• Non ci sono risultati.

Search for supersymmetry in electroweak production with photons and large missing transverse energy in pp collisions at √s=8TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for supersymmetry in electroweak production with photons and large missing transverse energy in pp collisions at √s=8TeV"

Copied!
22
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

supersymmetry

in

electroweak

production

with

photons

and

large

missing

transverse

energy

in

pp

collisions

at

s

=

8

TeV

.TheCMS Collaboration

CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received28February2016 Receivedinrevisedform4May2016 Accepted27May2016

Availableonline1June2016 Editor:M.Doser

Keywords:

CMS Physics Supersymmetry

Results are reported fromasearchfor supersymmetry withgauge-mediated supersymmetry breaking inelectroweakproduction. Finalstateswithphotons andlarge missingtransverse energy(EmissT )were examined. Thedatasamplewascollectedinppcollisions at√s=8TeV with theCMSdetectoratthe LHCandcorrespondsto7.4 fb−1.Theanalysisfocusesonscenariosinwhichthelightestneutralinohas bino- orwino-likecomponents,resultingindecaystophotonsandgravitinos,wherethegravitinosescape undetected. Thedata wereobtainedusingaspecially designedtrigger withdedicatedlow thresholds, providinggoodsensitivitytosignatureswithphotons,ETmiss,andlowhadronicenergy.Noexcessofevents overthestandardmodelexpectationisobserved.Theresultsareinterpretedusingthemodelofgeneral gaugemediation.Withthewinomassfixedat10 GeV abovethatofthebino,winomassesbelow710 GeV areexcludedat95%confidencelevel.Constraintsarealsosetinthecontextoftwosimplifiedmodels,for whichtheanalysissetsthelowestcrosssectionlimitsontheelectroweakproductionofsupersymmetric particles.

©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Supersymmetry [1–14] (SUSY) can stabilize the mass of the Higgsboson,recentlymeasuredtobearound125 GeV[15,16],and hence the electroweak scale against large quantum corrections, thus providing a solution to the gauge hierarchy problem [17]. Searchesforsupersymmetricpartnersofstandardmodel(SM) par-ticles with photons in the final state are already probing SUSY parameterspaceatthe TeV scale[18–21].Thereisastrong inter-estinprobingso-callednaturalSUSYscenarios,whereasubsetof SUSYpartnerscan remain light,while manyother SUSY partners can have large masses that are inaccessible to present searches. TheseregionsofSUSYparameterspacearestilllargelyunexplored. Inthisanalysis, R-parity[22,23]isassumedtobeconserved,so thatSUSYparticles arealways producedinpairs.In SUSYmodels ofgauge-mediatedSUSYbreaking(GMSB)[24–30]thegravitino(G) isthelightestSUSYparticle(LSP)andescapesundetected,leading tomissing transverseenergy (Emiss

T ) inthe detector.In the

stud-iedcases,thenext-to-lightest SUSY particle(NLSP)is thelightest neutralino(χ0

1).Depending onits composition,theχ 0

1 candecay

accordingto χ0

1→NG,whereN is eitheraphoton γ,aSMHiggs

 E-mailaddress:cms-publication-committee-chair@cern.ch.

bosonH,oraZ boson.Ifthegauginosarenearlymass-degenerate, chargino(χ1±)decaysaccordingtoχ1±→W±G arealsopossible.

The ATLAS and CMS Collaborations have searched for direct electroweakproductionofgauginos.Finalstateswithatleastone photonandoneelectronormuonhavebeenexamined[21,31], re-quiringone gaugino decayingto γG andone to W±G. The NLSP masses below 540 GeV in the simplified model spectra TChiWg scenario, introducedbelow, were excluded atthe 95% confidence level(CL).Indecaysintoanyoftheheavystandardmodelbosons (H, Z,W±), higgsino(chargino) masses up to 380 GeV (210 GeV) have been excluded at the 95% CL [32–34]. Other analyses re-quiring two photons in the final state [19–21] probe bino-like neutralinos and within the context of general gauge mediation (GGM)[35–40]excludeelectroweaklyproducedwinoswithmasses up to 740 GeV, depending on the bino mass. A previous single-photon analysis [20] has set limits on bino- and wino-like neu-tralinos for strong production, but the search is insensitive to electroweakproductionbecausethe chosentrigger requires HT>

500GeV,where HTisthescalarsumoftransverseenergyclustered

injets.

