• Non ci sono risultati.

Multitemporal landslides inventory map updating using spaceborne SAR analysis

N/A
N/A
Protected

Academic year: 2021

Condividi "Multitemporal landslides inventory map updating using spaceborne SAR analysis"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Applied

Earth

Observation

and

Geoinformation

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e /j a g

Multitemporal

landslides

inventory

map

updating

using

spaceborne

SAR

analysis

C.

Del

Ventisette

,

G.

Righini

1

,

S.

Moretti,

N.

Casagli

EarthScienceDepartment,UniversityofFirenze.ViaLaPira,4,50121Firenze,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7October2013 Accepted21February2014 Keywords: Landslidesinventory Surfacedeformation SARinterferometry Remotesensing Valfurva

a

b

s

t

r

a

c

t

Deepseatedgravitationalslopedeformationandslowmovinglandslidesonlargeareaswereanalyzedby spaceborneSARinterferometry:atestsiteintheItalianAlpsofabout300km2wasselectedforupdating

pre-existinglandslideinventorymapsbasedontheadvancedinterferometricprocessingtechnique (A-DInSAR).

SARimagesfromERS-1/2satellites(1995–2000)andfromEnvisatsatellite(2002–2009)havebeen used,allowingthedeferred-timeanalysisofpastmovementsandtherecordofrecentslope move-ments.Inthemulti-temporalupdatedlandslideinventorydatabase,thecharacteristicsofthelandslides werehighlighted:geometry,stateofactivity,typology,monitoringsystems,interventions,sourceof informationandtheupdatingtimeandactions.Furthermore,foreachlandslidearea,theoccurrenceof persistentscattererspointsandthestatisticaldescriptionoftheirvelocitieswerereported.This method-ologymayallowthesystematicupdatingoflandslidesinventorymapskeepingallinformationoneach landslide,becomingthebasictoolfortherealizationandupdatingofthematicmapssuchasthelandslide susceptibilitymap.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Thecostnecessarytomeetthehydrogeologicaldisastersisone ofthemajoritemsofexpenditureforthecivilprotection authori-ties.Therefore,inordertoreducecosts,itisessentialtoworkfora properlandmanagementandplanning.Theassessmentofthe spa-tialdistributionandstateofactivityoflandslideprocessesiscrucial forlandslidehazardandriskanalysisonaregionalscale,aimedat properurbanplanning.

NumerousapplicationsofSyntheticApertureRadar(SAR)data togrounddisplacementdetectionhavedemonstratedthatitisa usefultechniqueforslow-movinglandslidecharacterizationand mappinganditpermitstoreconstructthelandslideactivitywith a millimetre precision (Rott et al., 1999; Ferretti et al., 2001; MassonnetandFeigl,1998;Hilleyetal.,2004;Strozzietal.,2005; Pratietal.,2010;Lauknesetal.,2010;Herreraetal.,2013;Bianchini etal.,2012b).Coupledwithpre-existinglandslideinventorymaps

∗ Correspondingauthor.Tel.:+390552055302;fax:+390552055317.

E-mailaddresses:chiara.delventisette@unifi.it,chiara.delventisette@gmail.com

(C.DelVentisette).

1 Presentaddress:ENEA,BolognaResearchCenter,ViaMartiridiMonteSole4.

40127Bologna,Italy.

andthematicdata,SARinterferometryleadstoanefficient meth-ods tomake or updatelandslides inventoryespecially at basin scale(ColesantiandWasowski,2006;Hilleyetal.,2004;Meisina etal.,2008;Cascinietal.,2009;Herreraetal.,2009;Nottietal., 2010;Righinietal.,2012;Bianchinietal.,2012a;Liuetal.,2013; Bianchinietal.,2013;Tofanietal.,2014).SARtechniquesare suit-abletoolsinchecking/updatinginventorymapsdealingwithmass movementphenomenawhosetypicalvelocityvaluesrangefrom fewmillimeters/yearupto1.6m/y,i.e.,extremelyslowlandslides accordingtotheclassificationofCrudenandVarnes(1996).Indeed, theconventional methods forslope instabilityanalysis,as field campaigns,insitumeasurementsoraerialphotointerpretation, arenotalwayspracticallysuitableforsystematicinvestigationsof landslidephenomenaatsuchscaleandthequalityandaccuracy ofthemapsarestronglyrelateronthescaleresolution(Guzzetti, 2004).Furthermore,thankstomorethan15yearscoveredbyradar images,thisremotesensingtechniqueenablesaspatiallyand tem-porallydetailedcharacterizationofdisplacementrates.

