• Non ci sono risultati.

Serum protein profiling of early and advanced stage Crohn's disease

N/A
N/A
Protected

Academic year: 2021

Condividi "Serum protein profiling of early and advanced stage Crohn's disease"

Copied!
12
0
0

Testo completo

(1)

Available

online

at

www.sciencedirect.com

ScienceDirect

j o ur na l h o me p a g e:h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / e u p r o t

Serum

protein

profiling

of

early

and

advanced

stage

Crohn’s

disease

C.

Piras

a

,

A.

Soggiu

a

,

V.

Greco

b

,

A.

Cassinotti

c

,

G.

Maconi

c

,

S.

Ardizzone

c

,

A.

Amoresano

d

,

G.

Bianchi

Porro

c

,

L.

Bonizzi

a

,

P.

Roncada

a,e,∗

aDIVET,Dipartimentodiscienzeveterinarieesanitàpubblica,UniversitàdegliStudidiMilano,Italy bFondazioneSantaLuciaIRCCS,Rome,Italy

cGastroenterologyUnit,L.SaccoUniversityHospital,Milan,Italy

dDepartmentofOrganicChemistryandBiochemistry,UniversityofNaples“FedericoII”,Italy eIstitutoSperimentaleItalianoL.Spallanzani,Milano,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received24May2013 Receivedinrevisedform 11February2014 Accepted18February2014 Keywords: Crohn’sdisease 2Delectrophoresis Comparativeproteomics C3ccomplement Transthyretin

a

b

s

t

r

a

c

t

Crohn’sdisease(CD) represents a highlydebilitating diseaseof difficultdiagnosis and increasingincidence.SerumproteinprofilingofearlystageCrohn’sdisease(ES)CDwas investigatedinordertoimprovethecomprehensionoftheveryearlypathologic mecha-nismsandtosupportthedifficultdiagnosticprocedurescurrentlyavailable.Inflammatory proteinsandcomplement3chainC(C3c)wereover-representedduringESCD,clusterin, retinolbindingprotein,␣1-microglobulinandtransthyretinwereunder-represented.AC3c isoformwasfoundtobepresentonlyduringESCD.Bynow,lackofspecificantibodiesto detectisoformsmadeitimpossibletoperformalternativevalidation.

©2014TheAuthors.PublishedbyElsevierB.V.onbehalfofEuropeanProteomics Association(EuPA).ThisisanopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1.

Introduction

Crohn’sdisease(CD),togetherwithulcerativecolitis(UC),is themostcommonformofinflammatoryboweldisease(IBD) [1].CDisachronicinflammatoryconditionofunknown aetiol-ogythatcanaffectanyportionofthedigestivetract,butmost frequentlytheterminalileumand/or thecolon[2]. Genetic factors,an abnormalimmune responsetomicrobial infec-tionsandunbalanceinthegut-microbiotaarethoughttobe involvedindiseasepathogenesis[3,4].

Correspondingauthorat:IstitutoSperimentaleItalianoL.Spallanzani,c/oDIVET,UniversitàdegliStudidiMilano,viaCeloria10,20133,

Milano,Italy.Tel.:+390250318138;fax:+390250318171.

E-mailaddresses:paola.roncada@guest.unimi.it,paola.roncada@gmail.com(P.Roncada).

ThediagnosisandmanagementofIBDstillpresentsa num-ber ofchallenges for treating physicians. The presenceof intestinal inflammationisaprimarycriterion fordiagnosis and differentiation from other diseases,no definitive diag-nostictestexistsasagoldstandardforCDdiagnosis,which is madeon the basisofhistory and physicalexamination, supplementedwithobjective findingsfromlaboratory, radi-ological, endoscopicand histological studies [5]. Thelatter involve invasive procedures, which are often a burden for thepatient.Consequently,inanattempttoovercomethese

http://dx.doi.org/10.1016/j.euprot.2014.02.010

2212-9685/©2014TheAuthors.PublishedbyElsevierB.V.onbehalfofEuropeanProteomicsAssociation(EuPA).Thisisanopenaccess articleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/3.0/).

(2)

problems,anumberoflaboratorymarkersforthediseasehave beenevaluated[6,7].

Thepresenceofactivegutinflammationinpatientswith IBD is associated with an acute phase reaction and the migrationofleukocytesinthegut[8,9].Thispromotesthe pro-ductionofalargenumberofproteins,detectable inserum and stools. In serum, elevated acute phase markers (e.g. erythrocyte sedimentation rate, orosomucoid (alpha-1-acid glycoprotein)andC-reactiveprotein,CRP)canbefound. How-ever, while these markers, and especially CRP, have been showntocorrelatewithdiseaseactivityandprognosisofIBD, theirspecificityisinsufficient,andtheymayreflectgeneral inflammation[10–12].Faecalcalprotectinandlactoferrinare theproductsofactivatedneutrophilcellsandtheyarereleased intothefaeces.TheyaremorespecificbiomarkersofIBD,and offerapromisingwaytoconfirmintestinalinflammation,but theycannotdifferentiate betweenIBDand other intestinal inflammationssuchasintestinalinfectionsornon-steroidal anti-inflammatorydrugenteropathy[8–12].Thus,theutilityof testingthesebiomarkersinroutineclinicalpracticeneedsto beexploredfurther,includingitscost.Serologicalstudies eval-uatingantibodiesagainstSaccharomycescerevisiae(ASCA)and perinuclearanti-neutrophilcytoplasmicantibodies(p-ANCA) mayprovideadjunctivesupportforthediagnosisofCDand itsdifferentialdiagnosiswithUC,buttheyalsosufferfroma lackofsensitivityandspecificity[13–16].

TheinvestigationofmolecularmechanismsrelatedtoCDis crucialtothedevelopmentofnewdiagnosticandtherapeutic strategies.Althoughhigherlevelsofacutephaseproteinshave alreadybeenwelldescribedinCD[17],aqualitativeanalysisof isoformsoftheseproteinsduringthediseasestate,andin par-ticularduringthevariousstagesofpathology,hasneverbeen reported.Meuwisetal.[12]suggestedthehaptoglobinsubunit (Hp␣2)asapotentialbiomarkerfortheclinicalphaseofCD, butthisstudydidnotconsiderchangesrelatedtotreatment andinthe ESCD. Moreover,therole ofproteaseinhibitors as ␣1-antitrypsin (A1AT) and ␣1-antichymotrypsin (AACT) hasbeen reportedtobeimportant,inthe pathophysiology ofthisdisease[18].Crohn’sdisease-relatedepithelialinjury andulcerationare thoughttobeduetocytokine-mediated alterationsinthebalancebetweenmatrixmetalloproteinases (MMPs) and tissueinhibitors ofMMPs (TIMPs),resulting in degradationoftheliningofthegut[19].Wethereforeaimed toinvestigatethe proteomic profileoftheES vs.AS CD in comparisontoHCsinordertoexplorethedifferential expres-sionofacutephaseproteinsorproteinisoformscharacteristic ofthepathologicalstatus,accordingtodiseasedurationand treatment.

2.

Materials

and

methods

2.1. Patients

The institutional ethics committee of Sacco Hospital of Milan approved the experimental protocol (Protocol n◦ 239/07/83/06/AP, 13/04/2007). All subjects provided written informed consent before enrollment. Serumsamples were collected from 13 healthy controls (HC), 8 early stage (ES) CD patients and 36 advanced stage (AS) CD patients for

comparative proteomicanalysis. Ofthe36 ASCD samples, 16 were excluded as they were receiving more than one anti-inflammatorydrug atthe timeofserum collection, 20 werechosentobeincludedinthisstudy.Ithasbeendecided to avoid multiple drugs treatments to do not excessively interferewiththeserumproteome.

