes2007;37:1–32.

[19] DevilleS,ChevalierJ,GremillardL.Influenceofsurface finishandresidualstressesontheageingsensitivityof biomedicalgradezirconia.Biomaterials2006;27(10):2186–92. [20] ScottHG.Phaserelationshipsinthezirconia–yttriasystem.J

MaterSci1975;10:1527–35.

[21] ScottHG.Phaserelationshipsintheyttira-richpartofthe yttria–zirconiasystem.JMaterSci1977;12:311–6.

[22] GarvieRC,NicholsonPS.Phaseanalysisinzirconiasystems. JAmCeramSoc1972;55(6):303–5.

[23] ISO13356:2015Implantsforsurgery–ceramicmaterials basedonyttria-stabilizedtetragonalzirconia(Y-TZP). [24] TorayaH,YoshimuraM,SomiyaS.Calibrationcurvefor

quantitativeanalysisofthemonoclinic-tetragonalZrO2

systembyX-raydiffraction.JAmCeramSoc1984;67(6). C-119-C-121.

[30] TsubakinoH,SonodaK,NozatoR.Martensite transformationbehaviourduringisothermalageingin partiallystabilizedzirconiawithandwithoutalumina addition.JMaterSciLett1993;12:196–8.

[31] VichiA,CarrabbaM,ParavinaR,FerrariM.Translucencyof ceramicmaterialsforCERECCAD/CAMsystem.JEsthet RestorDent2014;26(4):224–31.

[32] InokoshiM,ZhangF,DeMunckJ,MinakuchiS,NaertI, VleugelsJ,etal.Influenceofsinteringconditionson low-temperaturedegradationofdentalzirconia.DentMater 2014;30(June(6)):669–78.

[33] ChevalierJ,DevilleS,MünchE,JullianR,LairF.Criticaleffect ofcubicphaseonagingin3mol%yttria-stabilizedzirconia ceramicsforhipreplacementprosthesis.Biomaterials 2004;25(November(24)):5539–45.

[34] MatsuiK,HorikoshiH,OhmichiN,OhgaiM,YoshidaH, IkuharaY.Cubic-formationandgrain-growthmechanisms intetragonalzirconiapolycrystal.JAmCeramSoc 2003;86(August(8)):1401–8.

[35] BecherPF,SwainMV.Grain-size-dependenttransformation behaviorinpolycrystallinetetragonalzirconia.JAmCeram Soc1992;75(3):493–502.

[36] ZhangF,VanmeenselK,InokoshiM,BatukM,HadermannJ, VanMeerbeekB,etal.Criticalinfluenceofaluminacontent onthelowtemperaturedegradationof2–3mol%

yttria-stabilizedTZPfordentalrestorations.JEurCeramSoc 2015;35(2):741–50.

[37] CamposilvanE,TorrentsO,AngladaM.Small-scale mechanicalbehaviorofzirconia.ActaMater2014;80:239–49. [38] GaillardY,AngladaM,Jiménez-PiquéE.Nanoindentationof yttria-dopedzirconia:effectofcrystallographicstructureon deformationmechanisms.JMaterRes2009;24(3):719–27. [39] MarroFG,AngladaM.Strengtheningofvickersindented

3Y-TZPbyhydrothermalageing.JEurCeramSoc 2012;32:317–24.

[40] KoenigV,WulfmanCP,DerbanneMA,DupontNM,LeGoff SO,TangM-L,etal.Agingofmonolithiczirconiadental prostheses:protocolfora5-yearprospectiveclinicalstudy usingexvivoanalyses.ContempClinTrialsCommun 2016;4:25–32.

Riferimenti

Documenti correlati

Sardegna e Sicilia: circolazione di modelli tra le due maggiori isole del Mediterraneo dal Neolitico al Bronzo Antico, in La Preistoria e la Protostoria della Sardegna, Atti della

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable

Moreover, marked heterotrophic denitrification and sulfate reduction processes were detected; although, for the contamination related to synthetic fertilizer, the attenuation

quando Mario improvvisamente deve partire per la guerra e scompare del tutto dall’orizzonte del romanzo (a parte le lettere a cui però Luisa non risponde); una seconda parte dal

Using data from model systems and human dietary interventions, the ability of host:microbiota co-metabolism to impact significantly on the risk of metabolic disease will be

Dalla Vita di Simeone salos, scritta da Leonzio di Neapoli nel VI secolo, apprendiamo che Simeone risiedeva ad Emesa (attuale Homs in Siria) dove, mentre era intento a

Oltre ai benefici di miglioramento della performance nei processi logistici, alla riduzione dei costi di non qualità e alla possibilità di migliorare la tracciabilità del