In this paper we present the resultsobtained by the inter-pretationofA-DInSARsatellitedatasetandtheirintegrationwith geologicalandgeomorphologicaldatatoobtainamulti-temporal updatingoflandslideinventorymap.Theactivitiesheredescribed were carried out in the framework of two European funded project:(1)Prevention,InformationandEarlyWarning–PREVIEW http://dx.doi.org/10.1016/j.jag.2014.02.008

(2)

C.DelVentisetteetal./InternationalJournalofAppliedEarthObservationandGeoinformation30(2014)238–246 239

Table1

Matrixofactivityusedtoupdatelandslideinventorymap.

a) Activity matrix used when only with ERS dataset are available ERS < 1.5 mm/y ERS > 1.5 mm/y Original

landslides inventory

Active Dormant Active

Dormant Dormant Active

Relict Relict Active

b) Activity matrix used when both ERS and Envisat data are available ERS < 1.5 mm/y ERS > 1.5 mm/y Envisat < 1.5 mm/y Relict Dormant

Envisat > 1.5 mm/y Active (reactivated) Active (continuous)

c) Activity matrix used to update a pre-existing landslide inventory map when both ERS and Envisat data are available

ENVISAT < 1.5 mm/y ENVISAT > 1.5 mm/y 2008

landslides inventory

Active Dormant Active

Dormant Dormant Active

Relict Relict Active

Landslides Platform (Sixth Framework Programme) and (2) Landslide Modelling and Tools for vulnerability assessment Preparedness and recovery management – LAMPRE (Seventh FrameworkProgramme).

In particular this work presents one of the outcomes in monitoring the deep-seated and slow-moving landslides using remote-sensinginterferometrictechniquesandtheintegrationof diverseinformationsourcesandpreoperationalfunctionstoobtain amulti-temporalupdatedlandslideinventorymapsusefulto esti-matelandslideriskassessmentandtoperformhazardzonation.The testsiteislocatedinValfurva,eastofBormio,intheRhaetianAlpsof theLombardiaRegion(Fig.1).LombardiaRegionisoneofthemost populatedandurbanizedregioninItalyanditisalsoveryprone tolandslidingsotheriskishighforhumanlifeandinfrastructures. TheValfurvaareais characterizedbyhighdensityof significant rock-slidesanddeep-seatedgravitationalslopedeformationsthat couldbeinvolvedmanycitizens(Agliardietal.,2001;Crostaand Agliardi,2003;DelVentisetteetal.,2012).

IntheValfurvaarealandslidesaffectpre-Permianmetapelites, metabasitesandmarbles,aswellasLatePleistoceneandHolocene glacialandrockglacierdeposits.Thedeformationstartedafterthe Late-Wurmianage(15,000±11,000yearsB.P.),andcontinueduntil fewcenturiesago,notexcludingapresent-daylow-rateactivity (Agliardietal.,2001).Theevolutionoffaultsystems,resultingin asymmetrictrenches,ledinsomecasestotheprogressivefailure oftheslopeduringthelast10,000years,astestifiedbylarge paleo-landslideaccumulations,anditisstillinprogress(Agliardietal., 2001).

2. Methodology

Slowmovinglandslidesonabasinscalecanbedetectedand analysed through the integration of spaceborne SAR interfer-ometry data with thematic maps, field campaigns and in situ monitoring(Farinaet al.,2004; Colesantiand Wasowski,2006; Liu et al., 2013; Righini et al., 2012; Bianchini et al., 2012; Herrera et al., 2009; Meisina et al., 2006; Farina et al., 2006; Cascini et al., 2010; Cigna et al., 2010, 2012; Bovenga et al., 2013; Del Ventisette et al., 2013; Tofani et al., 2014). The workflow (Fig. 2)used in this work started fromradar images processing. The radar images (in this paper ERS and Envisat dataset)areprocessedusingthepersistentscattererspairs PSP-DIFSAR technique developed by Telespazio/e-GEOS (Costantini

and Rosen, 1999; Costantini et al., 2002, 2008, 2009). Com-pared to the other persistent scatterer interferometry (PSI) techniques, one of the peculiarities of thePSP-DIFSAR method is touse only the properties of the signal relating to pairs of neighboring points to identify and to analyze the PS. Indeed, two neighbors points are equally affected by atmospheric artifactsandconsiderthespatialityofdata.Thisapproachallows tobetteridentifythePSoptimizingthecapacityofthePSI analy-sisespeciallyinvegetatedareas(weregenerallyPSarenotdense) andwhenthemovementsareornon-linearwiththetime.Like otheradvancedInSARtechniques,PSP-DIFSARestimatesthe inten-sityofdeformation alongtheLineof Sight(LOS)and notalong the real direction of movements. Furthermore new (and more recent) Envisat dataset derived from the Persistent Scatterers Interferometry Project (PSIP)fromthe Italian National Geopor-tal (ING) of theItalian Ministryof Environment, Land and Sea (http://www.pcn.minambiente.it/viewer/)wasanalyzedtoupdate thelandslidesinventoryupto2009.

Theresultsof radarimagesprocessing havebeenintegrated usingaGeographicalInformationSystem(GIS)withancillarydata (such asgeologicaland topographical maps), field surveysand, whereavailable,insitumeasurements.Inthecasestudypresented inthispaperwestartedfromapre-existinglandslideinventory (producedbyRegionalCivilProtectionoftheLombardiaRegionin 1998)inwhichsomecharacteristicsofthelandslideswere high-lighted inthedatabase(suchas geometry,stateofactivityand typology).

The main criteria used to define the state of activity(SoA) wererelatedtothemeanvelocitiesderived fromtheA-DInSAR processing.ToidentifytheunstablePS,athresholdmeanvelocity has been chosen; e.g., ±1.5mm/y (away or towards the satel-lite)inLOSdirection.ThePSthatshowsdifferentaveragespeed value(greaterthan1.5mm/yorlessthan−1.5mm/y)are classi-fiedasunstable.Toestimatethestateofactivityofeachlandslides an “activity matrix” that consider the average speed of PS is applied.

