• Non ci sono risultati.

Brauer groups of 1-motives

N/A
N/A
Protected

Academic year: 2021

Condividi "Brauer groups of 1-motives"

Copied!
22
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Journal

of

Pure

and

Applied

Algebra

www.elsevier.com/locate/jpaa

Brauer

groups

of

1-motives

Cristiana Bertolin, Federica Galluzzi

DipartimentodiMatematica,UniversitàdiTorino,ViaCarloAlberto10,Italy

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received 14 October 2020 Received in revised form 16 March 2021

Available online 8 April 2021 Communicated by C.A. Weibel

MSC:

14F22; 16H05

Keywords:

Gerbes on a stack

Azumaya algebras over a stack Brauer group of a stack 1-motives

Overanormalbasescheme,weprovethegeneralizedTheoremoftheCubefor 1-motivesandthatatorsionclassofthegroupH2

´

et(M,Gm,M) ofa1-motiveM ,whose

pull-backviatheunitsection: S→ M iszero,comesfromanAzumayaalgebra. Inparticular,wededucethatoveranalgebraicallyclosedfieldofcharacteristiczero, allclassesofH2

´

et(M,Gm,M) comefromAzumayaalgebras.

©2021ElsevierB.V.Allrightsreserved.

Contents

0. Introduction . . . 2

1. Recallonsheaves,gerbesandPicardstacksonastack . . . 5

2. GerbeswithAbelianbandonastack . . . 7

2.1. Homologicalinterpretationofgerbesoverasite . . . 7

2.2. Gerbesonastack . . . 8

2.3. 2-descentofGm-gerbes . . . 8

3. TheBrauergroupofalocallyringedstack . . . 10

4. GerbesandAzumayaalgebrasover1-motives . . . 12

5. ThegeneralizedtheoremoftheCubefor1-motivesanditsconsequences . . . 14

5.1. Itsconsequences . . . 14

5.2. Itsproof . . . 15

6. Cohomologicalclassesof1-motiveswhichareAzumayaalgebras . . . 17

Appendix A. AcommunicationfromP.Deligneon2-descenttheoryforstacks . . . 20

References . . . 21

* Corresponding author.

E-mailaddresses:cristiana.bertolin@unito.it(C. Bertolin), federica.galluzzi@unito.it(F. Galluzzi).

https://doi.org/10.1016/j.jpaa.2021.106754

(2)

0. Introduction

Grothendieck has definedthe Brauer groupBr(X) of ascheme X asthe group of similarityclasses of Azumayaalgebras overX.In[25,I,§1] heconstructedaninjectivegrouphomomorphism

δ : Br(X)−→ H2et´(X, Gm) (0.1)

from the Brauer group of X to the étale cohomology group H2 ´

et(X,Gm). This homomorphism is not in

generalbijective,aspointed outbyGrothendieckin[25,II, §2],wherehefoundaschemeX whoseBrauer group is a torsion group but whose étale cohomology groupH2

´

et(X,Gm) is not torsion. However, if X is

quasi-compacttheelementsofδ(Br(X)) aretorsionelementsofH2 ´

et(X,Gm),andsoGrothendieckaskedin

[25] thefollowingquestion:

Question.Foraquasi-compactschemeX,istheimageofBr(X) viathehomomorphismδ (0.1) thetorsion subgroup H2

´

et(X,Gm)Tors ofH2´et(X,Gm)?

Grothendieck showed thatif X is regular, theétale cohomology group H2 ´

et(X,Gm) is atorsion group,

and sounderthishypothesisthequestioniswhethertheBrauergroupofX isallofH2 ´

et(X,Gm).

Thefollowing well-knownresultsarerelated tothis question:IfX hasdimension ≤ 1 orifX isregular and of dimension ≤ 2, then the Brauer group of X is all of Het2´(X,Gm,X) ([25, II, Cor 2.2]). Gabber

(unpublishedtheorem)showedthattheBrauergroupofaquasi-compactandseparatedschemeX endowed

with an ampleinvertible sheaf isisomorphic toH2 ´

et(X,Gm)Tors. Adifferent proof ofthis resultwas found

bydeJong(see[18]).

In[20] GiraudintroducedgerbesinthegeneralsettingofnonabeliancohomologyfollowingGrothendieck’s ideas:inparticularheprovedthatgerbesgiveageometricaldescriptionofclassesofthegroupH2(X,G

m).

TheaimofthispaperistoextendGrothendieck’stheoryofBrauergroupsto1-motives,usinggerbesas fundamentaltools.

Inparticular,

• westudygerbes onstackswhicharenotseparated;

• westudyAzumayaalgebras andBrauergroupsforstacks whicharenotseparated;

• weapply theaboveresultsto 1-motivesusingthedictionary betweenlengthtwo complexes ofabelian sheaves and Picardstacks developed byDeligne in[17, Exposé XVIII,§1.4]. Remarkthat thePicard stacksassociated to1-motivesarenotalgebraic inthesense of[30] sincetheyarenotquasi-separated.

Weproceed inthefollowingway:

LetS beasite.InSection1weassociatetoastackingroupoidsX overS thesiteS(X),whichallowsus to studythenotionofsheafandgerbeonastack.

In Section2we provethefollowing homologicalinterpretationof F -gerbes,with F anabelian sheafon asiteS:the Picard2-stackGerbeS(F ) ofF -gerbesis equivalent(as Picard2-stack)to thePicard2-stack

associated tothecomplexF [2],whereF [2]= [F → 0→ 0] withF indegree-2:

GerbeS(F ) ∼= 2st(F [2]) (0.2)

(Theorem 2.2). In particular, for i = 2,1,0,we have an isomorphism of abelian groups between the i-th

classifyinggroupGerbeiS(F ) andthecohomologicalgroupHi(S,F ).TheequivalenceofPicard2-stacks(0.2)

containsthefollowingclassicalresult:elementsofGerbe2S(F ),whichareF -equivalenceclassesofF -gerbes,

are parametrized bycohomologicalclasses ofH2(S,F ).Always inSection2, applying [20, ChpIV] tothe

(3)

abeliansheaf onthesiteS(X).WefinishSection2proving theeffectivenessofthe2-descentofGm-gerbes

withrespecttoafaithfullyflatmorphismofschemeswhichisquasi-compactorlocallyoffinitepresentation (Theorem2.7).

Let Set´ be the étale site on an arbitrary scheme S and let X = (X,OX) be a locally ringed S-stack

with associatedétalesiteS´et(X).InSection3we recallthenotionof theBrauergroupBr(X) ofX and in

Theorem3.4 weestablishaninjectivegrouphomomorphism

δ : Br(X) −→ H2´et(X, Gm,X), (0.3)

whichextendsGrothendieck’sgrouphomomorphism(0.1) tolocallyringedS-stacks.

LetM = [u: X→ G] bea1-motivedefinedoveraschemeS,withX anS-groupschemewhichis,locally fortheétaletopology,aconstantgroupschemedefinedbyafinitelygeneratedfreeZ-module,G anextension of an abelian S-scheme by anS-torus, and finally u: X → G a morphism of S-groupschemes. Since in [17,ExposéXVIII,§1.4] DeligneassociatestoanylengthtwocomplexofabeliansheavesaPicardstack,in Section4we candefine theBrauergroupofthe1-motiveM astheBrauergroupBr(M) oftheassociated PicardstackM andbyTheorem3.4wehaveaninjectivegrouphomomorphismδ : Br(M)→ H2

´

et(M,Gm,M).

At theend of Section 4we provethe effectivenessof the descent of Azumaya algebras and of Gm-gerbes

withrespect tothequotientmapι: G→ [G/X]∼=M (Lemma 4.2andLemma4.3).

