• Non ci sono risultati.

Plot-scale modeling of soil water dynamics and impacts of drought conditions beneath rainfed maize in Eastern Nebraska

N/A
N/A
Protected

Academic year: 2021

Condividi "Plot-scale modeling of soil water dynamics and impacts of drought conditions beneath rainfed maize in Eastern Nebraska"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Agricultural

Water

Management

jo u r n al hom ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / a g w a t

Plot-scale

modeling

of

soil

water

dynamics

and

impacts

of

drought

conditions

beneath

rainfed

maize

in

Eastern

Nebraska

Paolo

Nasta

,

John

B.

Gates

DepartmentofEarthandAtmosphericSciences,UniversityofNebraska-Lincoln,Lincoln,NE,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received21December2012 Accepted28June2013 Keywords: Rainfedmaize Rootwateruptake Soilprofile Waterstress Soilwaterbalance Climateforcing

a

b

s

t

r

a

c

t

Intermittentdroughtperiodsposemajorchallengestothemanagementofrainfedagriculturalsystems becausetheirproductivityissensitivetowaterstressduringcropdevelopment.Theobjectiveofthisstudy wastoassesssoilwaterdynamicsandcropstresspatternsduringthedroughtyearof2012,whichwas amongthemostsevereonrecordintheUSCornBelt.Thestudyutilizedacontinuousmatricpotential pro-filemonitoringrecordfromJune2008–December2012beneatharainfedcornplotinEasternNebraskato provideadirectcomparisonofthe2012growingseasonwithmoderatetorelativelywetperiodswithin 2008–2011.Theanalysiswasbasedonatransientunsaturatedzonemodelthatwascalibratedwith laboratory-measuredwaterretentionfunctionsandmatricpotentialmeasurementsfromheat dissipa-tionsensors.Ineachyearofthemodelsimulation,soilwaterstoragevolumessteadilydecreasedduring thegrowingseasonandincreasedepisodicallyfollowingprecipitationeventsoutsideofthegrowing sea-son.Precipitationduringthe2012growingseasonwas<50%ofthemeanforgrowingseasons2009–2012 consequently,soilwaterstoragelossduring2012was∼14%ofinitialstorageincomparisonto8–9%in 2009–2011.Modelresultssuggestthatthe2012soilwaterdeficitwaspartiallybufferedbyupwardflux ofdeepsoilmoisture,withapproximately17%ofrootwateruptakein2012derivingfrommoisture redis-tributedfrombelowtherootzone.Nevertheless,rootzonematricpotentialsexceededthecropwilting point( =−8000cm)in2012forthefirsttimewithinthemonitoringrecord.Theseresultshighlightthe needforheightenedattentiontodroughtresilienceofrainfedcroppingsystemsgivenfutureclimate predictionsthatinvolveincreaserainfallintermittency.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Currentandfutureratesofglobalfoodproductionarehighly dependentupontheproductivityofrainfedagriculture.Asof2000, approximately75%ofglobalharvestedagriculturalareaand66%of totalcerealcropproductionwasassociatedwithrainfed agricul-ture(Portmannetal.,2010).Althoughtypicallylessproductivein termsofcropyieldperunitareathanirrigatedsystems(Bruinsma, 2003;Siebertand Döll,2010), itis likelythat rainfedcrop pro-ductionwillaccountfora significantpercentage offuturegains inglobalfoodyields(Rosegrantetal.,2002).Onekeyfactorthat affects the continued importance of rainfed agriculture is that watersupplyforlarge-scaleirrigationislikelytobecome increas-inglyscarceinmanyregions.Long-termdeclinesofgroundwater storagevolumeshavebeenwidelydocumentedinmanyirrigated

Abbreviations:RWU,rootwateruptake;RMSE,rootmeansquarederror;DOY, dayofyear;GS,growingseason;WY,wholeyear.

∗ Correspondingauthor.Tel.:+14028906874. E-mailaddress:paolo.nasta@unina.it(P.Nasta).

basins(McGuire,2009;Scanlonetal.,2012;Aeschbach-Hertigand Gleeson,2012),andrecentestimateshavesuggestedthatglobal groundwaterextractionsexceedsustainablelevelsbyafactorof twoormoreonaverageglobally,withmuchhighervalues appar-entinseveralmajoragriculturalregions(Wadaetal.,2010;Gleeson etal.,2012).Thus,optimizingcropyieldsofrainfedsystemsis criti-calforbothmeetingfutureglobalfoodsecuritygoalsandsustaining freshwaterresources.

Rainfedproductionofcorn(ZeamaysL.)intheUnitedStates playsanimportantroleinglobalgrainsupplygiventhat>50%of globalcornexportsderive fromtheUSand thatapproximately 60%ofplantedcornareain theUSis currentlymanagedunder rainfedconditions(USDA/NASS;http://www.nass.usda.gov/; last accessed 12 December 2012). Mean annual rainfall generally decreasesfromeasttowestacrosstheUSCornBelt,andasaresult thespatialdistributionofrainfedcultivationis largelycentered uponcentralandeasternareaswhereseasonalwateravailability (fromresidualsoilmoistureandprecipitationduringthegrowing season) isgreatest. Althoughrainfed cropyieldsper hectarein these areas are often amongst the world’s highest (FAOSTAT 2010data,http://faostat.fao.org;lastaccessed12December2012; KucharikandRamankutty,2005),yieldscanbesharplyreduced 0378-3774/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

Nomenclature

˛ waterretentionshapeparameter,cm−1 a empiricalcoefficientinEq.(5),cmd−1 b empiricalcoefficientinEq.(5),– ˇ transpirationefficiencyfunction,– D waterdrainage,cmd−1

ε soilporosity,cm3cm−3

Ea actualevaporation,cmd−1

Ep potentialevaporation,cmd−1

ET0 referencepotentialevapotranspiration,cmd−1

ETc maizepotentialevapotranspiration,cmd−1

Hr relativehumidity,–

K hydraulicconductivity,cmd−1  extinctioncoefficient,– Kc cropcoefficient,–

Ks saturatedhydraulicconductivity,cmd−1

LAI leafareaindex,cm2cm−2

m waterretentionshapeparameter,– n waterretentionshapeparameter,– P grossprecipitation,cmd−1

Q cumulativewaterflux,cm R netrainfall,cmd−1 b drybulkdensity,gcm−3

RI rainfallinterception,cmd−1 Rn netsolarradiation,MJm−2d−1

T airtemperature,◦C  tortuosityparameter,– t time,d Ta actualtranspiration,cmd−1 Tp potentialtranspiration,cmd−1 WS waterstorage,cm Wsp windspeed,ms−1

soilmatricpotential,cm

max maximumallowedsoilmatricpotential,cm min minimumallowedsoilmatricpotential,cm obs observedsoilmatricpotential,cm

sim simulatedsoilmatricpotential,cm surf surfacesoilmatricpotential,cm

z soildepth,cm zr rootzonedepth,cm

 soilwatercontent,cm3cm−3

r residualwatercontent,cm3cm−3

s saturatedwatercontent,cm3cm−3

in situationswhere drought periodscoincidewiththe growing season(SchlenkerandRoberts,2006;Grassinietal.,2009).