ToovercomealimitationofPSapproach,suchasthelossofthe pointduetoasuddenincreasingindeformationrate,and start-ingfromapre-existinglandslideinventorymap,three different updatedmapswereproduced.Thefirstoneismadeusingonlythe ERSdatasetandapplyingtheactivitymatrixinTable1aandthe secondupdate(for2008update)isimplementedusingbothERS andEnvisatdataandappliedTable1b(Table2).

(3)

Fig.1. Localizationofthestudyarea.

FollowingTable1a,theupdatelandslidestateofactivitystarts fromtheclassificationintheinventorymapand,ifthePSPsin land-slideareaareunstablethenewSoAisalways“active”.Inverselyif theoriginalSoAis“active”or“dormant”andunstablepointsare notpresentonthelandslide,thanintheupdatedinventorymap thelandslideisclassifiedas“dormant”.WhenbothERSandEnvisat areavailabletheupdatingwascarriedoutthroughtheintegration betweenthetwodatasets(Table1b).Toupdatetheinventoryup to2009theactivitymatrixinTable1cwasappliedstartingfrom

thedataderivedfrom2008updating.Inthisapproachwhen unsta-bleEnvisatPSsarepresentthelandslidewasdefinedas“active”; reactivateorcontinuousinrelationtothevelocityderivedfrom ERSdata.

Themeaningof“dormant”isherequitedifferentfromstandard definition:inthispapera“dormant”landsliderepresentsthestate ofactivityofalandslidethathasnotshownevidenceofmovements from1992to2000,i.e.,thetimingcoveredbyERSdata,orthat from2002to2009,i.e.,thetimespancoveredbyavailableEnvisat

Fig.2. Proposedworkflowtocreateand/orupdateamultitemporallandslideinventorymaps.PSPDIFSAR:PSP-DIFSARtechniquedevelopedbyTelespazio/e-GEOS;PSIP:

(4)

C.DelVentisetteetal./InternationalJournalofAppliedEarthObservationandGeoinformation30(2014)238–246 241

Table2

NumberoflandsidesandaffectedareaderivedfromOLIMclassifiedinrelationto

theStateofactivity.

Stateofactivity (number)

Landsidetype Landslide number Interestedarea (km2) Active(292) Complex 84 3.8 Debrisflow 119 1.7 Flow 1 0.1 Rotationalslide 86 1.8 Topple 2 0.1 Dormant(425) Complex 16 4.3 Debrisflow 7 0.2 Rotationalslide 402 22.8 Relict(88) Complex 11 3.3 Rotationalslide 77 22.9 “n.d.”(56) Toople 33 1.3 Debrisflow 18 0.05 n.d. 5 0.2

data.Obviously,followingthisapproach,anytypeofSoAchangeis possibleifno(orfewandnotrepresentative)PSsareinthelandslide perimeter.

Furthermore integration between the results derived from A-DInSAR processing and available ancillary data and in situ measurementsweremadebeforeappliedeachchangeto elabo-rateanintegratedgeomorphologicalmap(Ciampalinietal.,2012). Tovalidatetheupdatedinventorymapandtoconfirmthemade change,fieldcampaignswereorganized.InparticularonJuly2007, a field survey onthe Ruinon landslide was carried out, in the frameworkofanexerciseregardinglandslideorganizedwithusers (NationalCivilProtectionAgency,CivilProtectionofRegione Lom-bardia,ARPALombardia);theobjectiveoffieldsurveyistoobtain anoverviewoftherecentevolutionofthedebrisflowsand out-crops,andtocheckthestatusoftheinsituinstruments.Several findingsofterrainmovementsweredetectedontheslope corre-spondingtothemainlandslidebodysuchascracks,toppedtrees, andstructuraldamagesonbuildings.Moreover,evidencesoffew localdisruptionswereidentifiedinthemonitoring instrumenta-tion

2.1. Methodslimitation

Though the adopted methodology has many advantages in relationtoconventionaltechniques,thatgenerallyareextremely expensiveintermofcostandtime,therearetwotypesof limita-tionsthatareworthconsideringbeforeusedthisapproachforthe landslidesdetection.ThefirstoneisrelatedtoSARinterferometry approachandconcernstheunderestimationoftherealmovement magnitudeduetothedirectionofmeasurements(LOSdirection) thatdiffersfromtherealmovementdirection.Furthermore, consid-ering the direction of satellitemovements, some directions of movement are not detectable(N-S direction). The secondones regardtheworkflowandtheuseofaPersistentScatterersasmain indicatorforlandslidedetectionandactivity.Indeed,ifthesliding issudden,PSsarelostinthatarea.So,asexpectedbyworkflow, anytypeofchangeininventoryispossible,butthatlandslideis moving!Forthesereasonweusethedatasetsindependentlyand proceedwithconsecutiveupdating.Whenaslidingaccelerationis recognizedasubsetofprocessedimagecanbedesirableevenif inthiswaytheaccuracyofthismethoddiminish.Forthese rea-sonsafieldsurveymustbecarriedouttoresolvetheambiguous interpretationandtovalidatetheupdatesofthelandslide inven-tories.