ThediagnosisofCDwasbasedonpublishedinternational criteria[5].ESandASCDweredefinedaccordingwiththe dura-tionofthedisease,aspreviouslydescribed[20–22],following thesecriteria: Early=first attackofCD inapatientwithno previoushistoryofanygastrointestinalsymptomsorsurgery; Advanced=CD in a patient with at least five years history fromthetimeofinitialdiagnosisandwithpersistentclinical activity requiringimmunosuppressors,immunomodulators, steroidsorsurgery.ESCDpatientshadneverreceived corti-costeroids, antimetabolitesorbiologicaltherapyand serum wascollectedwithin3monthsfromthediagnoses(median1 month).Weexcludedanypatientwhohadanimmediateneed for surgery,severe comorbidity, documentedchronic infec-tion,apositivestoolcultureforpathogens,oramalignancy.AS CDpatientsweretreatedorwithsystemicsteroids,including oralbudesonideorprednisone,orwithmonoclonalantibodies againstTNF␣(i.e.infliximabandcertolizumabpegol),orwith oralimmunosuppressors(i.e.azathioprineormethotrexate).

TableS1hasbeen addedassupportinginformationand summarizesthebaselinedemographicandclinical character-isticsoftheenrolledpatients.

Supplementary material related to this article can be found, in the online version, at doi:10.1016/j.euprot.

2014.02.010.

2.2. Samples

Asingleblood samplewastakenfrom each HC/CDsubject after overnight fasting, and after 10–15min of rest. Blood clotting wasachieved bystanding tubes vertically atroom temperature(22◦C)for60min.Afterbloodclotting,samples werecentrifugedat1500×gfor10minat4◦Candthe super-natants(serum)werestoredin1mLaliquotsat-80◦Cuntil use.

2.3. 2Delectrophoresis

Threeexperimentalreplicateswereperformedforeach sam-pletominimizetechnicalgel-to-gelvariation.Thegelswere stainedwithcoomassieG250,forevaluationoflinearprotein expressionandformassspectrometricanalysis.Immobiline Drystrips(pH3–10,length18cm,GE-Healthcare)were rehy-drated with 350l buffer containing 8M urea, 4% CHAPS, 65mM DTT, 1% ampholine and 0.002% bromophenol blue

[23,24] for14h atroom temperature. Serumsampleswere

defrosted and diluted in a buffer containing 8M urea,4% CHAPS,65mMDTT,1%ampholinepH3.5–10and0.002% bro-mophenolblue.100gofproteinwereloadedbycathodiccup loading.IsoelectricfocusingwasperformedusingtheEttan IPGphorIIIIEFSystem(GEHealthcare)withatotalof140kVh. Stripswereequilibratedinasolutioncontaining6Murea,30% glycerol,2%SDSand50mMTris–HCl(pH8.8),withtheaddition of1%w/vDTTinthefirststep,and2.5%w/viodoacetamide inthesecondstep.

(3)

For the second dimension, proteins were separated by SDS-PAGE on 10% polyacrylamide gels using Ettan Daltsix (GE-Healthcare)accordingtothefollowingprocedure:30min ata constant current of 12mA followed by 24mA per gel untilthebromophenolbluefrontreachedthebottomofthe gel.Gels were then stained withCoomassieG250 or silver stainingcompatiblewithmassspectrometry[25].Ultra nar-rowcustomizedIPGstrips(pH4–5.5,length13cm[26,27])were rehydratedwith350lrehydrationbufferand1mgofsample proteinwasloadedbycathodiccuploading.Forthesecond dimension,proteinswereseparatedbySDS-PAGEon10% poly-acrylamidegelsusingEttanDaltsix(GE-Healthcare)according tothefollowingprocedure:30minataconstantcurrent of 12mAfollowedby24mApergeluntilthebromophenolblue frontreachedthebottomofthegel.Gelswerethenstained withCoomassieG250orMSmodifiedsilverstaining[25].Ultra narrowcustomizedIPGstrips(pH4–5.5,length13cm[26,27]) wererehydratedwith350lrehydrationbufferand 1mgof sampleproteinwasloadedbycathodiccuploading.

For the second dimension, proteins were separated by 8–16%gradient–sodiumdodecylsulphate–polyacrylamidegel electrophoresisusinganEttanDaltsix(GE-Healthcare).Gels werestainedusingCoomassieG250.

2.4. Imageanalysis

AllimageswereacquiredusingaPHAROSFXlaserscanner (Bio-Rad)at100mresolution.Gelimageswereimportedinto ProgenesisSameSpots(v4.5;NonlinearDynamics,Newcastle, UK)foranalysis[28].

All imported images were processed with Progenesis SameSpotsto checkimage quality (saturation,dimension). Thealignedimageswerethenautomaticallyanalyzedusing the2Danalysismoduleforspotdetection,background sub-traction,normalization,andspotmatching,andallspotswere manuallyreviewedandvalidatedtoensureproperdetection andmatching.

2.5. Statisticalanalysis

Statistical analysis was performed using the Progenesis Stats moduleon the log-normalized volumes forall spots. Mann–Whitneytestandone-wayANOVAwereusedto con-firmthepvaluebetweendifferentgroups,p-valuesunder0.05 wereconsideredstatisticallysignificant.FDR(falsediscovery rate)andpoweranalysiswerealsocalculated,qvalues<0.05 andpowervalues>0.8respectivelywereconsideredtobe sig-nificant.Multivariatestatisticalanalysiswascarriedoutusing theProgenesisStatsmoduletoperformprincipalcomponents analysis(PCA)[29].

2.6. Proteinidentificationbymassspectrometry 2.6.1. Insitudigestion

Protein spots of interest were excised from the Colloidal Coomassie-stainedpreparative gel.Theexcisedspots were first washed with acetonitrile (ACN) and then with 0.1M ammonium bicarbonate. Protein samples were reduced by incubation in10mM dithiothreitol for45minat56◦C.The cysteine residues were alkylated by incubation in 55mM

iodoacetamidefor30minatroomtemperatureinthedark. Thegelparticleswerethenwashedwithammonium bicar-bonate andACN.Enzymaticdigestionwascarried outwith trypsin(12.5ng/l)in50mMammoniumbicarbonatepH8.5 at4◦Cfor1h.Thebufferedsolutionwasthenremovedanda freshaliquotoftheenzyme/buffersolutionwasaddedfor16h at37◦C.Aminimumreactionvolume,sufficienttoachievethe completerehydrationofthegelwasused.Peptideswerethen extracted,washingthegelparticleswith50mMammonium bicarbonateand0.1%trifluoroaceticacid(TFA)in50%ACNat roomtemperature,thenlyophilizedandresuspendedin30l of0.1%formicacid/3%ACNforMSanalysis.

2.6.2. MALDI-TOFMassspectrometry

Positive ReflectronMALDI-TOFmass spectrawere recorded on a Voyager DE STR instrument (Applied Biosystems, Framingham,MA).TheMALDImatrix waspreparedby dis-solving10mgof˛-cyano-4-hydroxycinnamicacid in1mlof ACN/water(90:10v/v).Typically,1lofmatrixwasappliedto themetallicsampleplateand1lofeachsamplewasthen added.Accelerationandreflectorvoltagesweresetupas fol-lows:targetvoltageat20kV,firstgridat95%oftargetvoltage, delayedextractionat600nstoobtainthebestsignal-to-noise ratios and thebest possibleisotopicresolutionwith multi-point externalcalibrationusingpeptide mixturepurchased fromAppliedBiosystems.Eachspectrumrepresentsthesum of1500laserpulsesfromrandomlychosenspotspersample position.Rawdatawereanalyzedusingthecomputersoftware providedbythemanufacturersandarereportedas monoiso-topicmasses.