In 2012, the Corn Belt region was affected by the most severe drought to affect US agriculture in at least 25 years (USDA/ERS,http://www.ers.usda.gov;NationalDroughtMitigation Center,http://droughtmonitor.unl.edu,lastaccessed12December 2012).Thetransitionfromapproximately50cmofprecipitation inthe2011growingseasonto24cmofprecipitationinthe2012 growingseasonatthestudysite(HighPlainsRegionalClimate Cen-ter; http://www.hprcc.unl.edu/maps/normals/; last accessed 10 December2012)offersanexcellentopportunitytogaugehowsoil waterdynamicsrespondtotemporalextremesinrainfall.Thistopic hashighrelevancefor theresilienceof rainfedagricultural sys-temswithrespecttoclimaticvariabilityanddrought(Rockström etal.,2004;Cooperetal.,2008;Rockströmetal.,2009).In par-ticular,recent modeling projections have suggested that future climaticconditionsmayincludeincreasedfrequencyandseverity ofextremeweatherevents(IPCC,2007).Therefore,field investiga-tionsunderextremesofmoistureavailabilityaredesirableinorder

togainabetterunderstandingofhowsoilwaterandcropyields areaffectedbyrapidclimaticvariability.Also,incaseswherecrop yieldsmaystronglybenefitfromrelativelysmallinvestmentsin supplementalirrigationduringdryspells,detailedassessmentof soilwaterdynamicscanhelptorefineamountsandtimingofwater applications(Rockströmetal.,2004).

The primary aim of this study wasto assess plot-scale soil waterdynamicsandtemporalpatternsofcropwaterstressbeneath rainfedcornduringthe2012drought-affectedgrowingseasonin comparisontopreviousyears(2008–2011).Thestudyutilized near-continuousunsaturatedzoneprofilematricpotentialmonitoringin ordertosupporttransientmodelingofsoilwaterdynamicswithin andbelowtherootzone.Monitoringofsoilmoistureandmatric potentialshasbeenwidelyusedtocharacterizesoilwater avail-abilitybeneathrainfedcornonarangeofspatialscales(Assouline etal.,2012; Irmaketal.,2012;Lietal., 2012).Developmentof hydrologic fluxestimatesfrom matricpotentials (e.g. partition-ingthesoilwaterbudgetintoredistribution,drainage,evaporation and transpiration)furtherrequirescharacterizationofhydraulic propertiesofthevadosezoneandcropphysiologicalparameters that affectrootwater uptake(Feddesetal., 2004;Bastiaanssen etal.,2007).Althoughmanypreviousstudieshaveinvestigatedsoil waterdynamicsunderirrigatedcornusingtransientmodelingwith theRichardsequation(recentexamplesfromthisjournalinclude Pandaetal.,2004;Chenetal.,2010;Mastrociccoetal.,2010),to ourknowledge,this is thefirstreportedmodelingof rootzone soilwaterdynamicsunderrainfedcornproductiontoutilize con-tinuousprofilematricpotentialmonitoringwithheatdissipation sensors.Also, asa forwardunsaturated zone modeling applica-tion,thestudyincorporatesanuncommonlevelofdetailinfield measurementsavailableforcalibrationandvalidation,including multipleyearsof hourlymatric potentialmeasurementsat sev-eraldepthswithinandbelowtherootzone,localweather data, andlayeredunsaturatedhydraulicpropertiesdeterminedby lab-oratorymeasurement(ratherthanpedotransferfunctions,which haveahigherdegreeofuncertainty).

2. Materialsandmethods

2.1. Studylocation

Thestudysiteislocatedwithinarainfed(non-irrigated)fieldin EasternNebraska(nearthetownofOakland,BurtCounty;96.53◦ E,41.83◦ N;415ma.s.l.)withinanareaofrollingterrain associ-atedwithglacialtillandstreamdissectionofoverlyingloessunits. Meanannualprecipitationisabout66cm/yearfrom1982to2012 (dataforDecember2012incompleteatthetimeofwriting),and localmonitoringrecordsshowsignificantinterannualvariabilityin annualprecipitation,rangingbetween23cmin1983and105cm in1982andavariationofapproximately4◦Cinaverageannual temperature,rangingbetween7.1◦Cin1996and11.5◦Cin2012 (Fig.1a).Annualprecipitationdisproportionatelyoccursinspring andearlysummer(thewettestmonthsaretypicallyApril,Mayand June;Fig.1b).

2.2. Fieldandlaboratorymeasurementmethods

Heatdissipationmatricpotentialsensors(modelnumber229L, Campbell Scientific, Pullman, WA) were installed in a vertical profileintheunsaturatedzoneon5June2008(depths30,61,91, 152and244cm).Theheatdissipationsensormethodwaschosen overotherwidely-usedmethods,suchasfieldtensiometry,forthe combinedreasonsof(1)measurementrangeand(2)suitabilityfor long-termmonitoring.Incontrasttotensiometricmeasurements, heatdissipationsensorshavethedistinctadvantageofnotneeding

(3)

Fig.1.(a)Annualcumulativeprecipitation,P(bluebars)andaveragetemperature,T(redline)atthestudysite(1982–2012)and(b)monthlyclimatenormals(1982–2012).

intermittent refilling or degassing. Moreover, the tensiometric measurement range is typically limited to above ∼1000cm, whichisaseriouslimitationforrainfedagriculturalapplications becausematricpotentials duringthegrowingseasoncanreach significantlylowervalues.Themeasurementprincipleofheat dis-sipationsensorshasbeendescribedindetailelsewhere(Flintetal., 2002;productmanualavailableathttp://www.campbellsci.com) and is brieflysummarized here.Each sensor includesa porous ceramicsheathsurroundingaheatingelement.Thesensor’srate oftemperatureincreaseafteranappliedheatingpulseissensitive totheporewatercontentoftheceramic,whichinturnisdriven byambientmatricpotentials.Heatpulsetimingand durationis controlledbyadatalogger,andtemperaturesaremeasuredwith internal thermistors,providing hourly matric potentialrecords. Priortoinstallation,sensor-specificcalibrationcurvesofheat dis-sipationrates(temperaturechangeovera20sintervalfollowing a heat pulse) versus matric potentials were determined using a multi-point laboratory calibration procedure using regulated pressureplatechambersfollowingthemethodofFlintetal.(2002). Field-deployedsensorsweresurroundedwithsilicaflourtoensure goodhydrauliccontactwithsurroundingsediments,andplacedat designateddepthswithinanunsaturatedzoneboreholethatwas subsequentlyback-filledwithcoresedimentsandthencappedto preventpreferentialflow.

Undisturbedsoilsampleswerecollectedatfourdepths(38cm, 114cm,187cm,and267cm)tomeasuresoilhydraulicand physi-calproperties.Particle-sizedistribution(PSD)analyses(GeeandOr, 2002)classifiedthesoilsfromsiltyclaytosiltyclayloam(Table1). SaturatedhydraulicconductivityvaluesKs(cmd−1)weremeasured

byeithertheconstantorthefallingheadmethodwithfour repeti-tionsforeachsoilsample(ReynoldsandElrick,2002).Thesaturated soilwatercontentvaluess(cm3cm−3)andthedryingsoilwater

retentiondatapointsweremeasuredusingapressureplate appara-tus(DaneandHopmans,2002).Oven-dried(105◦C)soilcoreswere usedtodeterminedrybulkdensityb(gcm−3),andtotalporosity

εwascalculatedfromdrybulkdensityassumingaparticledensity of2.65gcm−3(Table1).