3. Availabledata 3.1. Ancillarydata

In this paper we integrated the results of A-DInSAR with differentthematicmaps(ancillarydata).Mapsongeology, geomor-phology,tectonicswerecollected.Topographicmapsat1:10,000 scaleweregivenusbytheRegionalCartographicOfficewhilea DigitalElevationModel(DEM)at20mspatialresolutionwas avail-ableatourpremises.Digitalcolororthophotos(VoloItalia2000), with1mofresolutioninmonoscopicconfigurationwasaccessible fortheentirearea.CorineLandCover2006mapat1:100,000(EEA, 2007)wasanalyzedusingthe3rdclassificationrank.

3.2. Originallandslideinventorymap

Theoriginallandslideinventorymapofthestudyareawas pro-ducedbyRegionalCivilProtectionoftheLombardiaRegionin1998. Itispartofthelandslideinventoryofthealpineareasthatisalarge databasewithmorethan60,000phenomena,amongwhich13,863 slides,802complexlandslides, 1000largerock-falls,276 earth-flows,43,600debrisflows.Thevulnerabilityoftheareaisthusan issueasmorethan23km2ofurbanizedareasintheLombardyAlps

arelocatedonlandslides,other6km2lieonalluvialfansrecognized

asactiveandhazardousand,severaldamsarelocatedinproximity tolandslides.

Inthestudyarea,thatcoveredabout318km2,866landslide

(morethan62km2)and13(about 59km2)deep-seated

gravita-tionalslopedeformation(DSGSD)havebeenrecognized(Fig.3). Thestateofactivityofthe866landslideswasclassifiedasfollows inTable2;allDSGSDareclassifiedas“Relict”.

3.3. SARdata

ThePSP-DIFSARprocessingwasappliedbyTelespazioonaset of63images(5imagearediscardedfortheirlowradiometric char-acteristics)acquiredindescendingmodebythesensorsERS1/2in theperiodApril1995–April2001(Track437;Frame2673)and onasetof30images(theAugust8,2002imagewasdiscarded) acquiredindescendingmodebythesensorsEnvisatintheperiod August2002–March2008(Track437;Frame2673).Considering thecharacteristicsoftheimagetheMarch26,1998forERSdata andtheDecember2004imagewereselectedasmasterimage.The referencepointhasbeenchoseninthecenteroftheBormiovillage.

From ERS Images 26,345 PSPs (with a density of

82.8points/km2) wereextracted (Fig.4a); insteadfrom Envisat

imageswereobtained10624PSP(33.4points/km2;Fig.4b).

Furthermore thePersistent ScatterersInterferometry Project (PSIP) of the Italian Ministry of Environment Land and Sea dataset, acquired both in ascending and in descending orbits (http://www.pcn.minambiente.it/;Fig.5)obtainedandintegrated inGISthroughtheWMSservices,wasanalyzedtoupdatethe land-slideinventorymapupto2009.

ConsideringtheavailabledatainthePREVIEWprojectonlya restrictednumberofcoherentpointsarelocatedonthelandslides andonDSGSDpolygonsoftheOLIM(Fig.6).Thelandslides char-acterizedbythepresenceofcoherentpoints(ERSand/orEnvisat) are151ofthetotal861(interestedarea27.83km2of62.76km2,

morethan40%oflandslidearea).TheDSGSDcharacterizedbythe presenceofcoherentpoints(ERSand/orEnvisat)are10ofthetotal 13(interestedarea49.49km2of59.2km2).

4. Results

Threeupdatedlandslideinventorymapswereproducedusing theA-DInSARtechnique.ThefirstupdateisbasedonERS1/2data;

(5)

Fig.3.Originallandslideinventorymap(OLIM;RegioneLombardia,1998).

Fig.4.SpatialdistributionofcoherentpointsextractedfromERS-1andERS-2images(a)andfromEnvisatimages(b)processedintheframeworkofPREVIEWProject.

Fig.5.SpatialdistributionofPersistentScattersderivedfromEnvisatimages(2002–2009)ofthePersistentScatterersInterferometryofthe(http://www.pcn.minambiente.it/)

(6)

C.DelVentisetteetal./InternationalJournalofAppliedEarthObservationandGeoinformation30(2014)238–246 243

Fig.6. Overlapbetweenoriginallandslideinventorymapandavailablecoherentpoint.

thesecondstartsfromtheERSupdatedlandslideinventoryandwas madeusingEnvisatdatasetupto2008.Afurtherupdateoflandslide inventorywascarried outbyconsideringtheEnvisatpersistent scatterersupdatedto2009derivedfromPSIP.

4.1. LandslideinventoryupdatesusingERS1/2data(ERSupdated landslideinventorymap)

AmongalltheERS1/2PSPs(26345)onlyarestrictnumberare locatedinareasmappedasmassmovementin theOLIM;5018 (19.04%ofallERScoherentpoints)inlandslidesand3200(12.14%) inDSGSD.ThelandslidescharacterizedonlybyERScoherentpoints are65(7.21km2),whileonlytwoDSGSD(3.39km2)are

character-izedbytheERS1/2PSPs.Thesedata,applyingtheactivitymatrix inTable1a,haveenabledafirstupdateoftheavailableinventory. ERSPSPsallowedtochangethestateofactivityof7landslides(4

rotationaland3topple)andtoidentify4landslides.Regardingthe DSGSD,thestateofactivityof1DSGSDwaschangedfromrelictto active.

