• Non ci sono risultati.

Embedded Morphological Dilation Coding for 2D and 3D Images

N/A
N/A
Protected

Academic year: 2021

Condividi "Embedded Morphological Dilation Coding for 2D and 3D Images"

Copied!
12
0
0

Testo completo

(1)

for 2D and 3D images

F. Lazzaroni, A. Signoroniand R.Leonardi

Signals and Communications Lab. - DEA- University of Brescia, Italy

via Branze, 38- I25123 Brescia, Italy Tel.+39030 3715434 Fax.+39030380014

ABSTRACT

Current wavelet-based image coders obtain high performance thanks to the identi cation and the

exploita-tion of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms,

as \Embedded Zerotree Wavelets" (EZW) and \Set Partitioning In Hierarchical Trees" (SPIHT), o er high

Rate-Distortion (RD) coding performanceand lowcomputational complexity by exploiting statistical

depen-denciesamonginsigni cantcoeÆcientsonhierarchicalsubbandstructures. Anotherpossibleapproachtries to

predict the clusters of signi cant coeÆcientsby means of someform of morphologicaldilation. An example

of amorphology-basedcoderis the\Signi cance-Linked ConnectedComponentAnalysis"(SLCCA) that has

shownperformancewhicharecomparabletothezerotree-basedcodersbutisnotembedded. Anewembedded

bit-plane coderis proposed herebasedon morphologicaldilation of signi cant coeÆcientsand context based

arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies

amongwaveletsigni cantcoeÆcients. Moreover,thesameapproachisusedbothfortwoandthree-dimensional

wavelet-based image compression. Finally the algorithms are tested on some 2D images and on a medical

volume,bycomparing theRD resultsto thoseobtainedwiththestate-of-the-artwavelet-basedcoders.

Keywords: 2Dand3Dimagecoding, wavelettransform,embedding,arithmetic coding,morphology.

1.INTRODUCTION

In the last years the needto store and communicate largeamounts of visual data has required thestudy of

newcompression techniques. Nowadays,there exists arich literatureandstandardizationactivitiesregarding

imagecoding. Amongthebesttwo-dimensional(2D)compressionschemes,waveletbasedzerotreecodingo ers

highRate-Distortion (RD)performancewithlowcomputationalcomplexity. Thissystemiscomposed ofthree

stages: wavelet transform,zerotree-basedquantization andentropycoding. The successof thezerotree-based

approach is due to the statistical exploitation of the inter-subband dependency among insigni cant wavelet

coeÆcients, which is pointed out by the reorganization of coeÆcients in subband tree structures. Examples

of coding techniques that use the zerotree idea are \Embedded Zerotree Wavelet" coding (EZW) 1

and \Set

PartitioningInHierarchicalTrees"(SPIHT). 2

MoreoverEZW andSPIHT codershavebeenextended to the

third dimension 3{5

obtaining satisfactory results in termsof RD and complexity performance for volumetric

data.

In addition to the zerotree idea other statistical dependencies in the wavelet domain canbe highlighted.

Forexampletherecent\EmbeddedBlockCodingwithOptimizedTruncation"(EBCOT) 6

algorithm,adopted

in the JPEG2000 standard,combines RD optimization, block coding and context-based arithmetic coding in

an original way, which has demonstrated a good correspondence to the statistical nature of wavelet data.

Such statistically matchedbehavioris thebasiswhichallowsto reachalow-complexityand progressive

high-performance coder. The zerotree idea can also be reformulated in a dual approach in order to de ne the

possibilityto ndstructuresofsigni cantcoeÆcientsinthewaveletdomain. Thus,analternativeway,inorder

toexplorethestatisticaldependenciesamongwaveletcoeÆcients,canbethepredictionofthesigni canceand

the coding of asigni cance-map bya morphologicaldilationapproach. Thebasicreason that justify theuse

Furtherauthor'sinformations:

(2)

ofamorphology-basedapproachis thehypothesisof thepresenceofenergyclustersin waveletsubbands. A

recently proposed algorithm based on morphologicalrepresentation of wavelet data, the \Signi cance-Linked

ConnectedComponentAnalysis"(SLCCA), 8

hasshowncompressionperformancesimilartothebest

zerotree-basedalgorithms. HoweverSLCCAdoesnotprovideanembeddedbit-stream.

Weproposehereanewembeddedbit-planecoderbasedonmorphologicaldilationofsigni cantcoeÆcients

which is able to exploit both intra-band and inter-band statistical dependencies among wavelet signi cant

coeÆcients. Moreoverweextendouralgorithmtothree-dimensionalimagecompression. Thecodingresultsof

theLena, Barbaraand Goldhillimages for2D applicationsand ofthetest medicalvolumeCTSKULL 3{5

for

3Dapplicationsareoftensensiblysuperiortothestate-of-the-artcompressionperformance.