Denote by sij := M×SM→ M×SM×SM the map which inserts the unitsection  : S → M of M

intothek-thfactorfork∈ {1,2,3}− {i,j}.If isaprimenumberdistinctfromtheresiduecharacteristics of S, we say that the 1-motive M satisfies the generalized Theorem of the Cube for the prime  if the homomorphism  (i,j)∈{1,2,3}s∗ij : H2et´(M3, Gm,M3)() −→  H2 ´ et(M2, Gm,M2)() 3 x −→ (s∗12(x), s∗13(x), s∗23(x))

is injective,where () denotes the-primary component(Definition5.1). We startSection5 studying the consequencesofthegeneralizedTheoremoftheCubefor1-motives.InCorollary5.6weshowthatifthebase schemeisconnected,reduced,normalandnoetherian,extensionsofabelianschemesbysplittorisatisfythe generalizedTheoremoftheCubeforanyprime distinctfromtheresiduecharacteristicsofS (Corollary5.6). Then,asaconsequenceoftheeffectivenessofthe2-descentofGm-gerbes withrespect tothequotientmap

ι : G → [G/X] =M (Lemma 4.3), we get Theorem 5.7: 1-motives, which are defined over aconnected, reduced, normal and noetherian scheme S, and whose underlying tori are split, satisfy the generalized Theorem ofthe Cubeforany prime distinctfrom the residuecharacteristics ofS. Note thatin[8, Thm 5.1] S.Brochardand thefirstauthor provetheTheorem oftheCube(involvingtheH1(M,Gm,M) instead

ofH2(M,Gm,M))for1-motives,andin[9] theauthorsshowthatthesheafofdivisorialcorrespondencesof

extensionsofabelianschemes bytoriisrepresentable.

InSection6weinvestigateGrothendieck’sQuestion for 1-motivesandouransweriscontainedin Theo-rem6.2 whichstatesthatifM = [u: X → G] is1-motivedefinedoveranormalandnoetherianscheme S

and iftheextension G underlyingM satisfies thegeneralizedTheorem ofthe Cubeforaprimenumber

distinctfromtheresiduecharacteristicsofS,thenthe-primarycomponentofthekernelofthe homomor-phismH2´et(): H2´et(M,Gm,M)→ Het(S,Gm,S) inducedbytheunitsection: S→ M of M ,iscontainedin

theBrauergroupofM :

kerH2´et() : H2et´(M, Gm,M)−→ H2et´(S, Gm,S)



()⊆ Br(M).

Weprovethisresultasfollows:firstweshowthistheoremforanextensionofanabelianschemebyatorus using Hoobler’sTheorem[27, Thm3.3] (Proposition6.1). Then,thanksto theeffectivenessofthe descent of Azumaya algebras and of Gm-gerbes with respect to the quotient map ι : G → [G/X] = M, we get

(4)

therequiredstatementforM . WefinishSection6givingapositiveanswerto Grothendieck’sQuestion for 1-motives(andsoinparticularforsemi-abelianvarieties)overanalgebraicallyclosedfieldofcharacteristic zero(Corollary6.3).

Inthelastyears,severalauthorshaveworkedwiththeBrauergroupofstacks(seeforexample[1],[19], [31])butmostofthem focus onalgebraicor separatedstacks.Moreoverthetechniques used inthis paper are rather differentfrom the onesused in[1], [19], [31]. Since thePicardstack associated to a1-motiveis notquasi-separated,werecallthetheoryofBrauergroupof stacks.

Animportantroleinthispaperisplayedbythe2-descenttheoryofgerbesforwhichweaddanAppendix. Acknowledgment

We are very grateful to Pierre Deligne for his comments on the first version of this paper and for his communicationon 2-descenttheory forstacks (seeAppendix).We wouldliketo thankalso therefereefor theveryusefulcomments.

Notation Stacklanguage

Here werefermainlyto [20].LetS beasite.A stack overS isafiberedcategoryX overS such that • (Gluing conditionon objects)descentiseffectiveforobjectsinX,and

• (Gluing condition on arrows)forany objectU of S andfor everypairof objectsX,Y of thecategory X(U),thepresheafofarrowsArrX(U)(X,Y ) ofX(U) isasheafoverU .

Forthenotionsofmorphisms ofstacks (i.e.catesianfunctors)andmorphismofcartesian functorswerefer to [20, Chp. II 1.2]. An equivalence (resp. isomorphism) of stacks F : X → Y is a morphism of stacks whichisanequivalence(resp.isomorphism)offiberedcategoriesoverS,thatisF (U ):X(U)→ Y(U) isan equivalence (resp.isomorphism)ofcategories foranyobjectU ofS.A stackingroupoids overS isastack X overS suchthatforanyobjectU ofS thecategoryX(U) isagroupoid,i.e.acategoryinwhichallarrows are invertible.Recall that2-morphismsof stacks ingroupoidsare automaticallyinvertible.From now on, allstackswill be stacksingroupoids.

A gerbe overthesiteS isastackG over S suchthat

• G islocally notempty:foranyobjectU ofS,thereexistsacovering{φi: Ui→ U}i∈I forwhichtheset

ofobjectsofthecategoryG(Ui) isnotemptyforalli∈ I;

• G islocally connected:foranyobjectU ofS andforeachpairofobjectsg1 andg2ofG(U),thereexists

acovering{φi : Ui→ U}i∈I ofU suchthattheset ofarrowsfrom g1|Ui tog2|Ui inG(Ui) isnotempty

foralli∈ I.

A morphism (resp. isomorphism) of gerbes isjustamorphism(resp.isomorphism)ofstacks whosesource and target aregerbes,anda2-morphismof gerbesis amorphism ofcartesian functors. An equivalenceof gerbes isanequivalenceofstacks.

A strictlycommutativePicardstack overthesiteS (justcalledaPicardstack)isastackP overS endowed withamorphismofstacks:P×SP→ P,calledthegrouplawofP,andtwonaturalisomorphismsa and

c, expressingtheassociativityand thecommutativityconstraintsofthegrouplawofP, suchthatP(U) is astrictly commutativePicardcategory forany objectU ofS (see[17] 1.4.2 formoredetails).An additive functor (F,):P1 → P2 between two Picardstacks is amorphism ofstacks F :P1 → P2 endowed with

a naturalisomorphism : F (a⊗P1b) ∼= F (a)⊗P2 F (b) (forall a,b ∈ P1) whichis compatible with the naturalisomorphismsa andc underlyingP1 andP2.

(5)

A strict 2-category (just called 2-category) A = (A,C(a,b),Ka,b,c,Ua)a,b,c∈A is given by the following

data: aset A ofobjects a,b,c,...;for each ordered pair(a,b) ofobjects of A, acategory C(a,b); for each orderedtriple (a,b,c) of objectsA,acompositionfunctorKa,b,c: C(b,c)× C(a,b)→ C(a,c), thatsatisfies

theassociativity law; foreach objecta, aunitfunctor Ua: 1→ C(a,a) where1 is theterminal category,

thatprovidesaleft andrightidentity forthecompositionfunctor.

A 2-stack overthesiteS isafibered2-categoryX overS (i.e.afamilyof2-categoriesindexedbyobjects ofS,see[15,1.10p.29] formoredetails) suchthat

• 2-descentiseffectiveforobjectsinX (see [15,1.10p.31]),and

• foranyobjectU ofS andforeverypairofobjectsX,Y ofthe2-categoryX(U ),thefiberedcategoryof arrows ArrX(U )(X,Y ) ofX(U ) isastackoverS|U.

For thenotionsof morphisms of 2-stacks(i.e. cartesian 2-functors),morphisms of cartesian 2-functors, modificationsof2-stacksandequivalencesof2-stacks,wereferto[26,ChpI].A 2-stackin2-groupoids over S isa2-stackX overS suchthatforanyobjectU ofS the2-categoryX(U ) isa2-groupoid.From nowon, all2-stackswill be2-stacksin 2-groupoids.

LetS beanarbitraryschemeanddenotebyS thesiteofS foraGrothendiecktopologythatwewillfix later. We will call a stack,a Picardstack, a2-stack over S respectively an S-stack,aPicard S-stack, an

S-2-stack.

1. Recallonsheaves,gerbesandPicardstacksonastack

LetS beasite.LetX beastackoverS.Wealwaysassumethatfibered(2-)categoriescomewithafixed cleavage(see[16,§2,§6]).Delignefurnishedusthefollowing definitionofsiteassociatedto astack.