4.2. LandslideinventoryupdatesusingERSandEnvisatdata (2008updateand2009update)

ThePSPs extractedfromEnvisatimage updatedto2008are 10,624;only1814(17.07%)and1437(15.53%)arelocatedon land-slidesandDSGSDrespectively.In75(20.35km2)landslidesEnvisat

PSPsarepresent.Changesoccurredin42landslides(Fig.7a);in35 ofwhichthestateofactivitywaschanged.

Thenew(until2009)ascendinganddescendingEnvisatdataset allowedtoupdate/verify139landslide(28.7km2)andtoupdate

theinventoryupto2009(Fig.7b).

Fig.7.(a)2008updatedlandslideinventorymapusingbothERS1/2andEnvisatPSPsderivedfromPREVIEWProject.(b)2009updatedlandslideinventorymapusingdataset

derivedfromPSIPandanalyzedintheframeworkofLAMPREproject.LandslidesareinthinlinewhileDSGSDareinthickline.Differentcolorshowthestateofactivity:red:

(7)

Fig.8. ComparisonbetweenOLIM(a)andmulti-temporal(b)updatedlandslideinventorymap.

Table3

Resultsderivedfromtheapplicationofproposedmethodology(comparisonbetweenOLIMand2009inventory).

Bynumber Byarea(km2) Bytipology:number/affectedarea

Rotational Complex Topple Debris

Newlandslides 5 0.4 N.V. N.V. N.V. N.V.

Stateofactivity 62 14.4 50(13.5) 3(0.2) 6(0.4) 3(0.3)

StateofactivityGeometry 3 0.2 3(0.2) – – –

Geometry 6 0.4 1(0.1) 2(0.1) – 3(0.2)

Confirmed 135 17.8 100(12.8) 18(4.5) 2(0.3) 15(0.2)

N.V.=notvalidated.

EnvisatPSPslocatedinto9DSGSD(48.3km2)allowupdating thestateofactivityof7DSGSDfromrelicttoactive(Fig.7). 5. Discussionandconclusion

Morethanhalfofthemappedlandslidesintheoriginallandslide inventorymaphavebeenupdatedapplyingtheproposedmethod

(Fig.8).TheupdatesoftheOLIMgiveevidenceoftheimportance ofthedetectionandmappingof slopeunstableareasusingthe grounddeformationratesfromPSIdata.Eachtypeofvariationare reportedinTable3.Inmorethan8km2(65landslide),

represent-ingjustunderhalfoftheentiresurfaceinlandslide,theupdating regardsthestateofactivity(Table3;Fig.9).Mainchangeconcern theattributionofanactivestateto37landslides,involvingseveral

Fig.9. Examplesofchangesinlandslideactivityapplyingtheproposedmethods(locationisinFig.8)betweentheoriginallandslideinventorymap(ontheleft)and

(8)

C.DelVentisetteetal./InternationalJournalofAppliedEarthObservationandGeoinformation30(2014)238–246 245

Table4

Proposedchanges inlandslide activity (comparisonbetweenOLIM and 2009

inventory). Originalstate ofactivity Updatedstate ofactivity Numberof landslides Landslides interestedarea (km2) n.d. Active 1 0.2 n.d. Relict 3 0.1 Relict Active 13 6.4 Relict Dormant 10 3.4 Dormant Relict 6 0.4 Dormant Active 24 2.1 Active Dormant 5 0.4 Table5

ProposedchangesformappedDSGSD.

Numberof DSGSD DSGSD interestedarea (km2) Confirmed 4 12.6

Stateofactivitychanged(from “stabilized”to“Active”)

6 33.83

Stateofactivitychanged(from “stabilized”to“Dormant”)

3 9.5

squaredkilometers,alreadymappedinOLIMasdormantorrelict andofadormantstateto10landslidepreviouslyclassifiedasrelict (Table4).Theseupdatesprovidecrucialinformationtoend-users andstakeholdersfortheproperriskmitigationactionsplanning, consideringalsothefactthathigherdensityofPSisretrievedwhere thepresenceofurbanfabricandroadnetworkrevealsmanygood radar reflectors.Indeed,furtherimplementationsof theapplied methodologycouldrelyontheintegrationoftheupdatedlandslide inventorymapwithadetaileddatasetofsurvey-recordeddamages tofacilitiesthatmayrepresentindicatorsofmovements(Cascini etal.,2013).

Ontheotherhand,thestateofactivitywasdowngradedfor5 landslidesonly,fromactivetodormant,alsobecausetheuseof theactivitymatrixiscarriedoutusinga‘conservative’approach andtheactivityofsuchphenomenaisnotlowered,unlessfield evidencesandinsitudataconfirmclearlythismodificationofthe activity.

AsconcerntheDSGSDmappedintheinventory,inelevenof themPSPsdirectlyconnectedtoDSGSDactivityaredetected.The proposedchanges instate ofactivityare shown inTable 5; no updateregardinggeometryhasbeenpossibleduetothelackof asufficientnumberofPSP.