Database searches with the measured monoiso-topic peptide masses were performed against the Swiss Prot database using the peptide search MASCOT

(http://www.matrixscience.com). Search parameters were

typicallysetto70ppmmaximaltolerance,onemissed cleav-age sitefortrypticpeptides allowed,andthe modifications acceptedwerecarboamidomethylationwithiodoacetamideof cysteinesandpossibleartefactualoxidationofmethionines. 2.6.3. NanoLCmassspectrometry

Trypticpeptidesderivedfromeachsamplewereanalyzedby nLC–MS/MSanalysisusinga4000Q-Trap(AppliedBiosystems) coupled to an 1100 nano HPLC system (Agilent Technolo-gies).ThesampleswereloadedonanAgilentreversed-phase pre-columncartridge(Zorbax300SB-C18, 5×0.3mm,5m) at10l/min(Asolvent0.1%formicacid,loadingtime5min). Peptides were separated on an Agilent reversed-phase col-umn(Zorbax300SB-C18,150mm×75m,3.5m),ataflow rateof0.3l/minwitha0–65%lineargradientin60min(A solvent 0.1% formic acid,2% ACN in MQ water; Bsolvent 0.1%formicacid,2%MQ waterinACN). Nanospraysource wasusedat2.5kVwithliquidcoupling,withadeclustering potentialof20V,usinganuncoatedsilicatipfrom NewObjec-tives(O.D.150m,I.D.20m,T.D.10m).Datawereacquired ininformation-dependentacquisition(IDA)mode,inwhich afullscanmassspectrumwasfollowedbyMS/MSofthe5 mostabundantions(2seach).Inparticular,spectra acquisi-tionofMS/MSanalysiswasbasedonasurveyEnhancedMS Scan(EMS)from400m/zto1400m/zat4000amu/s.Thisscan mode wasfollowedbyanEnhancedResolutionexperiment

(4)

(ER)forthefivemostintenseionsandthenMS2spectra(EPI) wereacquiredusingthebestcollisionenergycalculatedonthe basesofm/zvaluesandchargestate(rollingcollisionenergy) from100m/zto1400m/zat4000amu/s.Datawereacquired andprocessedusingAnalystsoftware(AppliedBiosystems).

LCMS Data were analyzedusing Analystsoftware (ver-sion 1.4.1) and MS/MS centroid peak lists were generated using the MASCOT.dll script (version 1.6b9). The threshold ofMS/MScentroid peakswastaken tobe0.1%ofthe base peak.MS/MSspectrahavinglessthan10peakswererejected. MS/MSspectraweresearchedagainsttheSwissProtdatabase using the licensed version of Mascot 2.1 (Matrix Science), afterconvertingthe acquiredMS/MSspectrainto the mas-cotgeneric fileformat. Thequerywasperformed withthe maximaltoleranceforparentmassesof200ppmanda max-imaltoleranceforfragmentsof0.2Da,searchingpeptideson 2+and 3+chargestate. Atthemosttwo miss-cleavagefor trypticpeptideswereallowed,andthemodificationsaccepted werecarboamidomethylationofcysteinesasfixed modifica-tionsand oxidationofmethioninesand pyro-gluN-termQ asvariable post-translational modifications. Thetaxonomy wasrestrictedtoHomosapiensSpectrawithaMASCOTscore <25wererejected.However,spectraldataweremanually val-idatedandcontainedsufficientinformationtoassignpeptide sequence.

2.6.4. Westernblotanalysis

Proteinextractfrom sera samples, 7g and5g/lanewere loaded on a SDS-PAGE system 10%, transfer blotting was achievedbya semi dry apparatus(NOVABLOT) onlow flu-orescencePVDF.Membraneswereincubated for2husinga commercialmonoclonalantibody(NB100-64339,Novus Bio-logicals)specificagainstC3ccomplementandsuccessivelyfor 1hwithasecondaryantibody(A3562,SIGMA).

3.

Results

All samples were analyzed using 3–10 pH IPG strips and obtaineddatahavebeenconsidered asmaindata. Further-moreultranarrow4–5.5[30]pH2Delectrophoresishavebeen employedtoconfirmobtaineddataandtobetterannotatethe supposedspecificproteinisoforms.

3.1. HCvs.ESCD

WhencomparingESCDandHC,imageanalysishighlighted 10 proteins whose expression was significantly altered in thediseasestate,theseproteinsweresuccessfullyidentified

byMS (Fig.1a and b, Table1). Inparticular, ˛1-antitrypsin

(A1AT,36.7% higherin ESCD), ˛1-antichymotrypsin(AACT, 50.2%higherinESCD),andcomplement3fragmentC(C3c, 270% higher in ES CD) were up-represented, haptoglobin (HPT,32%higherinESCD)expressionshowedatendencyto up-regulation(p=0.08)(Fig.1a).

Ontheotherhand,RETBP,CLUS,AMBP,andTTHYwere sig-nificantlyunder-representedinESCDcomparedwithHC,with levels49.8%,51%,74%and56.6%lower(p≤0.05),respectively

(Fig.1b). T able 1 Differ entiall y repr esented pr oteins dur ing ES CD identified by MS.= up-r egula tion in ES Cr ohn’ s disease pa tients;= do wn-r egula tion in ES Cr ohn’ s disease pa tients. Spot nu mber Unipr ot accession n u mber Pr otein name ES CD vs. HC AS CD vs. ES CD AS CD vs. HC Mascot scor e Sequence co v e ra g e (%) Theor etical Mr/pI Ratio of means p -V alue Ratio of means p -V alue Ratio of means p -V alue 1 P01009 ␣ 1-Antitr ypsin 1.367686 0.00054 0.706468 4.00812E − 05 0.966226 0.61547942 255 73 60.59/4.70 2 P01011 ␣ 1-Antic h ymotr ypsin 1.497752 0.003195 0.81714 0.174199 1.223873 0.139132 373 87 54.93/5.00 3 P00738 Hapto globin 1.314226 0.121067 1.255693 0.176734 1.650265 0.000394 203 63 40.42/5.36 4 P01024 Complement 3 fr a gment C 3.760332 9.46E − 09 0.442775 2.47E − 07 1.664982 0.00608 263 58 40.91/4.84 5 P02753 Retinol binding pr otein 4 0.5027 0.000762 2.195367 0.000813 1.10361 0.447741 131 71 20.10/5.23 6 P10909 Clusterin 0.489887 7.9E − 08 2.229412 0.002048 1.092159 0.513289 163 87 37.21/4.85 7 P02760 Alpha-1-micr o globulin 0.260326 1.9E − 06 4.221332 0.005435 1.098921 0.658607 218 65 38.9/5.95 8 P02766 T ransth ytr etin 0.438517 1.87E − 06 1.866248 5.25E − 05 0.818381 0.021019 263 91 35.39/5.52 9 P02766 T ransth ytr etin isoform pI 4.7 HC = 0 – AS = 0 – HC = 0 – 170 80 35.39/4.72 10 P01024 Complement 3 fr a gment C isoform pI 4.9 HC = 0 – 0.404369 0.027986 HC = 0 – 255 57 38.80/4.95

(5)

Fig.1–(a)Up-representedserumproteinsinESCD(n=8)andHCs(n=13).A1AT(␣1-antitrypsin):HCs(2.96±0.54)vs.CD (4.05±0.65);AACT(␣1-antichymotrypsin):HCs(0.55±0.15)vs.CD(0.83±0.22);HPT(haptoglobin):HCs(4.30±1.03)vs.CD (5.67±0.86);C3c(complement3fragmentc):HCs(0.17±0.09)vs.CD(0.63±0.13)(*p≤0.05).(b)Down-representedserum proteinsinESCD(n=8)andHCs(n=13):RETBP(retinolbindingprotein):HCs(0.12±0.03)vs.CD(0.06±0.03);CLUS (clusterin):HCs(0.35±0.06)vs.CD(0.17±0.03);AMBP(␣1-microglobulin):HCs(0.067±0.016)vs.CD(0.017±0.012);TTHY (transthytretin):HCs(0.78±0.17)vs.CD(0.34±0.1).*p<0.05forMannWhitneytestcarriedoutforeachsamplingdatapoint betweenHCandCDproteins.