Anautomatedweatherstationrecordeddailygross precipita-tionP(cmd−1), airtemperatureT (◦C),relativehumidityHr(%),

windspeedWsp(ms−1),andnetsolarradiationRn(MJm−2d−1)

(NOAA-NWS, 2007).The reference potential evapotranspiration ET0(cmd−1)wascomputedwiththePenman–Monteithequation

fromthemeteorologicaldata(Allenetal.,1998).Thecrop coeffi-cient(Kc;dimensionless),theleafareaindex(LAI;dimensionless)

androotgrowingfunctionformaizewerederivedfrompublished literatureoncorninNebraska(SharmaandIrmak,2012;Piccinni etal.,2009).Theseparametersarespecifiedasafunctionoftime

(dayofyearorDOY)accordingtogrowthstage:baresoilfor vege-tationdormancyfromJanuary1(DOY1)toMay9(DOY129);crop plantingandemergencefromMay10(DOY130)toJuly15(DOY 196);tassel,silkingandblister-kernelphasesfromJuly16(DOY 197)toAugust2(DOY214);maturegrowthphasefromAugust3 (DOY215)toOctober31(DOY305);baresoilforvegetation dor-mancyfromNovember 1toDecember 31(DOY 306-365).Leap years(2008and2012)haveanadditionalday.Thecodeto com-putetheDOYisreportedinTable2.5ofAllenetal.(1998).The correspondinglinearequationsareasfollows:

Kc=

0.1 1<DOY<129 0.0144DOY−1.77 130<DOY<196 1.05 197<DOY<214 −0.0118DOY+3.59 215<DOY<305 0.1 306<DOY<365 (1) LAI=

0 1<DOY<129 0.083DOY−10.83 130<DOY<196 5.5 197<DOY<214 −0.062DOY+18.79 215<DOY<305 0 306<DOY<365 (2)

Therootdepth(zr)isdescribedbyacontinuousgrowingfunction

fromDOY130(zr=0)toDOY305(maximumzr=135cm)withthe

followingequation: zr=

0 1<DOY<129 0.776DOY−100.86 130<DOY<305 0 306<DOY<365 (3)

Eqs. (1)–(3) do not take into account interannual physiologi-caladaptationofthecrop.PotentialcropevapotranspirationETc

(cmd−1)isestimatedasET0multipliedbyKc.ETcissubsequently

partitionedintopotentialevaporationEp(cmd−1)andpotential

transpiration Tp (cmd−1) according to the following empirical

equation:

Ep=ETce−LAI (4)

where(–)isthedimensionlessextinctioncoefficientforglobal solarradiationinside thecanopyand isassumedtobeequalto 0.463(Ritchie,1972).Theresidualfractionofthepotential evapo-transpirationisassumedequaltothepotentialtranspiration,Tp.

(4)

Table1

Measuredphysicalpropertiesofthesoilprofileatthemonitoringsiteincludingtexturalpercentagesandclassifications,soilbulkdensity(b)andsoilporosity(ε).

Profileinterval,cm Sampledepth,cm Sand,% Silt,% Clay,% Classification b,gcm3 ε,cm3cm−3

0–42 38 3.4 55.1 41.5 Siltyclay 1.18 0.556

43–120 114 3.2 60.3 36.5 Siltyclayloam 1.21 0.543

121–228 187 3.1 68.7 28.2 Siltyclayloam 1.37 0.483

229–300 267 3.0 65.8 31.2 Siltyclayloam 1.29 0.514

TherainfallinterceptionRI(cmd−1)iscalculatedaccordingto Braden(1985): RI=aLAI



1− 1 1+bP/aLAI



(5) where a (cmd−1) is an empirical coefficient, assumed as 0.025cmd−1 and b(–) denotesthesoilcoverfractiongivenby:

b=1−e−LAI (6)

Interceptionissubtractedfromthemeasuredrainfallinorderto obtainthenetrainfall(R). Fig.2 illustratestheaforementioned waterfluxes(P,EpandTp)forthesametimerecordassociatedto

thematricpotentialmonitoring. 2.3. Numericalmodelingmethods

ThenumericalHYDRUS-1Dmodel(ˇSim ˚uneketal.,2008)was usedtosimulateverticalmovementofwaterintheunsaturated zoneandrootwateruptake(RWU).HYDRUS-1Dnumerically inte-gratesthefollowingone-dimensionalRichardsequation:

∂

∂t

=C( )

∂t

= 1

∂z



K( )

∂z

+1

−( ) (7)

where t (d) is time, z (cm) is soil depth (positive upward),  (cm3cm−3)isthesoilvolumetricwatercontent,C( )isthe

dif-ferentialwatercapacityfunction(cm−1),and( )istheRWUsink term(d−1).Osmoticpotentialsareassumedtobenegligiblebecause of thelow soil water salinityat thesite. The soil water reten-tionfunction( )isdescribedbyvanGenuchten’sequation(van Genuchten,1980): ( )=r+ s−r

1+(˛ )n

m (8a)

withMualem’scondition(Mualem,1976):

m=1−1n (8b)

where ˛ (cm−1), m (–) and n (–) are shape parameters, r

(cm3cm−3)ands (cm3cm−3)areresidualand saturatedwater

contents, respectively. Considering the degree of saturation, Se=(−r)/(s−r),whichvariesfrom0(=r)to1(=s),an

expression for the unsaturated hydraulic conductivity function K(Se)isobtainedbycombiningEq.(8a)withthepore-size

distribu-tionmodelofMualem(1976)toyield: K(Se)=KsSe



1−{1−Se1/m} m



2

(9) where(–)representsthetortuosityparameter.Tortuosityis com-monlyassumedtobeeither=0.5(Mualem,1976),=2(Burdine, 1953),=−1(SchaapandLeij,2000),oriscalculatedfrom simul-taneouswaterretentionandconductivitymeasurements.Inthis study,thewaterretentionparameters(˛,n,rands)retrieved

fromthedirectmeasurementsareinsertedinEq.(9)andis esti-matedasafittingparameterinthehydraulicconductivityfunction. IncreasingvaluesofhavetheeffectofdecreasingthetermS

ein

Eq.(9)andthereforedecreasingthehydraulicconductivityfunction K(Se)suchthatitwillvaryfrom0(Se=0)toKs(Se=1).

Thesoilprofilelowerboundaryis300cmdepthandtheprofile is subdividedintofoursoillayers (assumedinternally homoge-neous)accordingtotexturalandhydraulicinformation(0–42cm, 43–120cm,121–228cm,229–300cm).Foreachsoillayer,sandKs

weremeasured(seedescriptionabove),whereastheremainingsoil hydraulicparameters(r,˛andn)wereobtainedbyfittingEq.(8)

tothemeasuredretentiondataandminimizingthesquared pre-dictionerrors(asshowninFig.3andsummarizedinTable2).The RWUsinkterm(Eq.(7))isdefinedas:

( )=ˇ( )ϕ(zr)Tp (10)

Fig.2. Dailyvaluesofprecipitation(P),potentialevaporation(Ep),andpotentialtranspiration(Tp)forthetimerecordJune2008–December2012.Snowfallisnotreported.

(5)

Fig.3. Measured(points)andoptimized(dashedlines)waterretentionfunctionsfor(a)0–42cmdepth;(b)43–120cmdepth;(c)121–228cmdepth;and(d)229–300cm depth.

where ϕ(zr) (cm−1) is the normalized water uptake

distri-butionand ˇ( ) is thedimensionless RWU efficiency function (0<ˇ<1),whichdependsonthesoilmatricpotentialand deter-mines water stress. The root density distribution of corn was assumedtolinearlydecreasewithincreasingsoildepth(Feddes etal.,1978).TheRWUstressparametersformaizewerespecified usingliterature-derivedvaluesthatareintegratedasdefaultvalues intotheHYDRUS-1Dsoftwarepackage(ˇSim ˚uneketal.,2008). Opti-malrootwaterextraction(ˇ=1)occurswithinthematricpotential range−30cm> >−600cm.Waterstress(0<ˇ<1)thendecreases linearlyuptotheestimatedwiltingpointforcorn( =−8000cm) forwhich there istotal reduction (ˇ=0) (Coelho and Or,1999; Metselaarandde JongvanLier, 2007).Theactualtranspiration flux,equivalenttorootwaterextractionrateTa(cmd−1)integrated

acrosstherootzone,wascomputedbynumericalintegrationofEq. (10).