Therest ofthepaperisorganizedasfollow. InSection II thestatistical properties ofwavelet-transformed

natural images and their exploitation in zerotree-basedand morphologicalalgorithms are rst discussed. In

Section III our Embedded Morphological Dilation Coder EMDC is presented in detail. In Section IV the

entropycoderisdescribed. InSectionVanexperimentalperformanceevaluationrespecttothestate-of-the-art

wavelet-basedcodersispresented. Finally, theconclusionsof thepaperarein SectionVI.

2.ZEROTREE AND MORPHOLOGICALCLUSTERING APPROACHES

2.1. Statistical properties of wavelet coeÆcients

Recognizing the statistical properties of wavelet-transformed naturalimages and building astatistical model

ofthese datais afundamental taskin thedesignofahigh-performancewavelet-basedcoder. Weresumehere

someimportantfeaturesofwavelet-transformedcoeÆcientsofnaturalimages:

1. spatial-frequencylocalization;

2. decayofmagnitudeofwaveletcoeÆcientsacrosssubbands;

3. magnitudecorrelationofcoeÆcientsatsamespatial locationinconsecutivedecompositionlevels 1

;

4. magnitudecorrelationofneighboring coeÆcientswithin asubband 9

;

5. clustering ofsigni cantcoeÆcients(biggerthanacertainthreshold)withinthesubbands. 7,8

The rst property is a feature of the wavelet transform and means that each wavelet coeÆcient refers to a

speci careaoftheoriginaldata(i.e. itisspatiallylocalized)andrepresentsinformationinacertainfrequency

range(i.e. it isfrequencylocalized). Theotherpropertiesare dueto thehigh-orderstatistical characteristics

of natural images. In fact, the non-stationary nature of an highly correlated image source (natural image)

re ectson thenon-stationarynature oftheweaklycorrelated transformedcoeÆcients. This situation hasled

to thesigni cant-nonsigni cantdichotomyand totheexploitationofhigh-orderstatisticalpropertiesofthe

wavelet coeÆcientsbothin thequantizationand entropycoding steps. The various wavelet-basedcoderstry

to exploit someof thementionedstatistical characteristicsin order to obtaingood RD performancewith low

computationalcomplexity.

2.2. The zerotree approach

Zerotree-basedcoders,asEZW 1

andSPIHT, 2

basicallyexploitthemagnitudedecayofthewaveletcoeÆcients

across the subbands by the use of subband trees collection structure, where the children of a node are the

coeÆcients at the same spatial location in the ner scale of a subband decomposition. In fact, although in

this kindof structurethelinear correlationbetweenaparent andits childrenis irrelevant,there isarelevant

dependencyamongtheirmagnitudes. Experimentsonnaturalimagesshowedacorrelationbetweenthesquare

magnitude ofachildand its parentbetween 0.2and 0.6 with astrongconcentrationaround 0.35. 1

Besides,

themagnitudeofwaveletcoeÆcientstypicallydecaysalongtheparent-childrenhierarchy. 10

Solargecollection

ofcoeÆcients,whichcanbeorganizedin multiresolutiontrees,arecomposed ofcoeÆcientssmallerthantheir

progenitors. This behaviorcanbedescribed bycoding thesub-trees composed ofall insigni cantcoeÆcients

withasinglesymbol(zerotree) orbyusing similarset-partitioningtechniques. Othertheoreticaljusti cations

oftheperformanceofzerotree-basedcoderscanbefoundforexamplein. 11

(3)

inter-bandclusters.

2.3. The clustering of signi cant coeÆcients

Evenifthezerotree-basedalgorithmsareveryeÆcient,theydon'texploit animportantstatistical propertyof

wavelet-transformednaturalimages: theclustering ofsigni cantcoeÆcients. Thispropertycanbeveryuseful

forcompressionpurposesbecauseitallows,givenasmallnumberofsigni cantcoeÆcients,toidentifytheareas

wherethegreatestpartofsigni cantcoeÆcientsmaybefound. Theclustering tendencyofsigni cantwavelet

coeÆcients is due, as stated above, to the characteristics of naturalimages. In fact these kind of data are

typically composedof largehomogeneousortextured regionsdelimited byedgediscontinuities. Homogeneous

regionsmostly consist oflowfrequency components andso thecoeÆcientsassociatedwith these areasin the

medium-highfrequencysubbands typicallyhavelow magnitude. Textured regions consistof amixtureof low

andhighfrequencycoeÆcients. Edgesaremostlycomposedofhighfrequencycomponentsandsotheygenerate

arelativelysmallnumberofcoeÆcientswith highmagnitude in themedium-high frequencysubbands. These

coeÆcients have a spatial distribution which depends on the local direction of the object boundaries in the

originalimagewithrespecttothespatialorientationofthehighandlow-passsubband lters. Theclusteringof

signi cantcoeÆcientscanbeempiricallyobservedinFig.1{awheretheclusterswithinawaveletsubbandmainly

correspondtotheedgesandsecondlytothetexturedareasintheoriginalimage. Wecanalsoobservethatthese

clusterstendtobelocalizedatsamespatialpositionsand lteringorientationsateachdecompositionlevel. 7