Definition1.1. The siteS(X) associatedtoX overS isthesitedefinedinthefollowingway:

• the category underlying S(X) consists of theobjects (U,u) with U anobject of S and u an objectof X(U), and ofthearrows(φ,Φ): (U,u)→ (V,v) withφ: U → V amorphism ofS andΦ: φ∗v→ u an

isomorphisminX(U).Wecallthepair(U,u) an openofX withrespectto thechosentopology. • thetopologyonS(X) istheonegeneratedbythepre-topologyforwhichacoveringof(U,u) isafamily

{(φi,Φi): (Ui,ui)→ (U,u)}i suchthatthemorphismofSφi:Ui→ U isacoveringofU .

Definition 1.2.A sheaf(ofsets) F on X isasystem(FU,u,θφ,Φ),where forany object(U,u) ofS(X),FU,u

isasheafonS|U,andforanyarrow(φ,Φ): (U,u)→ (V,v) ofS(X),θφ,Φ :FV,v→ φ∗FU,uisamorphismof

sheavesonS|V,suchthat

(i) if (φ,Φ): (U,u) → (V,v) and (γ,Γ) : (V,v)→ (W,w) aretwo arrows of S(X),then γθφ,Φ◦ θγ,Γ =

θγ◦φ,φ∗Γ◦Φ;

(ii) if(φ,Φ): (U,u)→ (V,v) isanarrowofS(X),themorphismofsheavesφ−1FV,v→ FU,u,obtainedby

adjunctionfromθφ,Φ,isanisomorphism.

Tosimplifynotations,wedenotejust(FU,u) thesheafF = (FU,u,θφ,Φ).Thesetof globalsections Γ(X,F)

ofasheafF onX isthesetoffamilies(sU,u) ofsectionsofF ontheobjects(U,u) ofS(X) suchthatforany

arrow(φ,Φ): (U,u)→ (V,v) ofS(X),resφsV,v= sU,u.

An abeliansheafF onX isasystem(FU,u) verifyingtheconditions(i) and(ii) ofDefinition1.2,wherethe

FU,uareabeliansheavesonS|U.WedenotebyAb(X) thecategoryofabeliansheavesonX.Accordingto[23,

ExpII, Prop.6.7] and[21,Thm1.10.1],thecategoryAb(X) isanabeliancategory withenoughinjectives. Let RΓ(X,−) be theright derivedfunctor of the functor Γ(X,−) : Ab(X)→ Ab of global sections (here

(6)

Ab isthecategoryofabeliangroups).Thei-thcohomologygroupHiRΓ(X,−)ofRΓ(X,−) isdenotedby

Hi(X,−).

A stack onX is astack Y overS endowed with amorphismof stacks P :Y→ X (calledthe structural morphism)suchthatforanyobject(U,x) ofS(X) thefiberedproductU×x,X,P Y isastackoverS|U.

A gerbe on X is stack G over S endowed with a morphism of stacks P :G → X (called the structural morphism) such that for any object (U,x) of S(X) the fibered product U ×x,X,P G is a gerbe over S|U.

A morphism of gerbes on X isa morphism of gerbes which is compatible with the underlying structural morphisms.

Let F : X→ Y bea morphismof S-stacks and let G be agerbe on Y. The pull-back of G via F isthe fiberedproduct

F∗G := X ×F,Y,PG (1.1)

of X andG viathemorphismF :X→ Y andthestructural morphismP :G→ Y underlyingG (see[7,Def 2.14] forthedefinitionoffiberedproductofS-stacks).

A Picard stack on X is a stack P over S endowed with a morphism of stacks P : P → X (called the structural morphism),withamorphismofstacks:P×P,X,P P→ P,andwithtwo naturalisomorphisms

a and c,suchthatU×x,X,P P isaPicardstackoverS|U forany object(U,x) of S(X).

A Picard 2-stack on X isa2-stack P over S endowed with amorphism of 2-stacksP : P → X (called

the structuralmorphism - herewe seeX asa2-stack),with amorphismof 2-stacks: P×P,X,P P → P,

and withtwonatural2-transformationsa andc,suchthatU×x,X,P P isaPicard2-stackover S|U forany

object (U,x) ofS(X) (formoredetailssee [7, §1] or[6]). An additive2-functor (F,λF): P1→ P2 between

two Picard2-stacks onX is givenbyamorphism of 2-stacksF : P1→ P2 andanatural2-transformation

λF: P2◦F

2 → F ◦ ⊗

P1, which are compatible with the structural morphisms of 2-stacks P1 : P1 → X and P2: P2→ X andwiththenatural2-transformationsa andc underlying P1 andP2. An equivalenceof

Picard 2-stacks onX is anadditive 2-functorwhose underlyingmorphism of 2-stacksis anequivalence of 2-stacks.

Denote by 2P icard(X,S) the category whose objects are Picard 2-stacks on X and whose arrows are isomorphism classesof additive2-functors.Applying [36, Cor 6.5] to thesiteS(X),we havethe following equivalence ofcategories

2st :D[−2,0](S(X)) −→ 2Picard(X, S), (1.2) where D[−2,0](S(X)) is the derivedcategory of length three complexes of abelian sheaves on X. Via this

equivalence, Picard2-stacks(resp.Picardstacks)onX correspondtolengththree(resp.two)complexesof abelian sheaves on X.Therefore, the theory of Picardstacks is included inthe theory of Picard2-stacks. Wedenote by[ ] theinverseequivalence of2st.

IfP isaPicardstackoverasiteS wedefineits classifyinggroupsPifori= 1,0 inthefollowingway:P1is thegroupofisomorphismclassesofobjectsofP andP0isthegroupofautomorphismsoftheneutralobject

e of P. We define the classifying groupsPi for i = 2,1,0 of aPicard 2-stack P over asite S recursively:

P2 is thegroup of equivalence classes of objects of P , P1 =Aut1

(e) andP0 = Aut0

(e) where Aut(e) is thePicardstackofautomorphismsoftheneutralobjecte ofP .Explicitly,P1 isthegroupofisomorphism

classesofobjectsofAut(e) andP0isthegroupofautomorphismsoftheneutralobjectofAut(e).Wehave

the followinglinkbetweenthe classifyinggroupsPi andthecohomology groupsHi(S,[P ]) ofthecomplex

[P ] associated toP via(1.2):Pi∼= Hi−2(S,[P ]) for i= 0,1,2.

If two Picard 2-stacks P and P are equivalent as Picard 2-stacks, then their classifying groups are isomorphic: Pi∼= P ifori= 2,1,0.Theinverseaffirmationisnottrueas explainedin[3,Rem1.3].

Let S be anarbitrary scheme anddenote by S thesite ofS for aGrothendiecktopology.Let X bean

(7)

2. GerbeswithAbelianband ona stack

LetF beanabeliansheafonasiteS.DenotebyGerbeS(F ) thefibered2-categoryofF -gerbesoverS.

Lemma2.1. The fibered2-category GerbeS(F ) of F -gerbesis aPicard2-stackoverS.

Proof. By[15,§2.6] the2-descentiseffectiveforobjectsofGerbeS(F ).Moreover,morphismsofgerbes are

just morphisms of stacks and so by [15, Examples 1.11 i)], the gluing condition on arrows of GerbeS(F )

is satisfied.Thus, thefibered2-category GerbeS(F ) is infacta2-stackover S.In[20, ChpIVProp 2.4.1

(i)] Giraud hasdefinedthecontracted productof gerbes (seeinparticular [20] Example2.4.3forthe case of gerbes bound by abelian sheaves). He also showed that this contracted product satisfies associativity and commutativity constraints (see [20, ChpIV Cor 2.4.2 (i) and (ii)]). Hence we canconclude that the contractedproductofF -gerbesendows the2-stackofF -gerbes withaPicardstructure. 

2.1. Homologicalinterpretationof gerbes overasite

Let F be an abelian sheaf ona site S. The classifyinggroups GerbeiS(F ) for i = 2,1,0 of the Picard 2-stackGerbeS(F ) are

• Gerbe2S(F ),theabeliangroupofF -equivalenceclassesofF -gerbes;

• Gerbe1S(F ),theabeliangroupofisomorphismclassesofmorphismsofF -gerbesfromaF -gerbetoitself. • Gerbe0S(F ),theabeliangroupofautomorphisms ofamorphismof F -gerbesfromaF -gerbetoitself.

Theorem 2.2.Let F be an abelian sheaf on a site S. Then the Picard 2-stack GerbeS(F ) of F -gerbes is

equivalent(asPicard2-stack)tothePicard2-stackassociatedtothecomplexF [2],whereF [2]= [F → 0→ 0]

with F indegree -2:

GerbeS(F ) ∼= 2st(F [2]).