Theupdatingofslow-movinglandslideinventorymapscanbe anextremelyexpensiveandtimeconsumingtaskwhencarriedout withtraditionaltechniquesonly.AsdemonstratedonValfurvaarea theapproachusingremotesensingdatarepresentsavaluabletool andasustainablemethod,intermoftimeandcosts(inrelationto theobservedarea),toaperiodicupdateofthestateofactivityof slowmovinglandslidesatregionalscaleinrelationtonetof moni-toringsystems.HoweverthemainlimitationsofthePSItechniques, suchasnotenoughbenchmarksorsatelliteimagesavailablefor certainperiod,theLOSdirectionandtheresolutioncouldaffectthe reliabilityofresults;improvementswillcomefromnewsatellite missionswithhigherspatialandspectralresolutionanddifferent spectralbandsandfromenhancementofradardataprocessingthat willmakeasignificantadvanceinobtainingmoreandwidespread PS.

The results of this work confirm the capabilities of multi-interferometricInSARdatatosupportlandslideinvestigationat regionalscaleandthecontributionofsuchapproachtodefinition ofasustainableurbanplanningandinfrastructure development whereriskconditionsarehigher.Infact,consideringthehighcost

derivedfromlandslidedamagesandthedifficultiesinthe assess-mentofthestateofactivity,theuseoftheproposedmethodology cangiveanaddedvaluetostakeholdersforriskmitigation. Acknowledgments

ThisstudywaspartiallyfoundedbytheSixthFramework Pro-grammeoftheEuropeanCommission:Prevention,Informationand Early Warning (PREVIEW)and partiallyby the Seventh Frame-workProgrammeofEuropeanCommission:LandslideModelling andToolsforvulnerabilityassessmentPreparednessandrecovery management(LAMPRE).

We thank theentireteam of EarthScienceDepartment and the“LandslideServices”teamof PreviewProject.We especially acknowledgethe Officeof Prevention of theCivil Protection of RegioneLombardiaandtheItalianNationalDepartmentofCivil ProtectionbothofwhichwereinvolvedintheactivitiesofPREVIEW Project.CiminelliM.G.,CiccodemarcoS.,PellegrinoD.,Costantini M.,MalvarosaF.andMinatiF.frome-GEOS,arethankedfortheir supportandforERSandEnvisatdataprocessing.

References

Agliardi,F.,Crosta,G.,Zanchi,A.,2001.Structuralconstraintsondeep-seatedslope

deformationkinematics.EngineeringGeology59(1-2),83–102.

Bianchini,S.,Cigna,F.,DelVentisette,C.,Moretti,S.,Casagli,N.,2012.Detectingand

monitoringlandslidephenomenawithTerraSAR-Xpersistentscatterersdata: thegimiglianocasestudyinCalabriaRegion(Italy).InternationalGeoscience andRemoteSensingSymposium(IGARSS),982–985(art.no.6351237).

Bianchini,S.,Cigna,F.,Righini,G.,Proietti,C.,Casagli,N.,2012a.Landslidehotspot

mappingbymeansofpersistentscattererinterferometry.EnvironmentalEarth

Sciences,http://dx.doi.org/10.1007/s12665-012-1559-5.

Bianchini,S.,Cigna,F.,DelVentisette,C.,Moretti,S.,Casagli,N.,2012b.Detectingand

monitoringlandslidephenomenawithTerraSAR-Xpersistentscatterersdata: thegimiglianocasestudyinCalabriaRegion(Italy).In:InternationalGeoscience andRemoteSensingSymposium(IGARSS).

Bianchini,S.,Cigna,F.,DelVentisette,C.,Moretti,S.,Casagli,N.,2013.Monitoring

landslide-induceddisplacementswithTerraSAR-Xpersistentscatterer inter-ferometry(PSI):gimiglianocasestudyinCalabriaRegion(Italy).International JournalofGeosciences4,1467–1482.

Bovenga,F.,Nitti,D.O.,Fornaro,G.,Radicioni,F.,Stoppini,A.,Brigante,R.,2013.Using

C/X-bandSARinterferometryandGNSSmeasurementsfortheAssisilandslide analysis.InternationalJournalofRemoteSensing34(11),4083–4104.

Cascini,L.,Fornaro,G.,Peduto,D.,2009.Analysisatmediumscaleoflow-resolution

DInSARdatainslow-movinglandslide-affectedareas.ISPRSJournalof Pho-togrammetryandRemoteSensing64(6),598–611.

Cascini,L.,Fornaro,G.,Peduto,D.,2010.Advancedlow-andfull-resolutionDInSAR

mapgenerationforslow-movinglandslideanalysisatdifferentscales. Engineer-ingGeology112(1–4),29–42.

Cascini,L.,Peduto,D.,Pisciotta,G.,Arena,L.,Ferlisi,S.,Fornaro,G.,2013.The

com-binationofDInSARandfacilitydamagedatafortheupdatingofslow-moving landslideinventorymapsatmediumscale.NaturalHazardsandEarthSystem Sciences13,1527–1549.

Ciampalini,A.,Cigna,F.,DelVentisette,C.,Moretti,S.,liguori,V.,Casagli,N.,2012.

Integratedgeomorphologicalmappinginthenorth-westernsectorofAgrigento (Italy).JournalofMaps8(2),136–145.