Thesystem-dependentupperboundaryconditionsaredailynet precipitation(R=P−RI)andpotentialevaporation(Ep).Freezing

andthawingofprecipitationisassumedtooccurinstantaneously accordingto mean daily temperature. The minimumallowable soilmatricpotentialvalueattheupperboundary( min;denoted

“hCritA”inHYDRUS-1D)wascalculatedthroughtheKelvin equa-tion:

min=−

GcT

Mg ln Hr (11)

whereMisthemolecularweightofwater(=0.018015kgmol−1), gisthegravitationalaccelerationconstant(=981cms−2)andGcis

thegasconstant(=8.314Jmol−1K−1).Whensurfacematric poten-tial surf is less than min, the prescribed flux on the upper

boundaryofthesoilprofileswitchestoaconstantheadtype bound-arycondition(Dirichlet’scondition),resultinginreductionofthe potentialevaporation(Ep)intoactualevaporation(Ea).A

propor-tionofRisroutedintorunoffif surfexceedsthemaximumsoil

surfacematric potentialvalue max=0.5cm that representsthe

nominaldepthofsurfacewaterpondingallowablebeforerunoff generation.

Freedrainageisassumedatthebottomboundaryofthesoil pro-filedomain(300cm),enablingcontinuous(downward)drainageto occurunderaunittotalhydraulicgradient(drivenbyonlythe grav-itationalgradientcomponent).Initialconditionswerespecifiedby linearlyinterpolatingmeasuredmatricpotentialscorresponding totheinitialtime(firstDOY,5June2008).Thesimulationswere undertakenusingafiniteelementgridwithfinerspacingatthetop ofthesoilprofile(0.55cm)andcoarseningwithdepth(5.46cmgrid at300cmdepth).

2.4. Modelcalibrationmethods

Calibrationwasachievedbyadjustingthetortuosity parame-ter(j)foreachsoillayerjtooptimizemodelfittomeasuredsoil

matricpotentialsduring2008.Thej-valueswereassignedby

min-imizingthesquarederrorsbetweenobserved( obs)andsimulated ( sim)soilmatricpotentialvalueswiththeLevenberg–Marquardt

nonlinear minimization method (Marquadt, 1963). The objec-tivefunctionOF()embedsthe vector thatincludesthefour Table2

Hydraulicparametersofthesoilprofile:residualwatercontent(r),saturatedwatercontent(s),shapeparameters(˛andn)andsaturatedhydraulicconductivity(Ks).

Profileinterval,cm Sampledepth,cm r,cm3cm−3 s,cm3cm−3 ˛,cm−1 n,– Ks,cmd−1

0–42 38 0.095 0.521 0.0129 1.15 181.47

43–120 114 0.101 0.541 0.0031 1.19 9.53

121–228 187 0.081 0.467 0.0022 1.22 1.65

(6)

Fig.4.(a)Measuredand(b)simulatedsoilmatricpotential( )valuesforthemonitoredsoildepthsduringthecalibration(2008)andvalidation(2009–2012)periods.Matric potentialrangesassociatedwithrootwateruptakestressarealsoshown.Horizontalarrowsdenotethegrowingseasons(130<DOY<305).

tortuosityparametersjforeachsoillayerj.TheOF()isdefined

as: OF ()= N08



i=1

obs(ti)− sim(ti,)

2 (12)

whereticorrespondstothetime(DOY)associatedwithobserved

andsimulatedvariables,startingfromthefirstdayofthe installa-tion(5June2008)andendingon31December2008(N=210).In ordertoensurephysicalconsistencyacrossjvalues(a

fundamen-talrequirementtoobtaina monotonicallydecreasinghydraulic conductivityfunction),theparametersjwereconstrainedusinga

minimumvalueof−2/mj<j(Petersetal.,2011).Thereisno

the-oreticalmaximumvalueforj;however,previousstudiessuggest

thatjusuallydoesnotexceedthevalueof15(SchuhandCline,

1990;Kosugietal.,2002).Becausetheobjectivefunctionmaybe stronglyaffectedbylocalminimaduringthesearch,theinversion procedurewasiterativelyexecutedusingvaryingcombinationsof initialestimates.

Quantitativemodelperformancewasassessedusingtheroot meansquarederrors(RMSE)betweendailymeasuredandmodeled matricpotentials,expressedinlog10-scale:

RMSE=





N i=1

log10 obs(ti)−log10 sim(ti)

2

N (13)

whereNisthenumberofdays.ThreeRMSEtypesarepresentedin Table4:(1)calibrationperiodrangingfrom5June2008upto31 December2008(RMSEcal;N=210),(2)theentire2009–2012

post-calibrationmonitoringrecord(RMSEval;N=1448),(3)2009–2012

measurementsthattookplaceduringthegrowingseasonsonly (RMSEgs;N=700).

3. Resultsanddiscussion

3.1. Measuredmatricpotentials

Themeasuredmatricpotentialrecordillustratesstrong season-alityinsoilwaterconditionsthroughouteachyearoftherecord (2008–2012;Fig.4a).Rapiddryingtrendsfortheshallowesttwo sensors(30cmand61cm)generallybeganinMaytoearlyJune, coincidingwithinitialcropgrowth.Increasingtimelagsrelative to the date of drying onset at 30cm occurred with increasing sensor depth, reflecting theprogressivedownward propagation ofdrying frontseach summer.Thedegreeof temporal variabil-ityalsodecreased withdepth,and thedeepestsensor(244cm) remainedrelativelyconstantthroughouttherecord( 50cm). The localwater tableis approximately ∼300cm belowsurface, and it is apparentthat the 244cm sensor remained near satu-rationbecauseitwaswithinthecapillaryfringethroughoutthe monitoringperiod.Thenumberofsensorsreportingmatric poten-tialsthatareindicativeofcropwaterstress( <−600cm)varied byyear.In2010and2011,onlythe30cmand61cmsensorsfell below <−600cmduringthegrowingseason.The91cmsensor fellbelow <−600cmin2008,2009and2012.The152cmsensor onlyfellbelow <−600cmduring2012.Yearlyminimummatric potentialsreportedbythe30cmsensor(shallowestsensor)ranged from =−3456cmin2009to =−9136cmin2012.Wintermatric potentialsreturnedto >−600cmforallsensorsinallyearsexcept for2012,reflectingweaksoilmoisturereplenishmentfollowingthe 2012growingseasonbecauseofprolongeddroughtconditions. 3.2. Modelcalibrationandperformance

The tortuosity values estimated by statistical fit during the calibration procedure ranged from −1.56 to +5.01. The largest

Table3

Tortuosityparameters(1,2,3,4)optimizedthroughinversemodeling,including95%confidencelimitsandcorrelationcoefficients.

Depth,cm opt,– Pmin,5% Pmax,95% 1,– 2,– 3,– 4,–

1 38 −1.56 −1.81 −1.31 1

2 114 −0.0137 −0.26 0.23 0.056 1

3 187 3.91 2.68 5.14 0.53 0.17 1

(7)

Table4

Rootmeansquareerrorsfor thecalibration (RMSEcal)andvalidation periods (RMSEvalandRMSEgs)foreachmatricpotentialsensorlocatedintherootzone(zr)or belowtherootzone(z−zr).ValidationperiodRMSE-values,RMSEvalandRMSEgsare reportedbothforthewholeyear(WY)andforthegrowingseason(GS),respectively.