In particular, for i= 2,1,0, we have an isomorphism of abelian groups between thei-th classifying group

GerbeiS(F ) andthecohomologicalgroupHi(S,F ).

Proof. It is a classical result that via the equivalence of categories stated in [17, Exposé XVIII, Prop 1.4.15], the complex F [1] corresponds to the Picard stack Tors(F ) of F -torsors: Tors(F ) = 2st(F [1]). A higherdimensionalanalogueof thenotionoftorsorunderan abeliansheafis thenotionof torsorundera Picard stack,which was introduced byBreen in[13, Def 3.1.8] and studied by the first author in [5, §2] (remark thatinfactin[7] thefirst authorintroducesthenotionof torsorunderaPicard 2-stack,seealso [4], [2] and [10]). Hence we have the notion of Tors(F )-torsors. The contracted product of torsors under aPicard2-stack, introduced in[7, Def2.11], endows the2-stack T ors(Tors(F )) ofTors(F )-torsors with a Picardstructure,and by [7, Thm0.1] this Picard2-stack T ors(Tors(F )) corresponds, viatheequivalence ofcategories(1.2),to thecomplex[Tors(F )][1]:

T ors(Tors(F )) = 2st(F [2]). (2.1)

In[15,Prop2.14] BreenconstructsacanonicalequivalenceofPicard2-stacksbetweenthePicard2-stack GerbeS(F ) ofF -gerbes andthePicard2-stackT ors(Tors(F )) ofTors(F )-torsors:

(8)

This equivalence and the equality (2.1) furnish the expected equivalence GerbeS(F ) ∼= 2st(F [2]). The

classifyinggroupsofthePicard2-stackGerbeS(F ) are therefore

GerbeiS(F ) ∼= Hi−2(S, F [2]) = Hi(S, F ). 

Remark 2.3. Via the cohomological interpretation (2.1) of torsors under the Picard stack of F -torsors,

the equivalence of Picard 2-stacks (2.2) is the geometrical counterpart of the canonical isomorphism in cohomology H2(S,F )= H1(S,F [1]).

2.2. Gerbeson astack

LetX beastackoverasiteS anddenotebyS(X) thesiteassociatedtoX.Applying[20,ChpIV] tothe siteS(X),wegetthenotionofF-gerbesonthestackX,withF anabeliansheafonX.Werecallbrieflythis notion.

An F-gerbe is agerbe G onX such thatfor any object (U,x) of S(X) the fiberedproduct U ×x,X,P G

is aFU,x-gerbe over S|U (here P :G→ X isthe structural morphism): inparticular foreach i indexinga

covering{Ui→ U}i ofU ,itexistsanobjectgi of(U×x,X,P G)(Ui) andanisomorphismFU,x|Ui → Aut(gi)

of sheaves of groups on Ui (see [15, Def 2.3]). Considernow an F-gerbeG and an F-gerbe G on X. Let

u : F → F a morphism of abelian sheaves on X. A morphism of gerbes m : G → G is an u-morphism if u is compatiblewith themorphism ofbands Band(Aut(g)U,x)→ Band(Aut(m(g))U,x) (see [20, ChpIV

2.1.5.1]).Asin[20,ChpIVProp2.2.6] anu-morphismm:G→ G isfullyfaithfulifandonlyifu:F → F is anisomorphism,inwhichcasem is anequivalence ofgerbes.IfG andG aretwoF-gerbesonX,instead of idF-morphism G→ G weusetheterminologyF-equivalenceG→ G ofF-gerbes onX.

F-gerbesonX buildaPicard2-stackonX,thatwedenote by GerbeS(X)(F)

whose group law is given by the contracted product of F-gerbes on X ([20, Chp IV 2.4.3]). Its neutral element isthestackTors(F) ofF-torsorsonX,whichiscalledthe neutralF-gerbe.ApplyingTheorem 2.2

to theabeliansheafF onthesiteS(X) (seeDefinition1.2)weget Corollary 2.4.We havethefollowingequivalenceof Picard2-stacks

GerbeS(X)(F) ∼= 2st(F[2]).

In particular,GerbeiS(X)(F)= H i(X,F) fori= 2,1,0.

Hence, F-equivalence classes of F-gerbes on X, which are the elements of the 0th-homotopy group Gerbe2S(X)(F),areparametrizedbycohomologicalclassesofH2(X,F).

Remark 2.5.GerbeS(X)(F) is a Picard S(X)-2-stack. Via the structural morphism F : X → S, we

can view GerbeS(X)(F) also as a Picard S-2-stack GerbeS(F). In this case we have that GerbeS(F) =

2st(τ≤0RF(F[2])) whereτ≤0 isthegoodtruncation indegree0.Wewillnotusethisfactinthepaperand therefore weomittheproof.

2.3. 2-descentof Gm-gerbes

Wefinishthissectionprovingtheeffectivenessofthe2-descentofGm-gerbeswithrespecttoafaithfully

(9)

the semi-localdescriptionofgerbes donebyBreenin[16,§4] and[14,§2.3],thatwerecallonlyinthecase ofGm-gerbes.DenotebyTors(Gm) thePicardstackofGm-torsors.AccordingtoBreen,tohaveaGm-gerbe

G overasiteS isequivalentto havethedata 

(Tors(Gm,U), Ψx), (ψx, ξx)



x∈G(U),U∈S (2.3)

indexedbytheobjectsx oftheGm-gerbeG (recallthatG islocallynotempty),where

• Ψx : G|U → Tors(Gm,U) isanequivalenceofU -stacksbetweentherestrictionG|U toU oftheGm-gerbe

G and theneutralgerbe Tors(Gm,U).This equivalenceisdeterminedbytheobjectx inG(U),

• ψx = pr∗x◦ (pr2Ψx)−1 : Tors(pr2Gm,U)→ Tors(pr∗1Gm,U) is an equivalence ofstacks over U×S U

(here pri : U×SU → U are theprojections),which restrictsto theidentity when pulledback viathe

diagonalmorphism Δ: U → U ×SU ,and

• ξx : pr∗23ψx◦ pr∗12ψx ⇒ pr∗13ψx is aisomorphismofcartesian S-functors betweenmorphisms ofstacks

on U×SU ×SU (here prij : U ×S U×SU → U ×SU are thepartialprojections), whichsatisfies the

compatibilitycondition

pr134 ξx◦ [pr∗34ψx∗ pr∗123ξx] = pr∗124ξx◦ [pr234 ξx∗ pr∗12ψx] (2.4)

whenpulledbacktoU×SU×SU×SU := U4(hereprijk: U4→ U ×SU×SU andprij : U4→ U ×SU

are thepartial projections.See[12,(6.2.7)-(6.2.8)] formoredetails).

Therefore,theGm-gerbe G maybereconstructedfromthelocaldata(Tors(Gm),Ψx)xusingthetransition

data(ψx,ξx).Wecalltheequivalencesofstacks Ψx the localneutralizations oftheGm-gerbe G definedby

the local objectsx∈ G(U).The transition data (ψx,ξx) are infact2-descentdata. SeeAppendix forthis

reconstructionofaGm-gerbevialocalneutralizationsand2-descentdata.

In§5wewill needthesemi-localdescriptionofaGm-equivalence classof aGm-gerbewhich consistsin

the following data: afamily(Tors1(G

m,U))U∈S ofgroupsof isomorphism classesof Gm-torsors,bijections

Tors1(pr

2Gm,U)→ Tors1(pr∗1Gm,U) of their pull-backson U×SU via theprojectionspri : U×SU → U,

and compatibilityconditionsonthe pull-backonU×SU ×SU of these bijections(here weuse theabove

notations).

Remark2.6. Inthispaper, Breen’ssemi-localdescriptionofgerbesallowsusto reduceofonethedegreeof thecohomologygroupsinvolved:insteadofworkingwithgerbes,whicharecohomologyclassesofH2(S,G

m),

wecanworkwith torsors,whicharecohomologyclassesofH1(S,Gm).