In

fact,sincetheclustersareduetospatialedgesandtexturedareas,weexpectsomeenergyconcentrationinthese

zonesatallscales. Forexampleinthepresenceofaverticaledgeweexpectto ndclustersinallsubbandswith

horizontal high-pass lteringand verticallow-pass ltering. We callinter-band clustersthese sets of clusters

which canbelinkedtogetherthroughsomeform ofhierarchicalcollectionstructures(seeFig.1{b).

2.4. The morphological approach

A method for exploiting the clustering of signi cant coeÆcients is the morphological dilation. 7,8

Before

describing this technique we give a brief review of some aspects of mathematical morphology. A survey of

theapplicationofmorphologytomulti-dimensionalsignalprocessingmaybefoundin. 12

Weconsider aset S

ofpointsinaN-dimensionalstructureand astructuringelementB that de nesamorphology-baseddistance.

The morphological dilation of set S by B is the union of all points falling under the structuring element B

when it is centered at each point of S. Inour context the set B consists of the already identi ed signi cant

(4)

and8.

morphologicaldilationwerefertoasequenceofmorphologicaldilations,appliedtonewsigni cantcoeÆcients.

The iteration nishes when a dilation does not nd new signi cant coeÆcients. Moreover, we use the term

inter-bandexpansiontoindicateasortofmorphologicaldilationperformedfromparentstowardstheirchildren

inthetreecollectionstructures. Nowwecanseehowthisconceptscanbeusedinsigni cance-mapcoding.

Weconsiderthewaveletsigni cantcoeÆcientswithrespecttoacertainthreshold. AsseenthesecoeÆcients

tend to form clusters within the various subbands, linked in inter-band clusters. If we know the position of

a very small number of signi cant coeÆcients, one for each inter-band cluster, we can identify many other

signi cantcoeÆcientsbyapplyinganiterativemorphologicaldilationandan inter-bandexpansion. This way,

wecanmapagreatnumberofsigni cantcoeÆcientswhich resultto becollectedin inter-bandclusters. Todo

this wehaveto analyzearelativesmall numberofcoeÆcientsand explicitlycodeasingle coeÆcientposition

foreachinter-bandcluster.

2.5. Our embeddedmorphological approach

Ourprimaryobjectiveisto introduceamorphologicalapproachwithin anembeddedframework. Considering

asetofdecreasingthresholds(typicallythedecreasingpowersoftwo),thegrowingoftheclustersofsigni cant

coeÆcientscanbeobservedatthesametime(Fig.2). Ifateachstep(i.e. foreachthreshold)amorphological

dilationandaninter-bandexpansionisapplied tothealreadysigni cant-markedcoeÆcients,thelargepartof

signi cant coeÆcients can be predicted, with a high probability, by analyzing arelative little number of the

total of the wavelet coeÆcients. In fact, at each threshold level, it is reasonable to look for new signi cant

coeÆcientsinsidethealreadydetectedclusters. Whenthese clustershavebeenprocessedtheattentioncanbe

moved in other regionsin order to nd new clusters ortoidentify isolatedsigni cantcoeÆcients. Using this

approachtwoimportante ects canbeobtained:

1. Theregionswithahigherexpectedpercentageofsigni cantcoeÆcientareanalyzed rst. Thismeansthat

thesigni cance-map coding bit-streamis statisticallyordered by distortionreduction. Asort ofimplicit

rate-distortionoptimizationisobtained,withoutanycomputationalcomplexityincrementortheneedto

transmitauxiliaryinformation.

2. ThewaveletcoeÆcientscanbepartitionedintwosubsetscorrespondingtoregionswherethereareclusters

ofsigni cantcoeÆcientsandregionswhereweexpectto ndonlyafewisolatedsigni cantcoeÆcients. As

shownintwoexperimentsexposedin 7

theentropyofthecompositemodelobtainedthroughthispartition

is widelyinferior totheglobal entropyofthewaveletcoeÆcients. Thisfact canbe exploitedduring the

(5)

ingrayinsigni cant oneswithin thearea consideredforinspection. (a)Initialsigni cance-mapfor athresholdequalto

16. (b)Signi cance-mapafterintra-band morphological dilationand inter-bandexpansion. (c)Signi cance-mapafter

additional-morphologicaldilation. (d)Finalsigni cance-mapafterexplicitpositioncoding.