Furthermore,twoproteinsapparentlyabsentinHC sam-ples were identified in ES CD samples: one isoform of transthyretinatpI4.7andoneisoformfragmentof comple-mentC3catpI4.9(Fig.2).Bothisoformswerefoundin3–10and 4–5.5pHrangeexperiments,aswellastheyweresuccessfully identifiedbyMALDITOFandnLC–MS/MSanalysis.

3.2. ESCDvs.ASCD

AsshowninFig.3a,theproteinsover-representedduringthe ESofCD didnotmaintainhigherrelativelevelsduringthe ASofthe disease,and theirexpressionwas similarto HC. Notableexceptions tothis,however,were C3ccomplement fragmentand,toagreaterextent,haptoglobin(C3cp=0.024; HPTp=0.01).Proteinswhichwereunder-representedduring theESofCD,werealsoobservedtoreturntonormal(HC) lev-elsinASCD(Fig.3b).Notably,nodifferenceswereobserved within the AS CD patient group according to the type of anti-inflammatorytreatment(datanotshown).

3.3. PCAanalysisofallgroups

Toprovideevidenceforthedifferencesbetweenserum sam-ples,multivariateunsupervisedPCAanalysiswasperformed.

Fig.4representsthebiplotofthefirsttwoprincipal compo-nents(PC).

Thebiplotshowedaneffectiveseparationofsamplesin twoclasses:ESCDsamples(pink,negativescoresofPC1),and HCs(cyan,positivescoresofPC1).Spotsthatcontributeto dif-ferencesbetweenthetwogroupsarepresentasloadingsin the PCAplot(spotnumbers,Fig.4)andconfirmtheresults obtainedbynon-parametricunivariateanalysis.

Fig.5showsthebiplotwhichalsoincludessamplesfrom CDAS.ThegraphhighlightsthesimilaritybetweentheASCD (violet) andHCs(cyan)thatwould beincluded inthe same groupusingthisanalysis.ThisconfirmsthatinASCDprotein expressionreturnssimilartocontrolvalues.

AvalidationoftheC3fragmentprofilehasbeenattempted usingcommercialmonoclonalantibodyNB100-64339,Novus Biologicals.Suchavalidationhasbeenperformedintheearly stage Crohn’s disease samplesas considered more signifi-cant(Fig.6).Unfortunatelythespecificfragmentisoformof C3complementhighlightedinthe2DEwasnotdetectedby thisantibodywhichisrecognizingaproteinbandat115kDa supposedlyassociatedwiththeintactC3protein.Thisband showsanoveralltrendsimilartoofC3ccomplementisoform, detectedbythe2DE, howevertheseresults,donotshowa statisticallysignificantdifferentialexpressionbutonlya sug-gestiveprofile.

(6)

Fig.2–Detailsof2-Dmap(pI4.7–5.6;kDa45–30).1=complement3fragmentc;2=transthyretin;3=transthyretinisoformpI 4.7;4=complement3fragmentcisoformpI4.9.

Fig.3–Expressionprofilingofup-representedproteinsduringASofCrohn’sdisease:onlyHPTandC3ccomplementwere up-representedcomparedtoHCs(HPTp=0.01;C3cp=0.024)(*p≤0.05).

(7)

Fig.4–BiplotofthefirsttwocomponentsoftheprincipalcomponentanalysisofHCsandESCD.Ovalsindicatetheareas wherethedatapointsofthetwogroupsaredistributedpinkspots:ESCD,cyanspots:HCs.

4.

Discussion

The differential protein display was evaluated in ES CD patientsvs.HCandinASCDpatientsvs.ESCD.

4.1. HCvs.ESCD

Imageand multivariate (PCA) analysisof2Dmaps showed anoverexpressionof˛1-antitrypsin,˛1-antichimotrypsinand complement factor 3 chain c during ES CD (Fig. 1a) in comparisontoHC, haptoglobin showed aover-represented trend. On the other hand, clusterin, retinol binding pro-tein, ˛1-microglobulin and transthyretin (Fig. 1b) were under-represented. These are mostly inflammation-related proteinsthathavealreadybeendescribedduringCrohn’s dis-ease. However, this is an innovative study because of the presence of a rare group of Crohn’s disease patients that have been investigated during the ES of this disease. The analysisoftheserumproteomeofthisparticularpoolof sam-plesrevealed,asdescribedbelow,thepresenceofdifferential expressionofthedescribedproteinsandtheirisoforms.

4.2. ESCDvsASCD

Obtainedresultshighlightedthepresenceofimportant dif-ferences between theproteomic profiles ofHC and ESCD, however,the relativelevels ofthese proteinscameback to

levels similar to HC in AS CD patients (Fig. 3). Different immuneactivationpatternshavebeenpreviouslydescribed forT-cellresponsesinastudyinchildren,wherevariations in mucosal T-cell immune regulationduring the courseof humanIBDwereobserved[20].Inparticular,attheonsetof CD,mucosalTcellsappeartomountatypicalTh1response thatresemblesanacuteinfectiousprocess,butthisresponse islostwithprogressiontoASCD,suggestingthatpatientswith theinitialmanifestationsofIBDmayrepresentanideal pop-ulationinwhichimmunomodulationhasoptimaltherapeutic efficacy.

Moreover,theoverexpressionofsomeproteinsintheESCD mayreflecttheirpotentialroleindiseasepathogenesis accord-ingtotheparticularitiesoftheirfunctionsintheinflammatory cascade, or simplybeanaspecificmarkerofinflammatory activation.

Differentially represented proteins and isoforms dur-ing ES and AS CD in comparison to HC: ˛1-antitrypsin and ˛1-antichymotrypsin are protease inhibitors and posi-tiveacute-phaseproteinswhoseplasmaconcentrationsare increased asa resultof inflammation.During acute phase response,overexpressionofthesetwoproteinsiscrucialin theirreversibleinhibitionofproteaseactivity.Bothproteins are synthesizedprimarilyintheliver,butisoforms ofA1AT havebeenpreviouslyshowntobepresentalsoingutPaneth cells[31],andvariableassociationshavebeenfoundbetween A1ATlevelsorpolymorphismsandCD,withconflictingresults

[32–34].Notably,anexcessoftissutalproteaseinhibitorslike

Fig.5–BiplotofthefirsttwocomponentsoftheprincipalcomponentanalysisofHCsandES/ASCD.Ovalsindicatetheareas wherethedatapointsofthetwogroupsaredistributedpinkspots:ESCDsamples.Violetspots:ASCD,cyanspots:HCs.

(8)

Fig.6–ImmunoblottingoftheC3c.(a)Onedimensional electrophoresis(coomassiestaining).(b)Onedimensional immunoblottingwith7␮gperlaneproteinload.(c)One dimensionalimmunoblottingwith5␮gperlaneprotein load.

A1AThasbeendescribed [31]and thiswasassociatedwith adisturbanceinthenormalprocessingofantimicrobial pep-tides,likedefensins,whichthenallowsincreasedexposureof theintestinalmucosatoluminalmicro-organisms[35], trig-geringanexcessiveimmuneactivationinIBD.Ontheother hand,the downregulationofthese antiproteases,that was observedinASCD,maysuggestnewmechanismsofdisease controlbythevariousanti-inflammatorytreatmentsusedor changesinthemechanismsofimmuneactivationduringthe advancedphasesofthedisease.Asdescribedbefore,recent findingshighlightedthatanimpairedmetabolismofproteases andproteasesinhibitorscouldbelinkedtothe etiopathogen-esisofthisdisease[19].