Sensordepth,cm RMSEcal RMSEval(WY) RMSEgs(GS)

zr 30 0.42 0.49 0.41

61 0.57 0.52 0.47

91 0.40 0.82 0.69

z−zr 152 0.84 0.92 0.94

244 0.40 0.33 0.39

tortuosityvalues wereestimated for the deepestprofile layers (Table 3).Thispattern is notcorrelated withsediment texture, andmaybepartiallyattributabletosoilcompactionwithdepth. However,thelargerangeinthe95%confidenceintervalforthetwo deepestlayers(2.68<3<5.14and−0.03<4<10.03)indicatesa

relativelyhighdegreeofuncertainty. Especiallyforthedeepest sensor,thelowsensitivityisduetothesmalltemporalvariations ofthematricpotentialvaluesthatarenearsaturation.Thisimplies strongequifinalityofthetortuosityestimateforthe244cmsensor becausetheS

etermisclosetounity.Ontheotherhand,thevery

lowvaluesofthecorrelationmatrixindicatelowinter-dependence ofthefourtortuosityparameters.

Thetemporaltrendsinsimulatedmatricpotentialsgenerally agreedwellwiththeobservedmatricpotentialsthroughoutthe 2008–2012monitoringperiod (Fig.4a and b).Simulated matric potentialstendedtocaptureboththetimingandmagnitudeof dry-ingpatternsinmostcases,includingtheseveredryingin2012. Onenotableexceptionwasthebehaviorofthe30cmand61cm sensorsduringthe2011growingseason;themodelpredicteda stabilizationofmatricpotentialsatapproximatelyDOY1220while measuredmatricpotentialscontinuedtosharplydecline.

The RMSEcal values for sensors within the root zone range

from 0.40cm to 0.57cm. RMSEval values were generally

com-parable to RMSEcal values, suggesting that model performance

didnot diminishsignificantly outside of thecalibrationperiod. The highestRMSEcal valuewas for thesensor at 152cm depth

(RMSEcal=0.84cm), which remained relatively wet throughout

themonitoringperiodand wasslightly butconsistently under-predictedbythemodel.TheRMSEcalvalueforthe152cmsensor

wasgreaterthantheRMSEcalvalueforthe244cmsensorbecause

theformerwassubjecttogreatertemporalvariability.

Cross-comparisonsbetweenmeasuredandmodeleddata pri-marilyclusteralongthe1:1linefor <−100cm(Fig.5aandc), illustratingthestrongmodelperformanceunderrelativelydry con-ditions(whichoccurredprimarilyduringthegrowingseason).In contrast,divergencefromthe1:1lineabove =−100cmsuggests asystematicmodelunderestimationofsimulatedmatricpotential valuesathigher(wetter)ranges.Thisbiaswithinthewetrange ofsensormeasurementsmaybeprimarilyattributabletosensor error,consideringthatheatdissipationsensorshaveshowntohave reducedperformanceabove =−100cm(Flintetal.,2002).Model structureduringcropdormancyperiodsmayalsoplaya rolein thewetrange bias becauseKc during dormancyis poorly

con-strained(assumedequalto0.1inthiscase,seeEq.(1))andthis periodcoincided withthewettest near-surfacemoisture condi-tions.Thedistributionoftheerrors(indecimallogarithmicscale) showssignificantnegativebiasforthefullyeardataset(Fig.5b), reflectingmodelunderestimationofmeasuredmatricpotentialin thewetrange.However,withinthegrowingseason,error distribu-tionsareapproximatelyGaussian(accordingtothe 2-test;Fig.5d)

without significantover or underestimation. Hence, the model performance is strongest for evaluation of soilwater dynamics withinthegrowingseasons underprimarilylow moisture con-ditions, which is the focus on this investigation.The fact that RMSEgsvalueswithintherootwereuniformlylowerthanRMSEval

Fig.5.Erroranalysesofsimulatedversusmeasuredmatricpotentials(indecimallogarithmicscale):(a)scatterplotconsideringwholeyeardata(WY),(b)frequency distributionoferrorsconsideringwholeyeardata(WY),(c)scatterplotconsideringgrowingseasondataonly(GS),(d)frequencydistributionoferrorsconsideringgrowing seasondataonly(GS).Dashedlineinparts(a)and(c)denotestheline1:1correlation.

(8)

Table5

Simulatedcumulativewaterfluxesforthegrowingseasonsof2009–2012:grossprecipitation(P),rainfallinterception(RI),referencepotentialevapotranspiration(ET0),

potentialcropevapotranspiration(ETc),potentialtranspiration(Tp),potentialevaporation(Ep),waterstorage(WS),waterdrainage(D),actualevaporation(Ea),actual

transpiration(Ta)andwaterstress(Tp−Ta).

2009 2010 2011 2012 Input,cm P 43.15 62.24 53.71 29.11 RI 4.64 4.42 3.97 2.22 ET0 90.62 100.59 96.53 120.83 ETc 60.23 64.42 62.01 79.02 Tp 48.57 51.57 49.87 63.58 Ep 11.66 12.85 12.14 15.44 Output,cm WS130 140.12 141.33 140.55 132.60 WS304 127.77 130.29 127.29 114.34 D −0.71 −5.22 −5.38 −0.48 Ea 11.60 12.80 12.03 15.14 Ta 38.91 45.91 45.07 29.55 Stress(Tp−Ta) 9.66 5.66 4.80 34.03

confirmsthatmodelperformanceismostpreciseduringthe grow-ingseason.

3.3. Waterbudget

Precipitationamountsduringthegrowingseasons2009–2012 rangedfromamaximumof62cmin2010toaminimumof29cm in2012(Table5).Although2012hadthelowestannualamount ofgrowingseasonprecipitationwithinthe2008–2012period,a similarlylowrainfalltotaloccurredinthe1983growingseason accordingtolocalmeteorologicalrecords(seeFig.1a).Simulated rainfallinterception(RI)rates wereapproximately10%ofgross precipitation(P)foreachgrowingseason2008–2012.Simulated growingseasonETcvaluesweresimilarfor2009,2010and2011

(rangeofapproximately60–64cm);2012hada highervalueof 79cm(thereductionofET0intoETcassociatedwithKcwas

approx-imately35%forallfouryears).Eprepresentedapproximately20%

ofETcbasedonEq.(4).Typicaloflocalclimaticconditions,Epand

Tpportrayedrelativelyregularperiodicpatterns,whereas

precipi-tationhadgreatertemporalvariabilityandepisodicity.Simulated runoffwasnegligiblebecausewaterpotentialsatthesoilsurface rarelyexceeded max.Also,reductionsofEarelativetoEptended

tobesmall(i.e.Ea≈Ep)becausewaterpotentialsatthesoilsurface

wererarelylowerthan min.