Cigna,F.,DelVentisette,C.,Liguori,V.,Casagli,N.,2010.InSARtime-seriesanalysis

formanagementandmitigationofgeologicalriskinurbanarea.International GeoscienceandRemoteSensingSymposium(IGARSS),1924–1927(art.no. 5653476).

Cigna,F.,DelVentisette,C.,Gigli,G.,Menna,F.,Agili,F.,Liguori,V.,Casagli,N.,

2012.GroundinstabilityintheoldtownofAgrigento(Italy)depictedbyon-site

investigationsandpersistentscatterersdata.NaturalHazardsandEarthSystem Science12,3589–3603.

Colesanti,C.,Wasowski,J.,2006.Investigatinglandslideswithspace-bornesynthetic

apertureradar(SAR)interferometry.EngineeringGeology88(3–4),173–199.

Costantini,M.,Rosen,P.A.,1999.Ageneralizedphaseunwrappingapproachfor

sparsedata.In:ProceedingsoftheInternationalGeoscienceandRemoteSensing Symposium(IGARSS),Hamburg(Germany),pp.267–269.

Costantini,M.,Malvarosa,F.,Minati,F.,Pietranera,L.,Milillo,G.,2002.A

three-dimensionalphaseunwrappingalgorithmforprocessingofmultitemporalSAR interferometricmeasurements.In:ProceedingsoftheIEEEInternational Geo-scienceandRemoteSensingSymposium(IGARSS),vol.3,Toronto,Canada,pp. 1741–1743.

Costantini,M.,Falco,S.,Malvarosa,F.,Minati,F.,2008.Anewmethodfor

identi-ficationandanalysisofpersistentscatterersinseriesofSARimages.In:Proc. Int.Geosci.RemoteSensingSymp.(IGARSS),Boston,MA,7–11July2008,pp. 449–452.

(9)

Costantini,M.,Falco,S.,Malvarosa,F.,Minati,F.,Trillo,F.,2009.Methodofpersistent scattererspairs(PSP)andhighresolutionSARinterferometry,toappear.In:Proc. Int.Geosci.RemoteSensingSymp.,(IGARSS),CapeTown,SouthAfrica,(12–17 July2009).

Crosta,G.,Agliardi,F.,2003.Failureforecastforlargerockslidesbysurface

displace-mentmeasurements.CanadianGeotechnicalJournal40,176–191.

Cruden,D.M.,Varnes,D.J.,1996.Landslidestypesandprocesses.In:Turner,A.K.,

Schuster,R.L.(Eds.),Landslides:InvestigationandMitigation.Transportation ResearchBoard,NationalAcademyofSciences,WashingtonD.C.,pp.36–75 (SpecialReport247).

DelVentisette,C.,Casagli,N.,Fortuny-Guasch,J.,Tarchi,D.,2012.Ruinonlandslide

(Valfurva,Italy)activityinrelationtorainfallbymeansofGBInSARmonitoring. Landslides9,497–509.

DelVentisette,C.,Ciampalini,A.,Calò,F.,Manunta,M.,Paglia,L.,Reichenbach,P.,

Colombo,D.,Mora,O.,Strozzi,T.,Garcia,I.,Mateos,R.,Herrera,G.,Füsi,B.,

Graniczny,M.,Przylucka,M.,Retzo,H.,Moretti,S.,Casagli,N.,Guzzetti,F.,2013.

ExploitationoflargearchivesofERSandENVISATC-BandSARdatato charac-terizegrounddeformation.RemoteSensing5(8),3896–3917.

EEA,2007.CLC2006TechnicalGuidelinesTechnicalreportNo17/2007.European

EnvironmentAgency(ISSN1725-2237).

Farina,P.,Moretti,S.,Colombo,D.,Fumagalli,A.,Manunta,P.,2004.Landsliderisk

analysisbymeansofremotesensingtechniques:resultsfromtheESA/SLAM project.In:InternationalGeoscienceandRemoteSensingSymposium(IGARSS), pp.62–65.

Farina,P., Colombo,D.,Fumagalli, A., Marks,F.,Moretti, S.,2006. Permanent

scatterersforlandslideinvestigations:outcomesfromtheESA-SLAMproject. EngineeringGeology88,200–217.

Ferretti,A.,Prati,C.,Rocca,F.,2001.PermanentscatterersinSARinterferometry.

IEEETransactiononGeoscienceandRemoteSensing39(1),8–20.

Guzzetti,F.,2004.LandslideMapping,HazardAssessmentandRiskEvaluation:

Lim-itsandPotential.ProceedingsInternationalSymposiumonLandslideandDebris FlowHazardAssessment.NationalCenterforResearchonEarthquake Engineer-ing,Taipei,pp.C1–C17(7–8October).

Herrera,G.,Davalillo,J.C.,Cooksley,G.,Monserrat,O.,Pancioli,V.,2009.Mapping

andmonitoringgeomorphologicalprocessesinmountainousareasusingPSI data:CentralPyreneescasestudy.NaturalHazardsEarthSystemSciences9, 1587–1598.

Herrera,G.,Gutiérrez,F.,García-Davalillo,J.C.,Guerrero,J.,Notti,D.,Galve,J.P.,

Fernández-Merodo,J.A.,Cooksley, G.,2013.Multi-sensoradvancedDInSAR

monitoring of very slow landslides: the Tena Valley case study (Cen-tral Spanish Pyrenees). Remote Sensing of Environment January (128), 31–43.