4.3. ComplementC3c

Like other acute phase proteins, complement C3c is over-represented. This data confirms results from previ-ous studies [36]. Complement-derived proteolytic products

mediatefunctionswhichcontributetopathogen disruption andelimination[37].However,theinappropriateactivationof the complementsystemhasbeen involvedinpathogenetic mechanisms ofimmunological and inflammatorydiseases, including IBD, as shown in several studies [17,38–49]. The centralrole ofcomplement component3(C3)isduetothe complexity of the functional regulation of its fragments, includingthe majorfragment,C3b,whichanchorsthe con-vertaseassemblyeffectingactivationoffragmentsC3andC5. C3c isafragmentderivedfrom the proteolysisofC3b; C3c over-representationwasfoundnotonlyduringtheESCDbut also during AS disease,irrespective ofvarious treatments, suggestsadysregulatedcomplementmetabolismthatcould berelatedtodiseasepathogenesisandtothemaintenanceof gutinflammation.Recentmetaproteomicstudiessuggestthe possibilitytoevaluatethedifferencesbetweenthenormaland thepathologicalmicrobiota[50].Furthermore,imageanalysis revealedaC3cisoformatpI4[50].Furthermore,image anal-ysisrevealedaC3cisoformatpI4.9apparentlymissinginHC samples,furtherhighlightingthespecificroleofthe comple-mentsysteminCDimmuneactivationaswellastheneedto betterexploretheroleofthisisoform.Aputativeexplanation oftheroleofthecomplementsysteminotherautoimmune pathologieshavealreadybeenproposed[30]buttheprovided explanation doesnotincludethedescription oftherole or the provenienceof C3c fragment. However the differential representationofsuchaC3isoform maybeinteresting,we couldnotindependentlyvalidatesuchanevidencebytheuse ofanimmunochemicalmethodwithcommercialantibodies. OnlyatrendprofileoftheintactComplementC3proteincould bedetected.Suchapartialresultmaybedue toa number of factors affecting the superimposition of 2DE data with classical Westernblot detection. Theproblemofvalidation ofspecificisoformsofproteinsthataresignificantlydifferent in2Delectrophoresisisaquestionregardingtheavailability of epitope qualified and validated reagents. Also in this case,therearenocommercialantibodiesavailableagainsta specificisoformsand thecommercialproductsaredirected toaspecificundisclosedsequenceoftheentireproteins.

4.4. Clusterin

Thepresentstudyshowsalsothatclusterin,retinolbinding protein, ˛1-microglobulin and transthyretin are underrep-resented during ES CD. An over-expression of clusterin is reportedinawide varietyofmodelsofstress anddisease, includingwithdrawalofgrowthfactorsandexposuretotoxic agents [51]. Moreover clusterin expression [51]. Moreover clusterin expression increases in humans usually during intense oxidativestress, althoughthis phenomenon isnot observedinrheumatoidarthritis[52].Thesefindingssuggest apossibleroleforclusterininprotectingcellsfromoxidative stressduringpathologicalstatusandinflammatoryresponse. Accordingly,stronglyenhancedlevelsofclusterinwere pre-viously described in the ileum of CD patients, correlating with disease activity [53]. Increasedlevel ofclusterin dur-ing ES CD is therefore expected toprotect tissues against oxidativestressdamagecausedbyinflammation[54,55].The under-representation ofclusterininESCD observedinour study,isthereforeanunexpectedresult,andwarrantsfurther

(9)

investigationtoexploretheetiopathogenicimplications;for example,tostudyifimpairedprotectionfromoxidativestress, couldberesponsiblefortissueinjuryandimpairedmucosal barrier. The result may also suggest potential analogies betweenCDandrheumathoidarthritispathogenesis[56].

4.5. ˛1-Microglobulin

˛1-Microglobulin is animmunosuppressive plasma protein synthetizedbytheliver.Thedown-regulationobservedinthis study hasneverbeenreported beforeanddeserves further investigation as it may reflect a loss ofimmunoregulatory functionwhichcouldinfluencethebalancebetweenpro-and anti-inflammatorypathwaysofimmuneresponse.Howeverit hasbeeninterestinglydocumentedaconsiderablyincreased excretionof˛1-microglobulininpatientsaffectedbyCrohn’s disease.Itsincreasedexcretionissohightoinducescientists tospeculate˛1-microglobulininurineasputativebiomarker fortheevaluationofIBDactivityindex[57].

Retinolbindingprotein(RBP)issynthesizedprimarilyinthe liver, and requires retinol binding to trigger its secretion

[58,59]. In vivo,RBP binds the largerprotein, transthyretin,

whileinvitroonetetramer ofTTRbinds twomoleculesof retinolbindingprotein.However,theconcentrationofRBPin plasmaislimitingand thecomplexisolated fromserum is composedofbothTTRandRBP(inaonetoonestoichiometry) witharesultantmolecularmassofabout80kDa.The bind-ingofRBPtoTTRpreventsextensivelossofthelowmolecular weightRBPthroughglomerularfiltrationandmayalsorestrict freepartitioningofRBPintotheintercellularspaceoutsidethe vascularsystem[58,60,61].Retinolbindingproteinisavitamin Acarrier;itsdecreaseinCDhasbeenpreviouslydescribed[62] asasign ofintestinalmalabsorption.Themostinteresting characteristicofRBPisduetoitscommonpositive correla-tionwithsystemicinflammationthatisthephenomenonthat characterizesCD[63].Butsurprisingly,obtainedresults, con-firmeditsdown-regulationduringESCDinspiteofwhatwas expected.HoweverarecentstudybyKeichoandcolleagues foundRBPdecreasedinpatientswithtuberculosis[64].This experimentalevidence suggests again a putative microbial implicationinthepathogenesisofCDparticularlyif consider-ingthatMycobacteriumaviumsubsp.paratuberculosishasbeen oftendescribedastheputativecauseofCD[65]andcouldbe foundincowmilkforhumanconsumption[66].Moreover par-ticularattentionneedstobepaidtomicrobialpathogensdue totherecentevidencesinthefieldofmultidrugresistance[67].

4.6. Transthyretin

TTR is mainly synthesized by the liver and then secreted into the circulation. It is normally considered a negative acute-phaseproteinaswellas anutritionalindex[68]; our results match favourably with previous studies showing decreased levels of TTR in active CD [18], as well as its increase after effective treatment with infliximab [69]. Its concentrationwasfoundtobedecreasedalsoinrheumatoid arthritisconfirmingthealreadydescribedanalogiesbetween this two pathologies [70]. In ES CD it has been found an isoformatpI4.7.ThepresenceofthisisoformonlyinESCD couldbelinkedtoaputativePTMofthisproteinlinkedtothe

pathological status. Theputative role of TTRasbiomarker hasbeenalreadydescribedforotherpathologies[71].

5.