Theorem 2.7.Let p: S → S beafaithfully flat morphismof schemeswhich isquasi-compact or locallyof finite presentation.Tohave aGm,S-gerbeoverS isequivalent tohaveatriple

(G, ϕ, γ)

where G is a Gm,S-gerbe over S and (ϕ,γ) are 2-descent data on G with respect to p : S → S. More

precisely,

• G isaGm,S-gerbeover S,

• ϕ : p∗1G → p∗2G is an equivalenceof gerbes over S×SS, where pi : S×S S → S are the natural

projections,

• γ : p∗23ϕ◦p∗12ϕ⇒ p∗13ϕ isanaturalisomorphismoverS×SS×SS,wherepij : S×SS×SS→ S×SS

(10)

such thatover S×SS×SS×SS thecompatibility condition

p∗134γ◦ [p∗34ϕ∗ p∗123γ] = p∗124γ◦ [p∗234γ∗ p∗12ϕ] (2.5)

issatisfied,wherepijk: S×SS×SS×SS×SS → S×SS×SS andpij : S×SS×SS×SS → S×SS

are thepartialprojections.

Under this equivalence, the pull-back p∗ : GerbeS(Gm,S) → GerbeS(Gm,S) is the additive 2-functor

which forgetsthe2-descentdata:p∗(G,ϕ,γ)=G.

Proof. Let (G,ϕ,γ) be a triplet as in the statement. According to Appendix, the data (ϕ,γ) satisfying

theequality(2.5) are2-descentdataforthegerbe G.AsobservedinLemma2.1,thefibered2-categoryof Gm-gerbes buildsa2-stack(that is,inparticular,the2-descentis effectiveforobjects),and soG withits

2-descentdatacorresponds toaGm,S-gerbe G overS. 

3. TheBrauer groupofalocallyringedstack

LetX beastackover asiteS andletS(X) beitsassociated site.

A sheafofrings A onX isasystem(AU,u) verifyingtheconditions(i) and (ii) ofDefinition1.2,where

the AU,u are sheaves of ringson S|U. Considerthe sheaf of rings OX on X given by the system (OX U,u)

with OX U,u thestructural sheafofU .ThesheafofringsOXis the structuralsheafofthe stackX andthe pair (X,OX) isa ringed stack. An OX-module M is asystem(MU,u) verifying the conditions(i) and (ii)

of Definition1.2,where theMU,u aresheavesof OU-modulesonS|U.AnOX-algebra A isasystem(AU,u)

verifyingtheconditions(i) and(ii) ofDefinition1.2,wheretheAU,uaresheavesofOU-algebrasonS|U.An

OX-moduleM is offinitepresentation iftheMU,uaresheavesofOU-modulesoffinitepresentation.

NowletS beanarbitraryschemeandletS´etbetheétalesiteonS.LetX= (X,OX) bea locallyringed

S-stack, i.e. aringedstack suchthat,forany object(U,u) oftheassociated étalesiteS´et(X),andfor any

sectionf ∈ OX U,u(U ),thereexistsa covering{(Ui,ui)→ (U,u)}i∈I of(U,u) suchthatforanyi∈ I either

f|(Ui,ui)or(1− f)|(Ui,ui)is invertibleinΓ(Ui,OX Ui,ui)

An Azumaya algebra over X is an OX-algebra A= (AU,u) of finite presentation as OX-module which

is, locally for the topology of S´et(X), isomorphic to a matrixalgebra, i.e. for any open (U,u) of X there

exists acovering{(φi,Φi): (Ui,ui)→ (U,u)}i inS´et(X) suchthatAU,u⊗OU,uOUi ∼= Mri(OUi,ui) forany i.

Azumayaalgebras overX,thatwe denoteby

Az(X),

build anS-stack onX by[22,ExposéVIII 1.1, 1.2] (seealso[30, (3.4.4)]).TwoAzumayaalgebras A and A overX are Brauer-equivalent ifthereexisttwolocallyfreeOX-modulesE andE offiniteranksuchthat

A ⊗OXEndOX(E) ∼=A



OXEndOX(E

).

The above isomorphism defines an equivalence relation because of the isomorphism of OX-algebras EndOX(E)OXEndOX(E) = EndOX(EOX E). We denote by [A] the equivalence class of an Azumaya algebraA overX.Theset ofequivalenceclassesofAzumayaalgebraisagroupunderthegrouplawgiven by[A][A]= [AOXA].A trivialization ofanAzumayaalgebraA overX isacouple(L,a) withL alocally freeOX-moduleanda: EndOX(L)→ A anisomorphismofsheavesofOX-algebras.AnAzumayaalgebraA is trivial ifitexistsatrivializationofA.TheclassofanytrivialAzumayaalgebraistheneutralelementof theabovegrouplaw. Theinverseofaclass[A] istheclassA0withA0theoppositeOX-algebraofA. Definition 3.1.Let X= (X,OX) bealocally ringedS-stack.The Brauer group ofX,denotedbyBr(X),is thegroupofequivalenceclassesofAzumayaalgebrasover X.

(11)

Br(−) is afunctorfrom thecategory of locally ringedS-stacks (objectsare locally ringedS-stacks and arrows are isomorphism classes of morphisms of locally ringed S-stacks) to the category Ab of abelian groups. Remark that the above definition generalizes to stack the classical notion of Brauer group of a scheme:infactifX isalocallyringedS-stack associatedtoanS-scheme X,then Br(X)= Br(X).

Consider the following sheaves of groups on X: the multiplicative group Gm,X, the linear general

group GL(n,X), and the sheaf of groups PGL(n,X) on X defined by the system (PGL(n,X)U,u) where

PGL(n,X)U,u= Aut



Mn(OX U,u)(automorphisms ofMn(OX U,u) as asheafof OX U,u-algebras). Wehave

thefollowing

Lemma3.2. Assumen> 0. Thesequenceof sheavesof groupsonX

1−→ Gm,X−→ GL(n, X) −→ PGL(n, X) −→ 1 (3.1)

isexact.

Proof. Itisenoughto showthatforanyétaleopen(U,u) ofX,therestrictiontotheétalesiteofU ofthe sequence 1→ GmU,u → GL(n)U,u → PGL(n)U,u → 1 is exactand this follows by [32, IV,Prop. 2.3. and

Cor2.4.]. 

LetLf(X) betheS-stackonX oflocallyfreeOX-modules.LetA beanAzumayaalgebraoverX.Consider themorphismofS-stacks onX

End : Lf(X) −→ Az(X), L −→ EndOX(L) (3.2)

Following [20, ChpIV2.5],letδ(A) be the fiberedcategory over Set´ oftrivializations ofA defined inthe

followingway:

• for any U ∈ Ob(S´et), the objects of δ(A)(U) are trivalizations of A|U, i.e. pairs (L,a) with L

Ob(Lf(X)(U)) anda∈ IsomUEndOX(L),A|U,

• for any arrow f : V → U of S´et, the arrows of δ(A) over f with source (L,a) andtarget (L,a) are

arrows ϕ:L→ L ofLf(X) overf suchthatAz(X)(f)◦ a= a◦ End(ϕ), withAz(X)(f):A|V → A|U. Since Lf(X) and Az(X) are S-stacks onX, δ(A) isalso anS-stack on X (see [20,ChpIV Prop2.5.4(i)]). ObservethatthemorphismofS-stacksEnd : Lf(X)→ Az(X) islocallysurjectiveonobjectsbydefinitionof Azumayaalgebra.Moreover,itislocallysurjective onarrowsbyexactnessofthesequence(3.1).Therefore as in[20, ChpIVProp2.5.4(ii)], δ(A) isagerbe over X,called the gerbeof trivializationsof A.Forany object(U,u) ofS´et(X) themorphismofsheavesofgroupsonU

(Gm,X)U,u= (OX)U,u−→



Aut(L, a)U,u,

that sends a section g of (OX)U,u to the multiplication g· − : (L,a)U,u → (L,a)U,u by this section, is

an isomorphism. This means that the gerbe δ(A) is infact a Gm,X-gerbe.By Corollary 2.4 we canthen

associatetoanyAzumayaalgebraA overX acohomologicalclassinH2 ´

et(X,Gm,X),denotedbyδ(A),which

isgivenbytheGm,X-equivalenceclassofδ(A) inGerbe2S(Gm,X).