3. EMDC:EMBEDDED MORPHOLOGICAL DILATION CODING

Like in EZW and SPIHT, the proposed progressive algorithm EMDC is a bit-plane coder composed of two

iterativesteps: asortingpass(orsigni cance-mapcoding)thatidenti essigni cantcoeÆcients(i.e. largerthan

agiventhreshold)andcodestheirposition,andare nementpassthataddstotheprecisionofthe

signi cantly-marked coeÆcients. Initially thethresholdis setto thelargestpoweroftwowhich issmallerthan thelargest

magnitudeofthewaveletcoeÆcients. Onceascanningstrategyisde ned,thepositionsofsigni cantcoeÆcients

arecodedinthesortingpass,thenare nementpassfollowstocompletethebit-planecoding. Atthispointthe

thresholdishalvedandthescanningrestarts. Thiswayanembeddedbit-streamisobtained. Thecodingofthe

signi cance mapis acrucial taskin this kindof scheme. The main ideawepropose forobtainingan eÆcient

coding ofthe signi cance-map is to look for newsigni cantcoeÆcients near thealready signi cantly-marked

oneswithinthesamesubband(intra-bandmorphologicaldilation),andamongtheirsons(inter-bandexpansion)

inthecorrespondingtreestructure. Moreprecisely,thesigni cance-mapcodingofeachsubbandissubdivided

infour phases: intra-bandmorphologicaldilation,inter-bandexpansion,additionalmorphologicaldilationand

explicitposition coding.

1. Intra-band morphologicaldilation: thecoeÆcients near thesigni cantly-markedones are analyzed

through an iterative morphological dilation; this operation is repeated each time a new signi cant

co-eÆcient is found also during the other three phases. We tested di erent structuring elements for this

morphologicaldilationand weobtainedbestresultsusing a3x3square forimages anda3x3x3cubefor

volumes.

2. Inter-band expansion: thesonsofthesigni cantly-markedcoeÆcientsareanalyzed.

3. Additional morphologicaldilation: amorphologicaldilationisfurtherperformedaroundcoeÆcients

analyzedinpreviousphasesandresultedinsigni cant;thisoperationisrepeateduntiltwosuccessivescans

donotleadto thedetectionofanynewsigni cantcoeÆcient. Eveninthis casethestructuringelement

used isa3x3squarein2Danda3x3x3cubein 3D.

4. Explicit positioncoding : thepositionofremainingsigni cantcoeÆcientsisexplicitlysent.

Intra-bandmorphologicaldilationandinter-bandexpansionallowtoexplorethealready-identi edclusters,

theadditionalmorphologicaldilatationanalyzethecoeÆcientsontheborderofclustersand nallytheexplicit

positioncodingallowto ndnewclusters(especiallyatthestartofthecoding)andcodethepositionofisolate

signi cant coeÆcients. Thefour stepsareordered in termof theireÆciency considering astatistical measure

(6)

expansion is performed and so on. With this method the compression ratio at the end of a sorting pass is

substantiallyunalteredbuttheperformanceat intermediatepointsissuperior. *

Fig.3shows,withanexample,howtheEMDCalgorithm worksduringthevariousphaseswithinasubband.

3.1. EMDC data structures

Forimplementationpurposesthesigni cance/insigni canceinformationofeachwaveletsubband(l;i)(wherel

isthedecompositionlevelandi thesubbandnumber)arestoredinto twosetsoflists:

 thelistsofsigni cantcoeÆcients(LSC

l;i

),containingallsigni cantly-markedcoeÆcients;

 the lists of insigni cant coeÆcients (LIC

l;i

), containing the coeÆcients analyzed in the present sorting

passwhichresultedinsigni cant. Theselistsareusedfortheadditionalmorphologicaldilation.

Besides, the same information is also stored in a wavelet coeÆcients matrix (WCM) in order to allow an

immediate knowledgeof thestatus ofthecoeÆcients: signi cantly-marked("S"), insigni cantly-marked("I")

ornotyetanalyzed("NA")inthecurrentsortingpass. Finallywede neadatastructuretostoreeachsubband

status SS(l;i), i.e. the next step that has to be executed in the signi cance-map coding. Possible valuesin

thisdata structureare: morphologicaldilation("MD"),inter-bandexpansion("IE"), additionalmorphological

dilation("AMD"), explicitposition coding ("EPC"),sorting passterminated ("SPT")andall coeÆcientsare

signi cant("ACS").

3.2. EMDC algorithm

The coding algorithm is virtuallythe samefor 2D and 3Dimage coding. Toknowif in asubband there are

new(not alreadymarked)signi cantcoeÆcients(withrespecttothecurrent2 n

threshold)weusethefunction

S

n

(l;i). This function is equalto 0ifall signi cantcoeÆcients in the(l;i)subband are already been found,

whileitisequalto1iftherearesigni cantcoeÆcientsto nd. ThescanningofthewaveletcoeÆcients,ifnot

re-routedbythemorphologicaloperations,is performedbyrowandthesubbandscanningis fromlowto high

resolution.