Conclusion

Ourcollectedevidenceshighlightedadifferentialprotein dis-playofseveralserumproteinsinESCDpatients.Inaddition itwasfoundatransthyretinisoform(pI4.7)andC3cfragment isoform(pI4.9)whichhasnotbeendescribedbeforeintype ofclinicalsamples.Theseisoformscouldhelptoexplainthe molecularchangesobservedduringtheclinicalphaseofCD and in particularthe role of C3ccomplement in the com-plement cascadeactivation andinthe diseaseprogression. TheC3cisoform isofparticularinterest asitwasstill rep-resented in78% ofASCD patientsafteranti-inflammatory therapies.Thisobservationmayindicatethatotherfactors(for example,microbialcomponents)couldstillplayanimportant roleintheadvancedphasesofthedisease.Inparticularitis importanttoquotethatmanyotherproteomicstudieshave investigatetheacutephaseproteinsinotherdiseasessimilar toCDasrheumatoidarthritis[72].Noneofthisstudies per-formedonserumdescribedanaugmentedexpressionofC3c complementasitwasfoundinthisstudy[70].Anotherstudy conductedbyCylwikandcolleaguesdescribestheanalysisof allserumacute-phaseproteinsduringthecourseof rheuma-toidarthritishighlightingthatC3complementconcentration wasnotinfluencedbythediseaseactivity[73].Moreovereven if C3 complement has been described as autoantigen dur-ing IBD[74], theover-representationofC3chasneverbeen described duringthis kindofpathologies.Therelevanceof C3complementandisoformsasputativebiomarkerforother pathologieshasalsobeendescribedhighlightingtherelevance offurtherstudiesonthis topic[75–77]. Allthis experimen-tal evidences could suggest that C3c proteolytic isoforms expressioninCrohn’sdiseasecould bedisease specificand encouragesfurtherinvestigationinwiderpopulations[78]in particularinthelightofthedifficultiesactuallyencounteredin thediagnosesofthispathology.Althoughthedetectionofthe describedisoformscouldrepresentadifficulttasksincethe currentlyavailablecommercialantibodiesare not recogniz-ingthisisoforms.Thedevelopmentofnewgenerationaffinity bindersisoformspecificwillrepresentakeymilestoneforthe construction ofdiagnostic testsfortheearlyphasesofthis pathology.

r

e

f

e

r

e

n

c

e

s

[1] BaumgartDC,SandbornWJ.Inflammatoryboweldisease:

clinicalaspectsandestablishedandevolvingtherapies.The

Lancet2007;369(9573):1641–57.

[2] BaumgartDC,CardingSR.Inflammatoryboweldisease:

causeandimmunobiology.TheLancet

2007;369(9573):1627–40.

[3] PresleyLL,YeJ,LiX,LeBlancJ,ZhangZ,RueggerPM,etal.

Host–microberelationshipsininflammatoryboweldisease

detectedbybacterialandmetaproteomicanalysisofthe

mucosal–luminalinterface.InflammatoryBowelDiseases

2012;18(3):409–17.

[4] EricksonAR,CantarelBL,LamendellaR,DarziY,Mongodin

(10)

revealshumanhost–microbiotasignaturesofCrohn’s

disease.PLoSONE2012;7(11):e49138.

[5] TravisS,StangeE,LémannM,ÖreslandT,ChowersY,Forbes

A,etal.Europeanevidencebasedconsensusonthe

diagnosisandmanagementofCrohn’sdisease:current

management.Gut2006;55(Suppl.1):i16–35.

[6] IskandarHN,CiorbaMA.Biomarkersininflammatorybowel

disease:currentpracticesandrecentadvances.

TranslationalResearch2012;159(4):313–25.

[7] LewisJD.Theutilityofbiomarkersinthediagnosisand

therapyofinflammatoryboweldisease.Gastroenterology

2011;140(6):1817–26,e2.

[8] TibbleJA,SigthorssonG,FosterR,ForgacsI,BjarnasonI.Use

ofsurrogatemarkersofinflammationandRomecriteriato

distinguishorganicfromnonorganicintestinaldisease.

Gastroenterology2002;123(2):450–60.

[9] FagerholMK.Surrogatemarkersofintestinalinflammation

arepredictiveofrelapseinpatientswithinflammatory

boweldisease.Gastroenterology2000;119(1):15–22.

[10] TibbleJ,BjarnasonI.Non-invasiveinvestigationof

inflammatoryboweldisease.WorldJournalof

Gastroenterology2001;7(4):460–5.

[11] VermeireS,VanAsscheG,RutgeertsP.C-reactiveproteinas

amarkerforinflammatoryboweldisease.Inflammatory

BowelDiseases2004;10(5):661–5.

[12] MeuwisMA,FilletM,GeurtsP,DeSenyD,LutteriL,Chapelle

JP,etal.Biomarkerdiscoveryforinflammatorybowel

disease:usingproteomicserumprofiling.Biochemical

Pharmacology2007;73(9):1422–33.

[13] VermeireS,JoossensS,PeetersM,MonsuurF,MarienG,

BossuytX,etal.ComparativestudyofASCA

(Anti-Saccharomycescerevisiaantibody)assaysin

inflammatoryboweldisease.Gastroenterology

2001;120(4):827–33.

[14] JoossensS,DapernoM,ShumsZ,VanSteenK,GoekenJA,

TrapaniC,etal.Interassayandinterobservervariabilityin

thedetectionofanti-neutrophilcytoplasmicantibodiesin

patientswithulcerativecolitis.ClinicalChemistry

2004;50(8):1422–5.

[15] JoossensS,ReinischW,VermeireS,SendidB,PoulainD,

PeetersM,etal.Thevalueofserologicmarkersin

indeterminatecolitis:aprospectivefollow-upstudy.

Gastroenterology2002;122(5):1242–7.

[16] KleblFH,BatailleF,BerteaCR,HerfarthH,HofstädterF,

SchölmerichJ,etal.Associationofperinuclear

antineutrophilcytoplasmicantibodiesand

anti-Saccharomycescerevisiaeantibodieswithvienna

classificationsubtypesofCrohn’sdisease.Inflammatory

BowelDiseases2003;9(5):302–7.

[17] BeneL,FüstG,FeketeB,KovácsÁ,HorváthL,ProhászkaZ,

etal.HighnormalserumlevelsofC3andC1inhibitor:two

acute-phaseproteinsbelongingtothecomplementsystem,

occurmorefrequentlyinpatientswithCrohn’sdiseasethan

ulcerativecolitis.DigestiveDiseasesandSciences

2003;48(6):1186–92.

[18] WeekeB,JarnumS.Serumconcentrationof19serum

proteinsinCrohn’sdiseaseandulcerativecolitis.Gut

1971;12(4):297–302.

[19] MonteleoneI,FedericiM,SarraM,FranzeE,CasagrandeV,

ZorziF,etal.Tissueinhibitorofmetalloproteinase-3

regulatesinflammationinhumanandmouseintestine.

Gastroenterology2014;143(5):1277–87,e1-4.

[20] KugathasanS,SaubermannLJ,SmithL,KouD,ItohJ,Binion

DG,etal.MucosalT-cellimmunoregulationvariesinearly

andlateinflammatoryboweldisease.Gut

2007;56(12):1696–705.

[21] BaertF,MoortgatL,VanAsscheG,CaenepeelP,VergauweP,

DeVosM,etal.Mucosalhealingpredictssustainedclinical

remissioninpatientswithearly-stageCrohn’sdisease.

Gastroenterology2010;138(2):463–8.

[22] D‘HaensG,BaertF,VanAsscheG,CaenepeelP,VergauweP,

TuynmanH,etal.Earlycombinedimmunosuppressionor

conventionalmanagementinpatientswithnewly

diagnosedCrohn’sdisease:anopenrandomisedtrial.The

Lancet2008;371(9613):660–7.

[23] GörgA,WeissW,DunnMJ.Currenttwo-dimensional

electrophoresistechnologyforproteomics.Proteomics

2004;4(12):3665–85.

[24] GaviraghiA,DeriuF,SoggiuA,GalliA,BonacinaC,BonizziL,

etal.Proteomicstoinvestigatefertilityinbulls.Veterinary

ResearchCommunications2010;34:33–6.

[25] YanJX,WaitR,BerkelmanT,HarryRA,WestbrookJA,

WheelerCH,etal.Amodifiedsilverstainingprotocolfor

visualizationofproteinscompatiblewithmatrix-assisted

laserdesorption/ionizationandelectrospray

ionization-massspectrometry.Electrophoresis

2000;21(17):3666–72.

[26] D‘auriaE,AgostoniC,GiovanniniM,RivaE,ZetterströmR,

FortinR,etal.Proteomicevaluationofmilkfromdifferent

mammalianspeciesasasubstituteforbreastmilk.Acta

Paediatrica2005;94(12):1708–13.