Modeledsoilwaterfluxesandstoragetrendsaresynthesized inTable5andFig.6.Soilwaterstoragevolumesdecreasedeach yearduringthegrowingseason.Theamountofsoilwaterstorage lossduringthegrowingseasonwasrelativelyconstantat approxi-mately12cmperseasonin2009–2011(Table5;WS130andWS305

indicatesoilwaterstorageattheinitialandfinaldaysofgrowing season,respectively).Asapercentageoftotalrootzonewater stor-ageatthebeginningofthegrowingseason,waterstoragelosses were8.8%,7.8%and9.4%forthegrowingseasonsof2009,2010, and2011,respectively.Incontrast,soilwaterstoragelossduring the2012growingseasonwasapproximately18cm, or13.8%of initialstorage,reflecting thesignificantly lowergrowingseason precipitationtotal(29cmcomparedto62cmin2010,for exam-ple).Waterlossattributablesolelytoevapotranspirationcanbe assessedbysubtractingwater lossfromdeepdrainage(D)from thestorage changes over the growingseason.Considering that thedeepdrainageinthegrowingseasonsof2010and2011was approximately5–6cmperseason,itmaybeinferredthatwaterloss attributabletoevapotranspirationin2009wasabouttwicethatof 2010and2011.Thesoilwaterlossattributableto evapotranspira-tioninthedroughteventof2012wasgreaterthanthoseobserved intherelativelywetyearsoftherecord(2010and2011)byafactor ofapproximatelyfour.Aftereachgrowingseason,soilwater stor-ageincreasedintermittentlyfollowingprecipitationeventsinfall

Fig.6.Simulatedcumulativewaterbudgettermsfor2009–2012:(a)waterstorage(WS;cm)and(b)waterfluxes(Q)at30cmdepth(solidline)andat150cmdepth(dashed line).Horizontalarrowsdelimitthegrowingseason(130<DOY<305).

(9)

andsnowmeltandstormeventsinspring(Fig.6a).Boththetiming andthepeaksoilwaterstorageamountswererelatively consis-tentacrosseachyearofthemonitoringrecord,occurringduring thespringandreachingmaximumstoragevaluesof141–153cm.

In2009–2011,waterredistributionwithintherootzonewas predominantlydownward(negative)outsideofthegrowing sea-sonbasedonsimulatedwaterfluxesat30cm(Q30)and150cmsoil

depth(Q150)(Fig.6b).Flowdirectionstendedtobereversedineach

growingseason,duringwhichupwardmoistureflowwasdriven bynear-surfaceevapotranspiration.The2012growingseason fea-turedanotabledecreaseofmatricpotentialvaluesforallsensors exceptthe244cm,whichwasaffectedbythecapillaryfringe. Simu-latedfluxesacrosstherootzoneboundary(approximatedbyQ150)

suggestthatdeep(sub-rootzone)soilmoisturetendedto func-tionasawatersourcetotherootzoneduringthegrowingseasons, whereasnegativevaluesindicatethatdeepdrainageoccursinthe wetseasons(Fig.6b).ComparisonofannualQ150 valueswithTa

valuessuggestthatdeepsoilmoisturecontributionsaccountedfor 0–17%ofannualrootwateruptake(17%in2009and2012; negligi-blecontributionsin2010and2011).Simulatedcumulativelower boundarydrainagerates(acrossthe300cmdepthplane)wereless than1cminthegrowingseasonsof2009and2012,and approx-imately5–6cmfor2010and2011(Table5),withmostdrainage eventsin2010and2011occurringduringlatespringwhenthe soilwaterstorageisnearitsmaximum.However,theassumedfree drainagelowerboundaryconditiondoesnotpermitpositivevalues fordeepdrainage.Therefore,possibledischargesfromthewater tablecouldnotbeassessed.

3.4. Cropwaterstress

Seasonal evolution of plant water stress is evaluated using simulatedTp−Taasanindicatorofrootwateruptakereduction

(shown in Fig. 7). Results suggest that RWU stress was inter-mittentwithineachgrowingseasonthroughout themonitoring period,andinsomecasesshiftedrapidlyafterweatherevents.For example,waterstresssharplydeclinedin15August2009(from 0.311to0.018cmd−1 onconsecutivedays) followinga 2.16cm rainfallevent.AsimilarscenariooccurredbetweenAugust21and August22in2011.Maximumwaterstressoccurredwithsimilar timing (early to mid-August) in each of the monitoring years. Thesimulatedsoilmatric potentialcorrespondingtoshallowest depthfellbelowthewiltingpoint( =−8000cm)in2012forthe firsttimewithinthemonitoringperiod.Significantinter-annual variabilityincumulativewaterstresswasalsoevident(Table5). Cumulativegrowingseasonwaterstressrangedfromaminimum of5cmtoamaximumof9cmperseasonin2009–2011,compared to34cmin2012(Table5;Fig.7).Onapercentagebasis,reductions

Fig.7.SimulatedcropwaterstressdefinedbyTp−Ta(2009–2012).Horizontal

arrowsdelimitthegrowingseason(130<DOY<305).

Fig.8.Cropwaterstress(shownwithdegreeofshading)asafunctionofdaily climaticboundaryconditions(ETc−P)andsoilwaterstorage(WS)2009–2012.

intranspirationduetowaterstressequatedtoameanof14%ofTp

for2009–2011and53%ofTpin2012.Thisrangestronglycontrasts

with typical irrigated conditions. For example, Li et al. (2012) observedthatreductionsintranspirationduetowaterstresswere neverless than20%for maizeunderirrigated conditionsinthe HeiheBasininwesternChina.

Fig.8 shows thedistribution of simulatedwater stress as a functionofclimatic(ETc−P)andsoilwaterstoragecontrols.Most

daily climaticvalues fell within therelatively narrow range of 0–1cmd−1.ThesmallpercentageofpointswithETc−P<0are

asso-ciatedwithmajorrainfalleventsthatledtodailyPexceedingETc.

Themostseveredailywaterstressoccurrencesweretightly clus-terednearETc−P=1cmd−1andintermediatewaterstoragevalues

of120–130cm.Theseoccurrencesofmaximumdailywaterstress mainlycoincidedwithearlytomiddlegrowingseasonperiodsthat experiencedlowrainfall;thesewereperiodswhendailyETc−P

valuesweregreatestbutsoilmoisturestorageamountshadnot yetreachedtheirminimumvalues(seeforexample28July2012; Fig. 8). Many of the days with lowest water storage amounts (110–120cm)didnotcoincidewithhighwaterstressbecausethey occurredsoonafterthegrowingseasonwhen ETc waslow but

waterstoragehadnotyetrecovered(seeforexample16October 2012;Fig.8).Theseresultsshowthatcropwaterstressismore closelyrelatedtodailyclimaticconditionsthantotalwaterstorage incurrentstudyareaintheEasternGreatPlains.Becausefew stud-ieshaveexaminedtherelationshipsbetweencropwaterstressand unsaturatedzonedynamicsbeneathdrylandcorn,itisunclearhow thesepatternsmayvaryindifferenttextural,climaticand vegeta-tionconditions.Forexample,itseemslikelythatacoarse-textured soilprofilewithadeeperwatertableundersimilarclimaticand vegetationconditionswouldcertainlyexhibitacloserrelationship betweencropwaterstressandprofilewater storage.Additional researchacrossdiverseenvironmentalsettingsare necessaryin ordertorefine current understandingofhow terrestrialfactors affectdroughtimpactsonrainfedcropstress.

4. Conclusions

The2012droughtintheUSCornBeltstronglyaffectedwater dynamicsinthesiltyclaytosiltyclayloamsoilprofileatthestudy sitein EasternNebraskainseveralrespectsrelative toprevious years.Notableeffectsofthe2012droughtincluded(1)increasing theseasonalsoilwaterstoragedepletionrate,(2)lowering near-surfacematricpotentialstoaminimumvaluethatwasbelowthe wiltingpointforcornforthefirsttimeinthefiveyear monitor-ingrecord(2008–2012),(3)increasingthemagnitudeofupward waterpotentialgradients,and(4)increasingthecontributionof

(10)

sub-rootzonesoilmoisturestoragetoRWU(althoughona percent-agebasisitwascomparableto2009).Resultingwaterstress-related reductionsintranspirationwere55%ofpotentialtranspirationin 2012comparedtoameanof15%for2009–2011.Resultssuggest thatresidualsoilwater withinandbelow therootzonehelped tomitigateharmfulcropstresssomewhatbutwasnotsufficient topreventit,andthatthemostsignificantperiodsofcropwater stressweremostcloselyassociatedwithdryatmospheric condi-tionsratherthanadrysoilprofile.