1. Initialization: MAX =maximummagnitude of wavelet coeÆcients; output n=blog

2

(MAX)c,set the

threshold to 2 n

, set all the LSC

l;i

and LIC

l;i

to emptylists, set all elementsof WCM to "NA" and all

subbandstatusto "MD" 

.

2. SortingPass:

 foreachsubband(l;i)withstatusnotequalto"ACS"do:

{ ifS

n

(l;i)=0output0andsetSS(l;i)to"SPT";

{ else output1andifLSC

l;i

innotemptysetSS(l;i)to "MD",otherwiseifl1andLSC

l 1;i is

notemptyset SS(l;i)to"IE"andotherwisesetSS(l;i)to"EPC".

(a) Intra-bandmorphologicaldilation: foreachsubband(l;i)withSS(l;i)equalto"MD":

 for each entry in the LSC

l;i

analyze the adjacent coeÆcients in the same subband: for each

coeÆcientofcoordinatesx do:

{ ifWCM(x )isnotequalto"NA" passtothenextcoeÆcient;

{ elseifthecoeÆcientissigni cant(biggerthan2 n

): output 1,output itssign,addit tothe

endofLSC

l;i

andsetWCM(x )to"S";

{ ifitisnotsigni cant: output0,additto theendof LIC

l;i

and setWCM(x )to "I";

 ifS

n

(l;i)=0thensetSS(l;i)to"SPT"andoutput0;



(7)

l 1;i

to"AMD".

(b) Inter-band expansion:foreachsubband(l;i)withSS(l;i)equalto"IE":

 Foreachentryinthefather-subbandLSC

l 1;i

thefour(eightin3D)sonsareanalyzed: foreach

coeÆcientofcoordinatesx do:

{ ifWCM(x )isnotequalto"NA" passtothenextcoeÆcient;

{ elseifthecoeÆcientissigni cant: output1,outputitssign,addittotheendofLSC

l;i ,set

WCM(x )to "S"and immediatelyperformanintra-banddilation(a)onthenewcoeÆcient

addedtoLSC;

{ ifitisnotsigni cant: output0,additto theendof LIC

l;i

and setWCM(x )to "I";

 ifS

n

(l;i)=0thensetSS(l;i)to"SPT"andoutput0;

 elseoutput1setSS(l;i)to"AMD".

(c) Additional morphologicaldilation:foreachsubband(l;i)withSS(l;i)equalto "AMD":

 For each entryin LIC

l;i

ofthe subbandexcept thoseincluded in thisadditional morphological

dilationanalyzetheadjacentcoeÆcientsinthesamesubband: foreachcoeÆcientofcoordinates

x do:

{ ifWCM(x )isnotequalto"NA" passtothenextcoeÆcient;

{ if the coeÆcient is signi cant: output 1, output its sign, add it to the end of LSC

l;i , set

WCM(x )to "S"andimmediatelyperformanintra-banddilation(a)onthenewsigni cant

coeÆcient;

{ ifitisnotsigni cant: output0,additto theendof LIC

l;i

and setWCM(x )to "S";

 Repeat the additional morphological dilation on the new entry of LIC

l;i

until two successive

scansdonotleadto newsigni cantcoeÆcients;

 ifS

n

(l;i)=0thensetSS(l;i)to"SPT"andoutput0;

 elseoutput1andsetSS(l;i)to"EPC".

(d) Explicit positioncoding :foreachsubband(l;i)withSS(l;i)equalto "EPC":

 The position of remaining signi cant coeÆcientsis explicitly sentas a binary numberusing a

suÆcient number ofdigits consideringthe numberof notanalyzedcoeÆcientsin thesubband;

alsoin thiscasethesigni cantcoeÆcientsareaddedtoLSC

l;i

andanintra-banddilation(a)is

performedaftereach position coding;

 A special symbol (for examplethe position 1) is sent when all signi cant coeÆcientsin the

subband(l;i)havebeenidenti ed.

3. Re nement Pass: foreach entryin all LSC's,except those includedin thelast sorting pass,output the

n-th mostsigni cantbit;

4. Setthedatastructuresfornextsortingpass:

 EmptyallLIC

l;i ;

 allelementsin WCM equalto "I"aresetto "NA";

 ifasubband(l;i)hasallcoeÆcientssigni cantly-markedthenSS(l;i)issetto"ACS".

5. Quantization-StepUpdate: decrementn by1(thethresholdishalved)andrepeatfrom step2.

Note thatthe rstsigni cantcoeÆcientis alwayscodedbyanexplicitpositioncoding. Thealgorithm can

(8)

In orderto increase the coding eÆciency, the bit-stream produced by theprogressivequantization is entropy

codedusing acontext-basedadaptivearithmetic coder,basedon. 13

Forthispurpose weconsider theEMDC

algorithm as a binary non-stationary symbol source with memory. First we identify seven main contexts in

the structure of EMDC (structural contexts): sign bits, re nement bits, four contexts for the four phases of

signi cance-mapcodingandacontextfortheoutputoftheS

n

(l;i)function. Moreover,insidesome

structural-context we locate some sub-contexts (proper contexts) in order to better exploit the statistical relationships

betweenthewaveletcoeÆcients. Weusethesamesetofcontextsfor2Dand3Dapplications.