[27] RoncadaP,DeriuF,GaviraghiA,MartinoP,BonizziL.

ProteomicstudyofantibioticresistanceinEscherichiacoli

strains.VeterinaryResearchCommunications

2009;33:157–60.

[28] TurkR,PirasC,KovacicM,SamardzijaM,AhmedH,De

CanioM,etal.Proteomicsofinflammatoryandoxidative

stressresponseincowswithsubclinicalandclinical

mastitis.JournalofProteomics2012;75(14):4412–28.

[29] BortolatoM,GodarSC,MelisM,SoggiuA,RoncadaP,CasuA,

etal.NMDARsmediatetheroleofmonoamineoxidaseAin

pathologicalaggression.ScienceSignalling2012;

32(25):8574.

[30] ScambiC,LaVerdeV,DeFranceschiL,BarausseG,PoliF,

BenedettiF,etal.Comparativeproteomicanalysisofserum

frompatientswithsystemicsclerosisandsclerodermatous

GVHD.EvidenceofdefectivefunctionoffactorH.PLoSONE

2010;5(8):e12162.

[31] MolmentiE,PerlmutterD,RubinD.Cell-specificexpression

ofalpha1-antitrypsininhumanintestinalepithelium.

JournalofClinicalInvestigation1993;92(4):2022.

[32] FolwacznyC,UrbanS,SchröderM,HofmannB,NoehlN,

KönigA,etal.a1-Antitrypsinallelesandphenotypesin

patientswithinflammatoryboweldisease.Scandinavian

JournalofGastroenterology1998;33(1):78–81.

[33] TaddeiC,AudrainMAP,ReumauxD,SesboüeR,TestaA,

GalmicheJP,etal.Alpha1-antitrypsinphenotypesand

anti-neutrophilcytoplasmicauto-antibodiesin

inflammatoryboweldisease.EuropeanJournalof

Gastroenterology&Hepatology1999;11(11):1293.

[34] KotlowskiR,BernsteinCN,SilverbergMS,KrauseDO.

Population-basedcase–controlstudyofalpha1-antitrypsin

andSLC11A1inCrohn’sdiseaseandulcerativecolitis.

InflammatoryBowelDiseases2008;14(8):1112–7.

[35] ElphickD,LiddellS,MahidaYR.Impairedluminalprocessing

ofhumandefensin-5inCrohn’sdisease:persistenceina

complexwithchymotrypsinogenandtrypsin.TheAmerican

JournalofPathology2008;172(3):702–13.

[36] HalstensenT,MollnesT,BrandtzaegP.Persistent

complementactivationinsubmucosalbloodvesselsof

activeinflammatoryboweldisease:immunohistochemical

evidence.Gastroenterology1989;97(1):10.

[37] VolanakisJE,FrankMM.Thehumancomplementsystemin

healthanddisease.InformaHealthcare;1998.

[38] ScheininT,BöhlingT,HalmeL,KontiainenS,BjørgeL,Meri

(11)

epitheliuminulcerativecolitisandCrohn’sdisease.Human

Pathology1999;30(12):1427–30.

[39] NielsenH,BinderV,DaughartyH,SvehagSE.Circulating

immunecomplexesinulcerativecolitis.I.Correlationto

diseaseactivity.ClinicalandExperimentalImmunology

1978;31(1):72.

[40] PetersenNE,ElmgreenJ,TeisnerB,SvehagSE.Activationof

classicalpathwaycomplementinchronicinflammation.

ActaMedicaScandinavica1988;223(6):557–60.

[41] UekiT,MizunoM,UesuT,KisoT,NasuJ,InabaT,etal.

Distributionofactivatedcomplement:C3b,anditsdegraded

fragments,iC3b/C3dg,inthecolonicmucosaofulcerative

colitis(UC).Clinical&ExperimentalImmunology

1996;104(2):286–92.

[42] HalstensenTS,DasKM,BrandtzaegP.Epithelialdepositsof

immunoglobulinG1andactivatedcomplementcolocalise

withtheM(r)40kDputativeautoantigeninulcerative

colitis.Gut1993;34(5):650–7.

[43] HalstensenT,MollnesT,GarredP,FausaO,BrandtzaegP.

Surfaceepitheliumrelatedactivationofcomplementdiffers

inCrohn’sdiseaseandulcerativecolitis.Gut

1992;33(7):902–8.

[44] ErikZN,HenningG,GunnarB,OleTU.Complement

activationcapacityinplasmabeforeandduringhigh-dose

prednisolonetreatmentandtaperinginexacerbationsof

Crohn’sdiseaseandulcerativecolitis.BMCGastroenterology

2005;5:31.

[45] Zimmermann-NielsenE,AgnholtJ,Thorlacius-UssingO,

DahlerupJ,BaatrupG.Complementactivationinplasma

beforeandafterinfliximabtreatmentinCrohndisease.

ScandinavianJournalofGastroenterology

2003;38(10):1050–4.

[46] LauferJ,OrenR,GoldbergI,HorwitzA,KopolovicJ,Chowers

Y,etal.CellularlocalizationofcomplementC3andC4

transcriptsinintestinalspecimensfrompatientswith

Crohn’sdisease.Clinical&ExperimentalImmunology

2000;120(1):30–7.

[47] AhrenstedtÖ,KnutsonL,NilssonB,Nilsson-EkdahlK,

OdlindB,HällgrenR.Enhancedlocalproductionof

complementcomponentsinthesmallintestinesofpatients

withCrohn’sdisease.NewEnglandJournalofMedicine

1990;322(19):1345–9.

[48] SimonsenT,ElmgreenJ.Defectivemodulationof

complementinCrohn’sdisease:C3bopsonizationof

zymosanbythealternativepathway.ScandinavianJournal

ofGastroenterology1985;20(7):883–6.

[49] HodgsonH,PotterB,JewellD.C3metabolisminulcerative

colitisandCrohn’sdisease.ClinicalandExperimental

Immunology1977;28(3):490.

[50] DelChiericoF,VernocchiP,BonizziL,CarsettiR,Castellazzi

AM,DallapiccolaB.,etal.Early-lifegutmicrobiotaunder

physiologicalandpathologicalconditions:thecentralroleof

combinedmeta-omics-basedapproaches.Journalof

Proteomics2012;75(15):4580–7.

[51] JenneDE,TschoppJ.Clusterin:theintriguingguisesofa

widelyexpressedglycoprotein.TrendsinBiochemical

Sciences1992;17(4):154–9.

[52] TrougakosIP,GonosES.Regulationof

clusterin/apolipoproteinJ,afunctionalhomologuetothe

smallheatshockproteins,byoxidativestressinageingand

age-relateddiseases.FreeRadicalResearch

2006;40(12):1324–34.

[53] GasslerN,AutschbachF,HeuschenG,WitzgallR,OttoHF,

ObermullerN.ExpressionofclusterininCrohn’sdiseaseof

theterminalileum.HistolHistopathol2001;16(3):

755–62.

[54] TrougakosIP,GonosES.Oxidativestressinmalignant

progression:theroleofclusterin,asensitivecellular

biosensoroffreeradicals.AdvancesinCancerResearch

2009;104:171–210.

[55] AntonelouMH,KriebardisAG,StamoulisKE,TrougakosIP,

PapassideriIS.ApolipoproteinJ/clusterininhuman

erythrocytesisinvolvedinthemolecularprocessofdefected

materialdisposalduringvesiculation.PLoSONE

2011;6(10):e26033.

[56] DevauchelleV,BrebanM,DougadosM,FournierC,Chiocchia

G.Clusterin,apotentialpathophysiologicalactorin

rheumatoidarthritis.ArthritisResearch&Therapy

2004;6(Suppl.3):68.