Hilley,G.E.,Burgmann,R.,Ferretti,A., Novali,F.,Rocca,F.,2004.Dynamicsof

slow-movinglandslidesfrompermanentscattereranalysis.Science304(5679), 1952–1955.

Lauknes,T.R.,PiyushShanker,A.,Dehls,J.F.,Zebker,H.A.,Henderson,I.H.C.,Larsen,Y.,

2010.DetailedrockslidemappinginnorthernNorwaywithsmallbaselineand

persistentscattererinterferometricSARtimeseriesmethods.RemoteSensing ofEnvironment114(September(9)),2097–2109.

Liu,P.,Li,Z.,Hoey,T.,Kincal,C.,Zhang,J.,Zeng,Q.,Muller,J.P.,2013.Usingadvanced

InSARtimeseriestechniquestomonitorlandslidemovementsinBadongofthe ThreeGorgesregion,China.InternationalJournalofAppliedEarthObservation andGeoinformation21,253–264.

Massonnet,D.,Feigl,K.L.,1998.Radarinterferometryanditsapplicationtochanges

intheearth’ssurface.ReviewsofGeophysics36(4),441–500.

MATTM,2010.PianoStraordinariodiTelerilevamentoAmbientale(PST-A),Linee

guidaperl’analisideidatiintereferometricisatellitariinareesoggetteadissesti idrogeologici.ItalianMinistryofEnvironment,LandandSea(MATTM),108pp.

Meisina,C.,Zucca,F.,Fossati,D.,Ceriani,M.,Allievi,J.,2006.Grounddeformations

monitoringbyusingthepermanentscattererstechnique:theexampleofthe OltrepoPavese(Lombardia,Italy).EngineeringGeology88,240–259.

Meisina,C.,Zucca,F.,Notti,D.,Colombo,A.,Cucchi,A.,Savio,G.,Giannico,C.,Bianchi,

M.,2008.GeologicalinterpretationofPSInSARdataatregionalscale.Sensors8,

7469–7492.

Notti,D.,Davalillo,J.,Herrera,C.,Mora,G.O.,2010.Assessmentoftheperformance

ofXbandsatelliteradardataforlandslidemappingandmonitoring:UpperTena Valleycasestudy.NaturalHazardsandEarthSystemSciences10(9),1865–1875.

Prati,C.,Ferretti,A.,Perissin,D.,2010.Recentadvancesonsurfaceground

deforma-tionmeasurementbymeansofrepeatedspace-borneSARobservations.Journal ofGeodynamics49(April(3–4)),161–170.

Righini,G., Pancioli, V., Casagli, N.,2012. Updating landslideinventorymaps

usingpersistentscattererinterferometry(PSI).InternationalJournalofRemote Sensing33(7),2068–2096.

Rott,H.,Scheuchel,B.,Siegel,A.,1999.Monitoringveryslowslopemovementsby

meansofSARinterferometry:acasestudyfrommasswasteaboveareservoir intheOtztalAlps.AustriaGeophysicalResearchLetters26(11),1629–1632.

Strozzi,T.,Farina,P.,Corsini,A.,Ambrosi,C.,Thüring,M.,Zilger,J.,Wiesmann,

A.,Wegmüller,U.,Werner,C.,2005.Surveyandmonitoringoflandslide

dis-placementsbymeansofL-bandsatelliteSARinterferometry.Landslides2(3), 193–201.

Tofani,V.,DelVentisette,C.,Moretti,S.,Casagli,N.,2014.Integrationofremote

sensingtechniques forintensity zonationwithin a landslidearea: a case

study in the Northern Apennines, Italy. Remote Sensing 6 (2), 907–924,

Riferimenti

Documenti correlati

Demostene, in altre parole, ci informa che, come può condurre alla pena capitale una ἀπαγωγή per il caso di furto notturno o di furto diurno di valore su- periore alle 50

The aim of the study was to determine the contamination rate of 4 different keyboard systems four different keyboard systems, a stan- dard keyboard (SK), a cleanable keyless key-

patients in e ach trial ranged be tween 17 and 36 Only RCTs Adults or childre n Comparison between normal salt diet vs hig h or low (All subj ects are asthmatics) Lung function

A tal fine sono stati utilizzati ratti deprivati durante il periodo critico e sottoposti in età adulta alla riapertura dell’occhio suturato, in questi animali è

ESSERE CREATO IL DEPLOYMENT DEL DB VIRTUOSO 11 FIGURA 8 FILE YAML PER LA CREAZIONE DI UN SERVICE DI TIPO NODEPORT 12 FIGURA 9 COMANDO &#34;KUBECTL GET PODS&#34; E RELATIVA RISPOSTA

Modello C - campanile con presidi orizzontali che simulano gli edifici adiacenti .... VERIFICHE DI SICUREZZA DEL

3.4.2 Coverage Problem as Constrained Potential Game.. 52 4 Game Theoretic Learning Algorithms 55 4.1 State–of–the–art

In linea con tale Raccomandazione, dunque, il legislatore francese non ha previsto alcuna delimitazione preventiva dei diritti convenzionali violati (sostanziali o