4.1. Signi cance-map coding contexts

As seen in Section II there is a correlation between magnitude of the wavelet coeÆcients at same spatial

and frequency location in consecutive resolution levels and between neighboring coeÆcients within a same

subband. Thismeansthat there isalso acorrelation betweenthesigni cancevalueof thesecoeÆcients. This

correlationcanbeexploitedbythearithmeticcodingthroughtheidenti cationofcontextstobeassociatedto

thesigni cance-mapstructure. Inordertoconsiderandexploitthecausaldependenciesbetweentwoconsecutive

bit-planerelatedsigni cance-maps,wepropose(seealso 5

)tomakeuseofthreesigni cancevalues,distinguishing

not onlybetween signi cantand insigni cant coeÆcients, but also between previously-signi cant (marked as

signi cantinaprevioussortingpass)andnewly-signi cantones(markedsigni cantinthecurrentsortingpass).

Forthesigni cance-mapcodingweidentify12di erentcontexts:

 7contextsforintra-bandmorphologicaldilation:

{ 1contextforthe rstlevel(lowerresolution)subband;

{ 6 (3x2) contexts for the other subbands depending on the signi cance value of the father (three

possible values: previously-signi cant, newly-signi cant and insigni cant) and the presence of at

least one signi cantly-marked coeÆcient among the adjacent ones towards the low-pass ltering

direction (twopossiblevalues,exceptfortheHHsubband'scoeÆcientswhich haveauniquevalue);

 2contextsforinter-bandexpansion,dependingonthesigni cancevalueofthefather(previously-signi cant

ornewly-signi cant);

 1contextforadditionalmorphologicaldilation;

 1contextforexplicitpositioncodingand1contextfortheoutputoftheS

n

(l;i)function: these bitsare

notcompressed,sothesecontextsarenotadaptiveandaresetasbinaryandequiprobable.

4.2. Re nement bits compression

Re nementbitsmaybecompressedbecausethetypicalsubbandcoeÆcienthistogramofeachbit-planeinterval

isunbalanced towardslowervaluesandsoitismoreprobablethatacoeÆcientliesin theinferiorhalf-interval

ratherthaninthesuperiorone. 5

Thisunbalanceismorepronouncedforthe rstre nementbitsanddecreases

as the re nement proceeds. For this reason we create two sub-contexts for re nement bits compression: a

context for the rst re nementbit ofeach coeÆcientsand another onefor theother re nement bits. In this

waythere nementbitsareentropycompressedbyabout8%,inabit-raterangefrom 0.25to 1.0bpp.

4.3. Sign bits compression

Asstatedin 6

signbitsmaybecompressedaswell,becauseadjacentwaveletcoeÆcientsinmixedlowpass/highpass

subbands(e.g. LHandHLin2D)exhibitsubstantialstatisticaldependencies. Infact,alongthelow-pass

lter-ingdirection,neighboringcoeÆcientsexhibit,withahighprobability,thesamesign;whilealongthehigh-pass

lteringdirectiontheyoftenhaveoppositesigns. Forexploitingthisstatisticalevidencewemakeuseofthetwo

functions l(x) and h(x), that summarize the information aboutthe signi cantly-markedadjacentcoeÆcients

of the coeÆcientx , respectivelytowards the high-pass and the low-pass directions. These functions assume

(9)

note that only the signof coeÆcients in mixed lowpass/highpass subbandsare entropycoded. Forthe other

signbitsweuseanadditionalnon-adaptiveandequiprobablecontext. Weexperimentedthatsignbitsmaybe

compressedofabout10%for2Dimageswhilein the3Dcasethecodinggainmayevenreach40%.

4.4. Adaptivity of the model

Because of thenon-stationarity ofthe EMDC sourceweusean adaptivemodelto obtain better compression

performance. Byreducing the numberof bits used to storesymbolfrequencies (that we callfrequency-bits),

we can emphasize the adaptivity of the model making the arithmetic coding more reactive with respect to

uctuationsinthewaveletcoeÆcientsstatistics. However,wemustuseasuÆcientnumberoffrequency-bitsin

ordertoobtainanenoughaccurateapproximationoftheactualfrequenciesofthesymbols. 13

Thisisespecially

truefor contexts wherethe probabilitiesof thetwosymbolsareverydi erent (in ourcasethe morphological

dilation contextpresentsthis feature). Sowehad to slightly modify thearithmetic coder 13

in order to make

possibletheuseofadi erentnumberoffrequency-bitsfordi erentcontexts. Todothis,itissuÆcienttoinsert

afrequency-bits eld in the context record,and thenuse, in each context, theproperfrequency-bitsnumber.