Proposition 3.3. An Azumaya algebra A over X is trivial if and only if its cohomological class δ(A) in

H2 ´

et(X,Gm,X) iszero.

Proof. The AzumayaalgebraA istrivialifand onlyifthe gerbeδ(A) admitsaglobalsection ifand only ifitscorrespondingclassδ(A) is zeroinH2

´

(12)

Theorem 3.4.The morphism

δ : Br(X) −→ H2et´(X, Gm,X)

[A] −→ δ(A)

is aninjective grouphomomorphism.

Proof. Let A,B betwoAzumayaalgebrasover X.Forany U ∈ Ob(Set´),themorphismofgerbes

δ(A)(U) × δ(B)(U) −→ δ(A ⊗OXB)(U)

((L, a), (M, b)) −→ (L ⊗OXM, a ⊗OXb)

is a+-morphism,where+: Gm,X× Gm,X→ Gm,X isthegrouplawunderlyingthesheafGm,X.Therefore

δ(A) + δ(B) = δ(A ⊗OXB) (3.3)

inH2 ´

et(X,Gm,X).Thisequalityshowsfirstthatδ(A) = −δ(A0) andalsothat

[A] = [B] ⇔ [A ⊗OXB0] = 0Prop⇔ δ(A ⊗3.3 OXB0) = 0(3.3⇔ δ(A) + δ(B) 0) = 0⇔ δ(A) = δ(B)

Theseequivalencesprovethatthemorphismδ : Br(X)→ H2 ´

et(X,Gm,X) iswell-definedandinjective.Finally

always fromtheequality(3.3) wegetthatδ is agrouphomomorphism.  4. GerbesandAzumayaalgebrasover1-motives

LetM = [u: X→ G] bea1-motivedefinedoveraschemeS,denotebyM itsassociatedPicardS-stack

undertheequivalenceconstructedin[17,ExposéXVIII,Prop1.4.15] anddenotebyS(M) thesiteassociated to thestackM asinDefinition1.1.

Definition 4.1.

(1) The S-stackofAzumayaalgebrasoverthe1-motiveM istheS-stack ofAzumayaalgebrasAz(M) over M.

(2) The Brauergroupof the1-motiveM istheBrauergroupBr(M) ofM.

(3) AGm-gerbeonthe1-motiveM isaGm,M-gerbeonM (i.e.aGm,M-gerbe onthesiteS(M)).

By [30, (3.4.3)] theassociated Picard S-stack M is isomorphic to the quotient stack [G/X] (whereX

acts on G viathegivenmorphismu: X→ G). Notethatingeneralitisnotalgebraic inthesenseof [30] becauseitisnotquasi-separated.However thequotientmap

ι : G−→ [G/X] ∼=M

is representable, étale and surjective. The fiber product G×[G/X]G is isomorphic to X ×S G. Via this

identification, the projections qi : G×[G/X]G → G (for i = 1,2) correspond respectively to the second

projection p2 : X×S G→ G and to the map μ : X ×SG → G given by the action (x,g)→ u(x)g. We

canfurtheridentifythefiberproduct G×[G/X]G×[G/X]G withX×SX×SG andthepartialprojections

q13,q23,q12: G×[G/X]G×[G/X]G→ G×[G/X]G respectivelywiththemapmX×idG: X×SX×SG→ X×SG

(13)

p23: X×S X×SG→ X ×SG.The effectivenessof thedescentof Azumayaalgebras with respect to the

quotientmapι: G→ [G/X] isprovedinthefollowingLemma(see[35,(9.3.4)] forthedefinitionofpull-back ofOM-algebras):

Lemma4.2. Thepull-backι∗: Az(M)→ Az(G) isanequivalenceofS-stacksbetweentheS-stackofAzumaya algebrasonM andtheS-stackofX-equivariantAzumayaalgebrasonG.Moreprecisely,tohaveanAzumaya algebra A onM isequivalent tohave apair

(A, ϕ)

whereA isanAzumayaalgebraonG andϕ: p∗2A→ μ∗A isanisomorphismofAzumayaalgebrason X×SG

that satisfies(uptocanonicalisomorphisms) thecocyclecondition

(mX× idG)∗ϕ =  (idX× μ)∗ϕ  (p23)∗ϕ  . (4.1)

Under this equivalence, the pull-back ι∗ : Az(M) → Az(G) is the morphism of stacks which forgets the descent datum:ι∗(A,ϕ)= A.

Proof. Since theassertionislocal forthetopologyonSet´(M),itsufficesto proveitforany open(U,u) of

M,whereU isanobjectofSet´ andx isanobject ofM(U).Thedescentofquasi-coherentmodulesisknown

for themorphism ιU : G×ι,M,xU → U obtained bybase change (see[30, Thm(13.5.5)]). The additional

algebrastructuredescendsby[29,IIThm3.4].FinallytheAzumayaalgebrastructuredescendsby[28,III, Prop2.8].SinceanAzumayaalgebraonM isbydefinitionacollectionofAzumayaalgebrasonthevarious schemesU ,thegeneralcasefollows. 

Now weprovealso theeffectivenessof the2-descentof Gm-gerbes underthe quotientmap ι : G→ M,

usingtheresultofSection2.3.

Lemma4.3. To haveaGm,M-gerbeG on M isequivalent tohave atriplet

(G, ϕ, γ)

whereG isaGm,G-gerbeon G and(ϕ,γ) are 2-descentdata onG withrespecttoι: G→ [G/X],that is

• ϕ: p∗2G → μ∗G isanequivalenceof gerbeson X×SG, • γ :(idX× μ)∗ϕ  (p23)∗ϕ  ⇒ (mX× idG)∗ϕ isanaturalisomorphismonX×SX×SG∼= G×[G/X] G×[G/X]G,

whichsatisfies thecompatibilitycondition

p∗134γ◦ [p∗34ϕ∗ p∗123γ] = p∗124γ◦ [p∗234γ∗ p∗12ϕ] (4.2)

when pulled back to X ×S X ×S X ×S G ∼= G×[G/X]G×[G/X]G×[G/X]G := G4 (here prijk : G4

G×[G/X]G×[G/X]G andprij : G4→ G×[G/X]G are thepartialprojections).

Proof. AGm,M-gerbe on M isby definition acollection of Gm,U-gerbes over the various objects U of S.

Hence itis enough to prove thatfor any object U of S andany object x of M(U), the 2-descentof Gm

-gerbeswith respecttothemorphismιU : G×ι,M,xU → U obtainedbybase changeiseffective.Butthisis

(14)

5. ThegeneralizedtheoremoftheCubefor1-motivesanditsconsequences

WeusethesamenotationofthepreviousSection.WedenotebyM3=M×SM×SM (resp.M2=M×SM)

the fiberedproduct of 3 (resp. 2) copies of M. Since any Picard stack admits a global neutral object, it exists aunitsectiondenotedby: S→ M.Considerthemap

sij :=M ×SM → M ×SM ×SM

whichinsertstheunitsection: S→ M intothek-thfactorfork∈ {1,2,3}− {i,j}.If isaprimenumber and H isanabeliangroup,H() denotesthe-primarycomponentofH.

Definition 5.1. LetM be a1-motive definedover ascheme S. Let  bea primenumberdistinct from the residue characteristicsof S.The1-motiveM satisfiesthe generalizedTheoremof theCubefortheprime

 ifthenaturalhomomorphism  s∗ij : H2et´(M3, Gm,M3)() −→  H2´et(M2, Gm,M2)() 3 x −→ (s∗12(x), s∗13(x), s∗23(x)) (5.1) is injective. 5.1. Itsconsequences

Proposition 5.2. LetM be a1-motive satisfying thegeneralizedTheorem oftheCubeforaprime distinct from theresiduecharacteristicsofS.LetN :M→ M bethemultiplication byN onthePicardS-stack M. Then foranyy∈ H2´et(M,Gm,M)() we havethat

N∗(y) = N2y + N

2− N

2 

(−idM)∗(y)− y. (5.2)

Proof. First we prove that given three contravariant functors F,G,H : P → M, we have the following equality foranyy inH2

´

et(M,Gm,M)()

(F + G + H)∗(y)− (F + G)∗(y)− (F + H)∗(y)− (G + H)∗(y) + F∗(y) + G∗(y) + H∗(y) = 0. (5.3) Letpri:M× M× M→ M theprojectionontotheithfactor.Putmi,j= pri⊗ prj :M× M× M→ M and

m= pr1⊗ pr2⊗ pr3:M× M× M→ M,where⊗ isthelawgroupofthePicardS-stack M.Theelement

z = m∗(y)− m∗1,2(y)− m∗1,3(y)− m∗2,3(y) + pr1∗(y) + pr∗2(y) + pr3∗(y)

of H2´et(M3,Gm,M3)() iszerowhenrestrictedto S× M× M,M× S × M andM× M× S (thisrestriction is obtainedinsertingtheunitsection: S→ M).Thus itiszeroinH2

´

et(M3,Gm,M3)() bythegeneralized Theorem oftheCubefor. Finally,pullingbackz by(F,G,H):P→ M× M× M weget(5.3).