Performancetestingofthecalibratedone-dimensional numeri-calflowmodelsuggestedthatthemodel’sreproductionofobserved matricpotentialswasacceptableandwasmostpreciseforthedry rangeoftherecord( <−102cm).Improvementstothecurrent

model’sperformancecouldbeenhancedwithincreasedrealismin crop-relatedboundaryconditionsparameters.

Acknowledgments

The authors acknowledgethe financial support of the East-ernNebraskaWaterResourcesAssessmentProject(ENWRA)and its sponsor organizations. Field and laboratory data were pro-videdbytheUSGeol.Surv.NebraskaWaterScienceCenter.Dana DivineandGregorySteeleprovidedvaluablesuggestionsforthe manuscript.

References

Aeschbach-Hertig,W.,Gleeson,T., 2012.Regionalstrategies forthe accelerat-ing global problem of groundwater depletion.Nature Geoscience 5 (12), 853–861.

Allen,R.G.,Pereira,L.S.,Raes,D.,Smith,M.,1998.Cropevapotranspiration: guide-linesforcomputingcropwaterrequirements.IrrigationandDrainagePaperNo. 56.FoodandAgricultureOrganizationoftheUnitedNations(FAO),Rome,Italy, 300p.

Assouline,S.,Möller,M.,Furman,A.,Narkis,K.,Silber,A.,2012.Impactofwater regimeandgrowingconditionsonsoil–plantinteractions:fromsingleplantto fieldscale.VadoseZoneJournal1,1,http://dx.doi.org/10.2136/vzj2012.0006. Bastiaanssen,W.G.M.,Allen,R.G.,Droogers,P.,D’Urso,G.,Steduto,P.,2007.

Twenty-fiveyearsmodelingirrigatedanddrainedsoils:stateoftheart.Agricultural WaterManagement92(3),111–125.

Braden, H., 1985. EinEnergiehaushalts- und Verdunstungsmodellfor Wasser undStoffhaushaltsuntersuchungenlandwirtschaftlichgenutzerEinzugsgebiete. MittelungenDeutscheBodenkundlicheGeselschaft42,294–299.

Bruinsma,J.(Ed.),2003.WorldAgriculture:Towards2015/2030AnFAOPerspective. FAO,EarthscanpublicationsLtd.,London.

Burdine,N.T.,1953.Relativepermeabilitycalculationsfrompore-sizedistribution data.TransactionsoftheAmericanInstituteofMiningandMetallurgical Engi-neers198,71–78.

Chen,C.,Wang,E.,Yu,Q.,2010.Modellingtheeffectsofclimatevariabilityandwater managementoncropwaterproductivityandwaterbalanceintheNorthChina Plain.AgriculturalWaterManagement97,1175–1184.

Coelho, E.F., Or, D., 1999. Root distribution and water uptake patterns of cornundersurfaceandsubsurfacedripirrigation.PlantSoil206,123–136, http://dx.doi.org/10.1023/A:1004325219804.

Cooper,P.J.M.,Dimes,J.,Rao,K.P.C.,Shapiro,B.,Shiferaw,B.,Twomlow,S.,2008. Copingbetterwithcurrentclimaticvariabilityintherain-fedfarmingsystemsof sub-SaharanAfrica:anessentialfirststepinadaptingtofutureclimatechange? Agriculture,Ecosystems&Environment126(1–2),24–35.

Dane,J.H.,Hopmans,J.W.,2002.Pressureplateextractor.In:Dane,J.H.,Topp,G.C. (Eds.),MethodsofSoilAnalysis:Part4,PhysicalMethods.SSSABookSeriesNo. 5.SoilScienceSocietyofAmerica,Madison,WI,pp.688–690.

Feddes,R.A.,Kowalik,P.J.,Zarandny,H.,1978.SimulationofFieldWaterUseand CropYield.JohnWiley&Sons,NewYork,NY.

Feddes, R.A., de Rooij, G.H., van Dam,J.C., 2004a. Unsaturated Zone Model-ing,Progress,Challenges and Applications. WageningenURFrontis Series, vol. 6. Kluwer Academic Publishers, pp. 364, ISBN: 1-4020-2918-7(PB) www.wur.nl/frontis

Flint,A.L.,Campbell,G.S.,Ellet,K.M.,Calissendorff,C.,2002.Calibrationand temper-aturecorrectionofheatdissipationmatricpotentialsensors.SoilScienceSociety ofAmericaJournal66,1439–1445.

Gee,G.W.,Or,D.,2002.Particle-sizeanalysis.In:Dane,J.H.,Topp,G.C.(Eds.),Methods ofSoilAnalysis:Part4,PhysicalMethods.SSSABookSeriesNo.5.SoilScience SocietyofAmerica,Madison,WI,pp.255–293.

Gleeson,T.,Wada,Y.,Bierkens,M.F.P.,vanBeek,L.P.H.,2012.Waterbalanceofglobal aquifersrevealedbygroundwaterfootprint.Nature488(7410),197–200.

Grassini,P.,Yang,H.,Cassman,K.G.,2009.Limitstomaizeproductivityin West-ernCorn-Belt:asimulationanalysisforfullyirrigatedandrainfedconditions. AgriculturalandForestMeteorology149(8),1254–1265.

IPCC,2007.Climatechange2007:thephysicalsciencebasis.In:Solomon,S.,Qin,D., Manning,M.,Chen,Z.,Marquis,M.,Averyt,K.B.,Tignor,M.,Miller,H.L.(Eds.), ContributionofWorkingGroupItotheFourthAssessmentReportofthe Inter-governmentalPanelonClimateChange.CambridgeUniversityPress,Cambridge, UK/NewYork,NY,USA,996pp.

Irmak,S.,Burgert,M.J.,Yang,H.S.,Cassman,K.G.,Walters,D.T.,Rathje,W.R.,Payero, J.O.,Grassini,P.,Kuzila,M.S.,Brunkhorst,K.J.,vanDeWalle,B.,Rees,J.M.,Kranz, W.L.,Eisenhauer,D.E.,Shapiro,C.A.,Zoubek,G.L.,Teichmeier,G.J.,2012. Large-scaleon-farmimplementationofsoil-moisture-basedirrigationmanagement strategiesforincreasingmaizewaterproductivity.TransactionsofASABE55, 881–894.

Kosugi,K.,Hopmans,J.W.,Dane,J.H.,2002.Parametricmodels.In:Dane,J.H.,Topp, G.C.(Eds.),MethodsofSoilAnalysis,Part4,SSSABookSer.vol.5.SSSA,Madison, Wisconsin,pp.739–757.

Kucharik,C.J.,Ramankutty,N.,2005.TrendsandvariabilityinU.S.cornyieldsover thetwentiethcentury.EarthInteractions9(1),1–29.

Li, Y., Kinzelbach,W., Zhou, J.,Cheng, G.D., Li, X., 2012. Modelling irrigated maizewithacombinationofcoupled-modelsimulationanduncertainty anal-ysis,inthenorthwestofChina.HydrologyandEarthSystemSciences16, 1465–1480.

Marquadt, D.W.,1963. Analgorithmforleast-squaresestimationofnonlinear parameters.SIAMJournalofAppliedMathematics11,431–441.