Wetested various combinationof frequency-bitsobtainingbest resultsusing 10 bits in 2Dand 15 bits in 3D

fortheadditionalmorphologicaldilationcontext, and6bitsforalltheothercontextsbothin2Dandin 3D.

5. EXPERIMENTAL RESULTS

5.1. 2D Performance

Inthecaseof2DcodingwetestedtheEMDCalgorithmontheLena,BarbaraandGoldhill images. Weuseda

ve-levelwaveletdecompositionwith9/7-tap lters. 14

WecomparedourcoderwithrespecttotheSPIHT 2 and EBCOT 6 embedded coders y

andthemorphologicalcoderSLCAA. 8

As shown inTab.1theEMDC algorithm

obtainsthebest performance in almostallcases. InFig.4 theRD performanceofouralgorithm compared to

SPIHTand EBCOTonthe Goldhillimage isshown. InFig.5somepictorial coding resultsareshown forthe

Lenaimageatvariousbit-rates.

5.2. 3D Performance

For3Dapplicationswetested theEMDCalgorithmonthe256x256x128medicaltestvolumeCTSKULLand

compared thecodingresultswith respect toothers state-of-artcoders. 3{5

Weused a3Dseparable four-level

decompositionwavelettransformwithdi erentcombinationofbiorthogonal lterswhichhavebeenselectedin

eachspatialdirectionbetweenthe9/7-tapandthe10/18-tap 15

ones. Ourresultsaresensiblysuperiortothose

shown byother coders both in termsofmean PSNRonthe wholevolume, worst slicePSNRand in termsof

mean slicebased PSNR uctuations 16

among near slices. The resultsare summarized in Tab.2. With mean

PSNR uctuation we refer to the mean value of the maximum slice based PSNR di erence calculated for a

sliding windowof10slices. InFig.6thePSNRcalculatedoneachslicealongthe zdirectionis shownfor two

di erent target rates: 0.1 and 0.5 bpp. In Fig.7 some pictorial coding results are shown for the worst slice

(nr.72)oftheCTSKULLvolumetricdata-set,atvariousbit-rates.

6.CONCLUSIONS

Inthis paperanewembeddedbit-plane coder,called Embedded MorphologicalDilationCoder(EMDC),has

beenproposed. Thisalgorithmisbasedonamorphologicaldilationofsigni cantcoeÆcientswhichexploits

inter-bandandintra-bandstatisticaldependenciesamongsigni cantcoeÆcientsandtheirtendencytoformclusters.

Somefeaturesoftheproposedmorphologicalapproach,whichallowtoimprovethecodingperformance,canbe

highlighted: thesortingpassbit-streamof each bit-plane hasbeen structured in orderto obtainagood

rate-distortioncharacteristicandanembeddedbit-stream;moreover,thewaveletcoeÆcientshavebeensubdividedin

tworegions withverydi erentsigni cantcoeÆcientsfrequencies,in orderto obtainahighlyeÆcient

context-based arithmetic coding. The EMDC algorithm has been tested both for 2D and 3D applications showing

performancethatareoftensensiblysuperiorwithrespecttothestate-of-the-artembeddedcoders.

y

(10)

Image Rate(b/p) SPIHT 2 SLCCA 8 EBCOT 6 2D-EMDC 0.25 34.11 34.28 34.16 34.50 Lena 0.50 37.21 37.35 37.29 37.57 1.00 40.41 40.47 40.48 40.50 0.25 27.58 28.18 28.40 28.42 Barbara 0.50 31.39 31.89 32.29 32.16 1.00 36.41 36.69 37.11 37.35 0.25 30.56 30.60 30.59 30.75 Goldhill 0.50 33.13 33.26 33.25 33.45 1.00 36.55 36.66 36.59 36.97

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30

31

32

33

34

35

36

37

Bit rate (bpp)

PSNR (dB)

SPIHT

EBCOT

EMDC

Figure4: 2DcodingresultsontheGoldhillimage.

Figure 5. Coding resultsfor Lena. (a)Originalimage. (b)Compressedimage at 0.5 bpp. (c)Compressed image at

(11)

Rate EZW 3 3DSPIHT 4 I3DSPIHT 5 3D-EMDC 3D-EMDC (b/p) (9/7+10/18) (10/18taps) '32:5 33.99 34.07 35.38 35.38 0.1 29.8 29.2 30.98 32.31 32.62 '2:5 '6:0 2.28 2.25 2.04 '42 42.89 43.67 44.77 44.56 0.5 39.5 37.5 41.64 42.88 42.87 '2:5 '4:0 2.39 2.09 1.99

0

20

40

60

80

100

120

32

34

36

38

40

42

44

46

48

50

Slice number

PSNR (dB)

0.5 bpp

0.1 bpp

Slice 72

Slice 72

Figure6.CodingresultsforCTSKULLwith10/18 lters: slicebasedPSNRfor0.5and0.1bppalongthezdirection.