Now, settingF = N,G= idM,h= (−idM) weget

N∗(y) = (N + idM)∗(y) + (N− idM)∗(y) + 0∗(y)− N∗(y)− (idM)∗(y)− (−idM)∗(y). Werewritethisas

(15)

Ifwedenotez1= y andzN= N∗(y)−(N −idM)∗(y),weobtainzN +1= zN+ y + (−idM)∗(y).Byinduction,

wegetzN = y + (N− idM)(y + (−idM)∗(y)).From theequalityN∗(y)= zN+ (N− idM)∗(y) wehave

N∗(y) = zN+ zN−1+· · · + z1,

andthereforewearedone. 

Corollary5.3. LetM be a1-motive satisfying thegeneralizedTheorem of theCubefor aprime. Then,if  = 2, then-torsion elementsof H2

´

et(M,Gm,M) arecontained in

ker(nM): H2´et(M, Gm,M)−→ Het(M, Gm,M)

andif = 2,they arecontainedin

ker(2n+1M ): H2et´(M, Gm,M)−→ H2et´(M, Gm,M)



.

Proof. Theresultfollowsby(5.2). 

5.2. Its proof

Wefinishthissection bysearchingthehypothesisweshouldputonthebasescheme S inorderto have that the 1-motive M = [X → G] satisfiesu the generalized Theorem of the Cube. From now on we will switch freely between the two equivalent notion of invertible sheaf L on the extension G and Gm-torsor

Isom(OG,L) onG.TheextensionG fitsinto thefollowing shortexactsequence

0−→ T −→ G−→ A −→ 0π

The pull-back of gerbes defined in (1.1) allows us to define an homomorphism of abelian groups π∗ : Gerbe2S(Gm,A)→ Gerbe2S(Gm,G).

Proposition 5.4. LetS bea normal scheme. LetG bean extension of an abelian S-scheme A byGmr.The

pull-backπ∗: Gerbe2S(Gm,A)→ Gerbe2S(Gm,G) issurjective.

Proof. DenotebyTorsRig(Gm,G) thePicardS-stackof Gm-torsorsonG withrigidificationalongtheunit

section G : S → G. Because of this unit section G, the group of isomorphism classes of Gm-torsors

over G withrigidificationis canonicallyisomorphicto thequotient of thegroupofisomorphismclasses of Gm-torsors overG bythegroupofisomorphismclassesofGm-torsorsover S:

TorsRig1

(Gm,G) ∼=Tors1(Gm,G)/Tors1(Gm,S). (5.4)

DenotebyCub(G,Gm) thePicardS-stackofGm-torsorsonG withcubicalstructureandbyCubi(G,Gm)

fori= 1,0 itsclassifyinggroups.RoughlyspeakingaGm-torsoronG iscubicalifitsatisfiestheTheorem

of the Cube, for details see [11, Def 2.2]. In [11, Prop 2.4], Breen proves the Theorem of the Cube for extensionsofabelianschemesbytoriwhicharedefinedoveranormalscheme,thatistheforgetfuladditive functorCub(G,Gm)→ TorsRig(Gm,G) isanequivalenceof PicardS-stacks.Inparticular

Cub1(G, G

m) ∼=TorsRig1(Gm,G). (5.5)

Withourhypothesis,by[33,ChpI,Rem7.2.4],anyGm-torsorsonG withcubicalstructurecomes froma

(16)

π∗:Tors1(Gm,A)−→ Tors1(Gm,G). (5.6)

Now let G be a Gm,G-gerbe on G. Breen’s semi-local description of gerbes (2.3) asserts that to have G

is equivalent to have the local data (Tors(Gm,G,U),Ψx)x∈G(U),U∈Sf ppf endowed with the transition data

(ψx,ξx). Let y = π(P (x))∈ A(U), where P :G → G isthestructural morphism of G. Theequivalence of

U×SU -stacksψx:Tors(pr2Gm,G,U)→ Tors(pr∗1Gm,G,U) inducesabijectionbetweentheclassifyinggroups

ψx1:Tors1(pr∗2Gm,G,U)→ Tors1(pr1Gm,G,U).Because ofthesurjection (5.6),alltorsors overG comefrom

torsors overA uptoisomorphisms,andso wehaveabijection

ψ1y:Tors1(pr2Gm,A,U)→ Tors1(pr1Gm,A,U)

such that ψ1

y = (π∗)∗ψ1x. By pull-back via (5.6), the isomorphism of cartesian S-functors ξx : pr∗23ψx◦

pr12 ψx ⇒ pr13 ψx givesξy1 = (π∗)∗ξx1 : pr23 ψ1y◦ pr∗12ψy1 ⇒ pr13 ψy1 over U ×S U ×SU , which satisfies an

analogueoftheequality(2.4).Thelocaldata(Tors1(G

m,A,U))y=π(P (x)),x∈G(U)endowedwiththetransition

data 1

y,ξ1y),whicharedefinedonisomorphismclassesofGm-torsors,furnishaGm,A-equivalenceclass G

of aGm,A-gerbe onA suchthatπ∗(G)=G. 

Wegiveanimmediateapplicationofthisresultinthecaseofextensionsover afieldk.

Corollary 5.5.Let G be an extension of an abelian variety by a torus over a field k. Then Br(G) = H2

´

et(G,Gm,G).

Proof. ByGabber’s unpublishedresult[18],ifA is anabelianvarietydefinedover afieldk,then Br(A)∼= H2

´

et(A,Gm,A).Wehavethefollowingcommutativediagram

Br(A) π∗ = H2 ´ et(A, Gm) π∗ Br(G) δ H 2 ´ et(G, Gm) (5.7)

where π : G→ A isthe surjectivemorphism ofvarieties underlyingG andπ∗ denotes thepull-back maps ofAzumayaalgebrasandcohomologicalclasses.By[25,II,Prop1.4] thecohomologicalgroupsH2

´

et(G,Gm)

and H2 ´

et(A,Gm) aretorsiongroupsandsoTheorem2.2and Proposition5.4imply thatπ∗: H2´et(A,Gm)

H2 ´

et(G,Gm) issurjective. Hencetheinjectivehomomorphismδ onthebottomrowissurjective too. 

LetGibeanextensionofanabelianS-schemeAibyanS-torusfori= 1,2,3,anddenotebyGi : S→ Gi

its unit section. Let sG

ij := Gi ×S Gj → G1×S G2×S G3 be the map obtained from the unit section

G

k : S→ Gk after the base changeGi×SGj → S (i.e.the mapwhich insertsGk : S→ Gk into thek-th

factorfork∈ {1,2,3}− {i,j}).

Corollary 5.6. LetS beaconnected, reduced,normal andnoetherian schemeand letGi bean extension of

an abelian S-scheme Ai by Grim fori= 1,2,3.Let  beaprime distinct fromthe residuecharacteristics of

S. Then,with theabovenotation, thenaturalhomomorphism



sGij: H2´et(G1×SG2×SG3, Gm)() −→ (i,j)∈{1,2,3}H2´et(Gi×SGj, Gm)()

x −→ (sG∗12(x), sG∗13(x), sG∗23(x)) (5.8)

(17)

Inparticular,ifthebaseschemeisconnected,reduced,normalandnoetherian,anextensionofanabelian S-scheme by Gmr satisfies the generalized Theorem of the Cube for any prime  distinct from the residue

characteristicsof S.