[57] DericiU,TuncerC,Ebinc¸FA,MutluayR,YakaryilmazF,

KulaksizogluS.Doestheurinaryexcretionof

˛1-microglobulinandalbuminpredictclinicaldisease

activityinulcerativecolitis?AdvancesinTherapy

2008;25(12):1342–52.

[58] NewcomerME,OngDE.Plasmaretinolbindingprotein:

structureandfunctionoftheprototypiclipocalin.

BiochimicaetBiophysicaActa2000;1482(1–2):57.

[59] RonneH,OcklindC,WimanK,RaskL,ObrinkB,PetersonPA.

Ligand-dependentregulationofintracellularprotein

transport:effectofvitaminaonthesecretionofthe

retinol-bindingprotein.TheJournalofCellBiology

1983;96(3):907–10.

[60] KanaiM,RazA,GoodmanDWS.Retinol-bindingprotein:the

transportproteinforvitaminAinhumanplasma.Journalof

ClinicalInvestigation1968;47(9):2025.

[61] SoggiuA,PirasC,BonizziL,HusseinHA,PisanuS,Roncada

P.Adiscovery-phaseurineproteomicsinvestigationintype

1diabetes.ActaDiabetol2012;49(6):453–64.

[62] MainA,MillsP,RussellR,Bronte-StewartJ,NelsonLM,

McLellandA.VitaminAdeficiencyinCrohn’sdisease.Gut

1983;24(12):1169–75.

[63] BarazzoniR,ZanettiM,SemolicA,PirulliA,CattinMR,Biolo

G,etal.Highplasmaretinolbindingprotein4(RBP4)is

associatedwithsystemicinflammationindependentlyof

lowRBP4adiposeexpressionandisnormalizedby

transplantationinnonobese:nondiabeticpatientswith

chronickidneydisease.ClinicalEndocrinology

2011;75(1):56–63.

[64] KeichoN,MatsushitaI,TanakaT,ShimboT,LeHangNT,

SakuradaS,etal.Circulatinglevelsofadiponectin,leptin,

fetuin-Aandretinol-bindingproteininpatientswith

tuberculosis:markersofmetabolismandinflammation.

PLoSONE2012;7(6):e38703.

[65] OlsenI,TollefsenS,AagaardC,ReitanLJ,BannantineJP,

AndersenP,etal.IsolationofMycobacteriumavium

subspeciesparatuberculosisreactiveCD4Tcellsfrom

intestinalbiopsiesofCrohn’sdiseasepatients.PLoSONE

2009;4(5):e5641.

[66] RoncadaP,PirasC,SoggiuA,TurkR,UrbaniA,BonizziL.

Farmanimalmilkproteomics.JournalofProteomics

2012;75(14):4259–74.

[67] PirasC,SoggiuA,BonizziL,GaviraghiA,DeriuF,DeMartino

L,etal.Comparativeproteomicstoevaluatemultidrug

resistanceinEscherichiacoli.MolecularBioSystems2011.

[68] ReimundJM,ArondelY,EscalinG,FinckG,BaumannR,

DuclosB.Immuneactivationandnutritionalstatusinadult

Crohn’sdiseasepatients.DigestiveandLiverDisease

2005;37(6):424–31.

[69] Kup ˇcováV,Tureck ´yL,DetkovaZ,PrikazskaM,KeleovaA.

Changesinacutephaseproteinsafteranti-tumornecrosis

factorantibody(infliximab)treatmentinpatientswith

Crohnsdisease.PhysiologicalResearch2003;52:

89–93.

[70] DohertyNS,LittmanBH,ReillyK,SwindellAC,BussJM,

AndersonNL.Analysisofchangesinacute-phaseplasma

(12)

rheumatoidarthritisusingtwo-dimensionalgel

electrophoresis.Electrophoresis1998;19(2):355–63.

[71] VascottoC,SalzanoAM,D’AmbrosioC,FruscalzoA,

MarchesoniD,CarladiLoretoO,etal.Oxidizedtransthyretin

inamnioticfluidasanearlymarkerofpreeclampsia.Journal

ofProteomeResearch2007;6(1):160–70.

[72] RhodesJ,CollinsP.Lessonsforinflammatoryboweldisease

fromrheumatology.DigestiveandLiverDisease

2006;38(3):157–62.

[73] CylwikB,ChrostekL,Gindzienska-SieskiewiczE,

SierakowskiS,SzmitkowskiM.Relationshipbetweenserum

acute-phaseproteinsandhighdiseaseactivityinpatients

withrheumatoidarthritis.AdvancesinMedicalSciences

2010;55(1):80–5.

[74] LundgrenBA,RorsmanF,Portela-GomesGM,GrimeliusL,

EkdahlKN,NilssonB,etal.IdentificationofcomplementC3

asanautoantigenininflammatoryboweldisease.European

JournalofGastroenterology&Hepatology2010;22(4):429.

[75] KimPY,TanO,DiakiwS,CarterD,SekeryeEO,WasingerVC,

etal.IdentificationofplasmaComplementC3asapotential

biomarkerforneuroblastomausingaquantitative

proteomicapproach.JournalofProteomics2014;96:

1–12.

[76] GoldknopfIL,ShetaEA,BrysonJ,FolsomB,WilsonC,DutyJ,

etal.ComplementC3candrelatedproteinbiomarkersin

amyotrophiclateralsclerosisandParkinson’sdisease.

BiochemicalandBiophysicalResearchCommunications

2006;342(4):1034–9.

[77] HanasJS,HockerJR,CheungJY,LarabeeJL,LernerMR,

LightfootSA,etal.Biomarkeridentificationinhuman

pancreaticcancersera.Pancreas2008;36(1):61–9.

[78] UrbaniA,ModestiA,TimperioAM,BiniL,CastagnolaM,

FasanoM,etal.Integrativeproteomics:perspectivein

complexsysteminterpretation.MolecularBioSystems

Figura

Fig. 1 – (a) Up-represented serum proteins in ES CD (n = 8) and HCs (n = 13). A1AT ( ␣1-antitrypsin): HCs (2.96 ± 0.54) vs
Fig. 2 – Details of 2-D map (pI 4.7–5.6; kDa 45–30). 1 = complement 3 fragment c; 2 = transthyretin; 3 = transthyretin isoform pI 4.7; 4 = complement 3 fragment c isoform pI 4.9.
Fig. 4 – Biplot of the first two components of the principal component analysis of HCs and ES CD
Fig. 6 – Immunoblotting of the C3c. (a) One dimensional electrophoresis (coomassie staining)

Riferimenti

Documenti correlati

Both the churn prevention and the predictive maintenance problems have been modeled as bi- nary classification problems, and the corresponding most suitable learning algorithms

Je reviendrai sur le passé archéologique de certains des nombreux corps de cette ville et cette région volcanique pour illustrer la façon dont le paysage exprime les histoires

I Musei visitabili sono: Museo di Paleontologia (Sala dei Dinosauri) e Museo di Zoologia e Anatomia Comparata, in via Università 4; Gemma 1786 (minerali, rocce, carte), in

Blood was sampled before (days 19 and 22) and during (days 24 and 26) ACTH treatment and analysed for cortisol, glucose, ceruloplasmin and haptoglobin.. These results suggest that

INDICE  ABSTRACT  3  INTRODUZIONE  7  NEUROFISIOFISIOPATOLOGIA DELLA MINZIONE  8  Riempimento vescicale  10  Svuotamento vescicale  10  DIAGNOSI 

As expected, despite being more frequently females, patients with Mets (n = 8408) showed higher BP values, an unfavorable metabolic profile (included higher HbA1c) and

Objectives To study muscle biopsy tissue from patients with juvenile dermatomyositis ( JDM) in order to test the reliability of a score tool designed to quantify the severity

Yeats applica il simbolismo anche alla sua autobiografia per trovare un significato filosofico nella sua vita: “By applying the power of his symbolic