Figure 7. Codingresultsfor theCTSKULLvolume. (a)Originalslice n.72. (b)Slicen.72ofthecompressedvolume

(12)

1. J.M.Shapiro,\EmbeddedimagecodingusingzerotreesofwaveletcoeÆcients,"IEEETrans.onAcoustics,

Speech andSignalProcessing41,pp.3445{3462,Dec.1993.

2. A.SaidandW.Pearlman,\Anew,fast,andeÆcientimagecodecbasedonsetpartitioninginhierarchical

trees,"IEEE Trans.CircuitsandSystemsfor VideoTechnology6,pp.243{250,June1996.

3. A. Bilgin, G. Zweig, and M. W. Marcellin, \Three-dimensional image compression using integer wavelet

transforms," Applied Optics: Information Processing, Special Issue on Information Theory in

Optoelec-tronic Systems39,pp.1799{1814,Apr.2000.

4. Z.Xiong,X. Wu,D. Yun,andW. Pearlman,\Progressivecodingofmedicalvolumetricdatausing

three-dimensionalintegerwaveletpacket transform,"inSPIE,3653,pp.327{335,1999.

5. A.Signoroni,M.Arrigoni,F.Lazzaroni,andR.Leonardi,\ImprovingSPIHT-basedcompressionof

volu-metricmedicaldata,"inPCS 2001,pp.187{190,Apr.2001.

6. D. Taubman,\Highperformance scalableimage compressionwithEBCOT,"Trans.onImage Processing

9,pp.1158{1170,July2000.

7. S.Servetto,K.Ramchandran,andM.Orchard,\Imagecodingbasedonamorphologicalrepresentationof

waveletdata,"IEEETrans.on SignalProcessing8,pp.1161{1174,Sept.1999.

8. B. Chai, J. Vass, and X. Zhuang, \Signi cance-linked connected component analysis for wavelet image

coding,"IEEE Trans.onImage Processing8,pp.774{784,June1999.

9. K. Ramchandran and M. Orchard, \An investigation of wavelet-based image-coding using an

entropy-constrainedquantizationframework,"IEEE Trans.onSignalProcessing46,pp.342{353,Febr.1998.

10. X.Liand X.Zhuang,\The decayand correlationpropertiesin wavelet transform,"tech.rep., University

ofMissouri-Columbia,March 1997.

11. F.Henryand P.Duhamel,\Rate-distorsioneÆciency ofzerotreecoders,"inICIP99, p. 25PP5,1999.

12. P.Maragosand R.Schafer, \Morphologicalsystemsformultidimensionalsignalprocessing,"Proc. IEEE

78,pp.690{710,1990.

13. A. Mo at, R. M. Neal, and I. H. Witten, \Arithmetic coding revisited," ACM Trans. on Information

Systems16,pp.256{294,July1998.

14. M.Antonini,M.Barlaud,P.Mathieu,andI.Daubechies, \Imagecoding usingwavelettransform,"IEEE

Trans.onImage Processing1,pp.205{220,Apr.1992.

15. M.Tsai,J.Villasenor,andF.Chen,\Stack-runimage-coding,"IEEE Trans.onCircuitsandSystemsfor

VideoTech.6,pp.519{521,Oct.1996.

16. A.SignoroniandR.Leonardi,\ModelingandreductionoffPSNRg uctuationsinf3Dgwaveletcoding,"

Figura

Figure 5. Coding results for Lena. (a) Original image. (b) Compressed image at 0.5 bpp
Figure 7. Coding results for the CT SKULL volume. (a) Original slice n.72. (b) Slice n.72 of the compressed volume

Riferimenti

Documenti correlati

This paper concludes that: (i) interactivity, engagement and increasing complexity of challenges are fundamental factors to digital learning game design; (ii) the pedagogical base,

non invidiata, selvaggia – fredda come la pioggia della passata primavera. Un cervo brucò nel

Per quanto riguarda i pannelli in alluminio e vetro, costituenti la copertura e le facciate opache o trasparenti della palestra, sono stati adottati elementi SHELL (come mostrato in

for a definition), which is roughly speaking an asymptotic multiplicity for quasi- monomial valuations. As such, it can be interpreted as a function on the topological space QM,

1650 circa, Pinerolo (To), Chiesa del Colletto (B.V. del Monte Carmelo). Famiglia in ginocchio all’interno dell’abitazione invoca la grazia; ex-voto restaurato [fonte

Actually, waste of plastic materials coming from automotive industry are transferred to landfills or to incinerators, but it should evaluate the high risk

By resorting to the geometric representation of the linear correlation coefficient, it is possible to calculate the upper and lower bounds of the