Mastrocicco,M.,Colombani,N.,Salemi,E.,Castaldelli,G.,2010.Numerical assess-mentofeffectiveevapotranspirationfrommaizeplotstoestimategroundwater rechargeinlowlands.AgriculturalWaterManagement97,1389–1398. McGuire,V.L.,2009. Water-LevelChanges intheHighPlains Aquifer,

Prede-velopmentto2007.2005–06,and2006–07.U.S.GeologicalSurveyScientific InvestigationsReport2009-5019,p.9.

Metselaar,K.,deJongvanLier,Q.,2007.Theshapeofthetranspirationreduction functionunderplantwaterstress.VadoseZoneJournal6,124–139.

Mualem,Y.,1976.Anewmodelforpredictingthehydraulicconductivityof unsat-uratedporousmedia.WaterResourcesResearch12,513–522.

NOAA-NWS,2007. Manual10-1315.Cooperative StationObservations. Surface ObservingProgram(Land).OperationandServices(onlineWWW),Available URL:http://www.nws.noaa.gov/directives/sym/pd01013015curr.pdf Panda,R.K.,Behera,S.K.,Kashyap,P.S.,2004.Effectivemanagementofirrigation

waterformaizeunderstressedconditions.AgriculturalWaterManagement66, 181–203.

Peters,A.,Durner,W.,Wessolek,G.,2011.Consistentparameterconstraintsforsoil hydraulicfunctions.AdvancesinWaterResources34,1352–1365.

Piccinni,G.,Ko,J.,Marek,T.,Howell,T.,2009.Determinationofgrowth-stage-specific cropcoefficients(Kc)ofmaizeandsorghum.AgriculturalWaterManagement

96,1698–1704.

Portmann,F.T.,Siebert,S.,Döll,P.,2010.MIRCA2000&#8212;Globalmonthly irri-gatedandrainfedcropareasaroundtheyear2000:anewhigh-resolutiondata setforagriculturalandhydrologicalmodeling.GlobalBiogeochemicalCycles24 (1),GB1011.

Reynolds,W.D.,Elrick,D.E.,2002.Pressureinfiltrometer.In:Dane,J.H.,Topp,G.C. (Eds.),MethodsofSoilAnalysis:Part4,PhysicalMethods.SSSABookSeriesNo. 5.SoilScienceSocietyofAmerica,Madison,WI,pp.826–836.

Ritchie,J.T.,1972.Modelforpredictingevaporationfromarowcropwithincomplete cover.WaterResourcesResearch8,1204–1213.

Rockström,J.,Falkenmark,M.,Karlberg,L.,Hoff,H.,Rost,S.,Gerten,D.,2009.Future wateravailabilityforglobalfoodproduction:thepotentialofgreenwater forincreasingresiliencetoglobalchange.WaterResourcesResearch45(7), W00A12.

Rockström,J.,Folke,C.,Gordon,L.,Hatibu,N.,Jewitt,G.,PenningdeVries,F., Rwe-humbiza,F.,Sally,H.,Savenije,H.,Schulze,R.,2004.Awatershedapproachto upgraderainfedagricultureinwaterscarceregionsthroughWaterSystem Inno-vations:anintegratedresearchinitiativeonwaterforfoodandrurallivelihoods inbalancewithecosystemfunctions.PhysicsandChemistryoftheEarth,Parts A/B/C29(15–18),1109–1118.

Rosegrant, M.,Ximing,C.,Cline,S., Nakagawa,N., 2002.The Roleof Rainfed Agriculture in the Future of Global Food Production. EPTD Discus-sion Paper 90. International Food Policy Research Institute (IFPRI), Environment and Production Technology Division, Washington, DC http://www.ifpri.org/divs/eptd/dp/papers/eptdp90.pdf

Scanlon,B.R.,Faunt,C.C.,Longuevergne,L.,Reedy,R.C.,Alley,W.M.,McGuire,V.L., McMahon,P.B.,2012.Groundwaterdepletionandsustainabilityofirrigationin theUSHighPlainsandCentralValley.ProceedingsoftheNationalAcademyof Sciences109(24),9320–9325.

Schaap,M.G.,Leij,F.J.,2000.Improvedpredictionofunsaturatedhydraulic conduc-tivitywiththeMualem-vanGenuchtenmodel.SoilScienceSocietyofAmerica Journal64,843–851.

Schlenker,W.,Roberts,M.J.,2006.Nonlineareffectsofweatheroncornyields. AppliedEconomicPerspectivesandPolicy28(3),391–398.

Schuh,W.M.,Cline,R.L.,1990.Effectofsoilpropertiesonunsaturatedhydraulic conductivitypore-interactionfactors.SoilScienceSocietyofAmericaJournal 54,1509–1519.

Sharma,V.,Irmak,S.,2012.Mappingspatially-interpolatedprecipitation, evapo-transpirationandnetirrigationrequirementsinNebraska:PartII.Actualcrop evapotranspirationandnetirrigationrequirements.TransactionsofASABE55, 923–936.

(11)

Siebert,S.,Döll,P.,2010.Quantifyingblueandgreenvirtualwatercontentsinglobal cropproductionaswellaspotentialproductionlosseswithoutirrigation.Journal ofHydrology384(3–4),198–217.

ˇSim ˚unek,J.,Sejna,M.,Saito,H.,Sakai,M.,vanGenuchten,Th.M.,2008.The HYDRUS-1Dsoftwarepackageforsimulatingtheone-dimensionalmovementofwater, heat,andmultiplesolutesinvariablysaturatedmedia.Version4.0.HYDRUS SoftwareSer.3.Dep.ofEnviron.Sci.,Univ.ofCalif.,Riverside.

vanGenuchten,Th,M.,1980.Aclosedformequationforpredictingthehydraulic conductivityofunsaturatedsoils.SoilScienceSocietyofAmericaJournal44, 892–898.

Wada,Y.,vanBeek,L.P.H.C.,vanKempen,M.,Reckman,J.W.T.M.,Vasak,S.,Bierkens, M.F.P.,2010.Globaldepletionofgroundwaterresources.GeophysicalResearch Letters37(20),L20402.

Riferimenti

Documenti correlati

Non credo che esista un modello o una tecnica ideale per curare il PTSD e altri traumi; piuttosto, ogni modello va adattato al singolo caso, al contesto, allo stato della

Similarly, only one study ( Yin et al., 2015 ) reported the number of oocytes retrieved in relation to the distribution of the LHCGR (rs13405728) genotype, and there were no signi

The process of semiotic mediation consists in the evolution from the initial (artefact) signs (representing the utilisation schemes realized by students to accomplish the task by

In realtà, come appare chiaro nel prosieguo della scena, Shake- speare opera un cospicuo rimaneggiamen- to dei fatti storici, unendo gli eventi del 1455 (in cui Enrico VI fu

Diverse azioni possono essere adottate per contenere la deriva : • montare sulle irroratrici dei componenti specifi ci che consentono di ridurre la generazione della stessa deriva;

Two different criteria of distinction are at work here: (1) the difference between real and ideal space follows the deeper distinction between the spheres of real and ideal being;

Chi davvero è preoccupato che le elezioni possano essere vinte da una forza politica che reputa pericolosa (quale essa sia), chi davvero teme il ripetersi in Italia di un caso

DĂƩĞŽ&gt;ĞŽŶĞ͕ŝƉĂƌƟŵĞŶƚŽĚŝ&amp;ŝůŽƐŽĮĂĞ^ĐŝĞŶnjĞĚĞůů͛ĚƵĐĂnjŝŽŶĞ͕^ĞnjŝŽŶĞĚŝ^ĐŝĞŶnjĞ