Proof. LetpGij : G1×SG2×SG3→ Gi×SGj betheprojectionmapsfori,j = 1,2,3 andletαGbethemap

αG : 

(i,j)∈{1,2,3}H2´et(Gi×SGj, Gm)() −→ Het(G1×SG2×S G3, Gm)()

((y2, y3), (y1, y3), (y1, y2)) −→ i,j=1,2,3pGij∗(yi, yj))

(5.9)

AnalogouslywedefinethemapsαAandpA

ij.Weobservethattheinjectivityofthemap



sG∗ij isequivalent tothesurjectivityofthemapαG([34,Rempage55]).Ifwedenoteπ

i: Gi→ Ai thesurjectionsunderlying

the extensions Gi (for i = 1,2,3), (πi × πj)◦ pijG = pAij ◦ (π1 × π2× π2) and so we have the following

commutativediagram  (i,j)∈{1,2,3}H2´et(Ai×SAj, Gm)() αA H2 ´ et(A1×SA2×SA3, Gm)()  (i,j)∈{1,2,3}H2et´(Gi×SGj, Gm)() αG H2et´(G1×SG2×SG3, Gm)() (5.10)

where the vertical arrows, which are the pull-backs induced by the πi, are surjective by Proposition 5.4

and Corollary 2.4. The top horizontal arrow is surjective since under our hypotheses abelian S-schemes

satisfythegeneralizedTheoremoftheCube(see[27,Cor2.6]).Hencewecanconcludethatalsothedown horizontalarrowissurjective,i.e.sGij isinjective. 

Using the effectivenessof the 2-descent forGm-gerbes viathe quotient map ι: G → M (Lemma4.3),

from theabovecorollaryweget

Theorem5.7. 1-motives,whicharedefinedoveraconnected,reduced,normalandnoetherianschemeS,and whose underlying toriare split, satisfy the generalizedTheorem of the Cube forany prime  distinct from theresiduecharacteristics ofS.

6. Cohomologicalclassesof1-motiveswhichareAzumayaalgebras

LetS beascheme.Wewill needthefinitesiteonS:firstrecallthatamorphismof schemesf : X→ S

is saidto be finite locallyfree if it is finite andf(OX) is alocally freeOS-module.In particular, by[24,

Prop(18.2.3)] finiteétalemorphismsarefinitelocallyfree.ThefinitesiteonS,denotedSf,isthecategory

offinite locally freeschemesoverS, endowedwiththetopologygenerated from thepretopologyfor which theset ofcoveringsofafinite locallyfree schemeT over S istheset ofsinglemorphismsu: T → T such thatu isfinite locally freeand T = u(T) (set theoretically). Thereis amorphismof siteτ : Sf ppf → Sf.

IfF isasheaffortheétaletopology,thenwedefineas in[27,§3]

F (T )f :=

y∈ F (T ) | there is a covering u : T→ T in Sf with F (u)(y) = 0

i.e.F (T )f aretheelementsof F (T ) whichcanbe splitbyafinite locallyfreecovering.

Proposition 6.1.Let G be an extension of an abelian scheme by a torus, which is defined over a normal and noetherian scheme S, and which satisfies thegeneralized Theorem of the Cube fora prime number  distinct from thecharacteristics of S.Then the -primary component of thekernel of the homomorphism

(18)

H2 ´

et() : H2et´(G,Gm,G)) → H2et´(S,Gm,S) induced by the unit section  : S → G of G, is contained in the

Brauer groupof G:

kerH2´et() : H2et´(G, Gm,G))−→ H2et´(S, Gm,S)



()⊆ Br(G). Proof. In order to simplify notations we denote by ker(H2

´

et()) thekernel of the homomorphism H2et´() :

H2 ´

et(G,Gm,G)→ H2et´(S,Gm,S).Weidentifyétaleandfppfcohomologiesfor thesmoothgroupschemesμn

and Gm.

(1) First we showthat H2f(G,τ∗μn) isisomorphic to H2

´

et(G,μn)f. Bydefinition, R1τμn is the sheaf

onG associatedtothepresheafU → H1(Uf ppf,μn).ThislattergroupclassifiestorsorsinUf ppf underthe

finitelocallyfreegroupschemeμn.Sinceanyμn-torsoristrivializedbyusingitselfasanf -cover,wehave

that R1τ

∗μn = (0). TheLeray spectralsequence for themorphism ofsites τ : Sf ppf → Sf (see [32, page

309])givesthentheisomorphism

H2f(G, τμn) ∼= kerH2et´(G, μn)−→ Hπ 0f(G, R2τμn)= H2et´(G, μn)f

where the map π is the edge morphism which can be interpreted as the canonical morphism from the presheafU → H2

´

et(Uf ppf,μn) totheassociatedsheafR2τμn.

(2) Nowwe provethatH2 ´

et(G,μ∞)f mapsontoker(Het())().Let x bean elementof ker(H2´et()) with

nx= 0 for some n. The filtration on the Leray spectral sequence for τ : S

f ppf → Sf and the Kummer

sequence givesthe following exactcommutativediagram

Pic(G) π  d H0 f(G, (R1τ∗Gm)n) d 0 H2 ´ et(G, μn)f H2 ´ et(G, μn) π i H0 f(G, R2τ∗μn) 0 H2´et(G, Gm)f H2´et(G, Gm) n H0f(G, R2τGm) H2 ´ et(G, Gm,G) (6.1) where (R1τ

Gm)n is the cokernel of the multiplication by n. Since nx = 0, we can choose an y

H2 ´

et(G,μn) such thati(y)= x. ByCorollary 5.3, theisogeny2n : G→ G is afinite locally freecovering

whichsplitsx,thatisx∈ H2 ´

et(G,Gm)f.Moreoveri((l2n)∗y)= (l2n)∗i(y)= 0 andsothereexistsanelement

z ∈ Pic(G) suchthatd(z)= (l2n)∗y.Inparticular d(π(z))= π((l2n)∗y) is anelementof H0f(G,R2τ∗μn).

BytheTheoremoftheCubefortheextensionG (see[11,Prop2.4]),wehavethat(l2n)z = l2nz forsome

z∈ Pic(G),whichimpliesthatπ(z)= 0 in(R1τ

Gm)n(Gf).Fromtheequalityπ((l2n)∗y)= d(π(z))= 0

follows π(y)= 0,whichmeansthaty isanelement ofH2 ´

et(G,μn)f.

(3) Here we show that ker(H2 ´

et())() ⊆ τ∗H2f(G,Gm). By the first two steps, H2f(G,τ∗μn) maps

onto ker(H2´et())(). Since Hf2(G,τ∗μn) ⊆ H2

f(G,τ∗Gm), we can then conclude that ker(H2et´())()

τ∗H2f(G,Gm).

(4)Letx beanelementofker(H2 ´

et()) withnx= 0 forsomen.Usingthemorphismofsitesτ : Sf ppf

Sf,in[27,Lem3.2] Hooblerbuiltacommutativediagramwhereupperandlowerlinesgiverisetospectral

sequencescomparing ČechandsheafcohomologyforSf ppf andSf.Usingthisdiagram heshowedthatthe

group τ∗H2

Riferimenti

Documenti correlati

decreases the activation energy of the forward reaction and increases the activation energy of the reverse reaction.. increases the activation energy of the forward reaction

Furthermore, recall that an abelian group is reduced if it has no non-trivial divisible subgroup; the reduced abelian groups and the divisible abelian groups form another

In this paper, we construct certain exact sequences which relate derivations with the Lie algebra cohomology group H 2 (B, A), and apply them to study extending derivations of A

In this paper, we determine the normal subgroups of a finite non-abelian meta- cyclic p-group of class two for odd prime p.. Keywords: Metacyclic p-groups, Subgroups,

Now assume that the group (G, +) is commutative. Thus, it remains to prove that property i) implies that (G, +) is nilpotent of class at most 2..

We present here two proofs of the normal basis theorem which also work equally well for finite and for infinite fields.. The first one is a simpler version of

I dati segnalati nelle registrazioni dei libri sono troppo scarsi per poter distinguere in modo attendibile tra manoscritti e stampati: è stata pertanto realizzata una scheda

The first device is a “double paddle oscillator” (DPO) 10 made from a 300 μm thick The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com by 37.116.183.201