To provide sensitivity to GMSB scenarios with low gaugino masses and mass differences, this analysis uses signatures with at least one photon together with large EmissT . In signal events, hadronicenergyarisesonlyfrominitial-stateradiationorfromthe

http://dx.doi.org/10.1016/j.physletb.2016.05.088

0370-2693/©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1. Scenariosfortheproductionanddecayofcharginosandneutralinosconsideredinthisanalysis.IntheTChiNgscenario(toprow),thecharginosareonlyslightly heavierthantheneutralinos,leadingtocharginotoneutralinodecaysaccompaniedbysoftradiation.Oneneutralinodecaystoaphotonandagravitino,whiletheother decaysintoaZ oranH bosonandagravitinowithequalprobability.IntheTChiWgscenario(bottomleft),thegauginosaremass-degenerateandtheχ0

1 decaysareas

shown.WithinGGMmodels,theχ0

1→γG toχ10→ZG branchingfractiondependsontheneutralinomass. ThedominantprocessforelectroweakGGMproductionisshown

inbottomright.AsmalleramountofhadronicenergycomparedtostrongproductionandatleastonephotonandEmiss

T arecommonfeaturesofallscenarios.

decaysofaW± orZ boson,collectivelydenotedasV bosons.We concentrateonfinalstateswithonlyamoderateamountof HTdue

todirectelectroweakproductionofgauginos.Thelightestgauginos areassumedtobeeitherbino- orwino-like,leadingtofinalstates withEmiss

T and γ γ, γV,orVV.

Weconsiderthreesignalscenarios:ThescenarioTChiNgmodels the electroweak pair and associated production of nearly mass-degenerate charginos andneutralinos, whichthen decay intothe NLSP, as shown in Fig. 1 (top row). The branching fractions of the NLSP decay correspond here to a wino-like χ0

1 of similar

mass.TheTChiWgscenariomodelsassociativeproductionof mass-degeneratecharginosandneutralinos,whichthendecayasshown inFig. 1 (bottomleft).The third scenario iselectroweak produc-tion within the GGM context; the dominant production channel isshowninFig. 1 (bottomright).Massesofthe bino- and wino-like neutralinos involved in thisscenario are scanned, while the squarkandgluinomassesaredecoupled.TheamountofEmissT and thephotontransversemomentum(pT)isdeterminedbythemass

ofthe χ0

1, while themass ofthe χ± determines the production

crosssection.IntheGGMframework,wherethegauginosarenot mass-degeneratebyconstruction,alarger χ±–χ0

1 massdifference

increasesthehadronicenergyinthefinalstate.

The analysisuses aspecial dataset corresponding to an inte-grated luminosity of 7.4 fb−1 recorded witha trigger requiringa photon candidate with pT>30GeV measured within |η| <1.44

andEmissT >25GeV,wherethe EmissT iscalculatedusing calorime-ter information without correcting for muons. Compared to the available triggers inthe full 2012data set,which requirea pho-toncandidatewith pT>135GeV oreventswith EmissT >120GeV,

these low trigger thresholds enable a high signal sensitivity to electroweakproductionandcompressedmassspectrumscenarios. Thedatasetwasrecordedduringthesecondhalfofthe2012 data-takingperiodbutonlyreconstructedduringtheLongShutdown1 oftheLHCaspartoftheso-called“parked-data”program[41].

2. TheCMSdetector

The central feature of the CMS apparatus is a superconduct-ing solenoid of6 m internal diameter,providing a magnetic field of 3.8 T. Withinthesolenoidvolume are a siliconpixelandstrip tracker,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrassandscintillatorhadron calorimeter(HCAL),each com-posed of a barrel and two endcap sections. Extensive forward calorimetrycomplementsthecoverageprovidedbythebarreland endcapdetectors.Muonsaremeasuredingas-ionizationdetectors embeddedinthesteelflux-returnyokeoutsidethesolenoid.

In the barrelsection ofthe ECAL,an energy resolutionof ap-proximately1%isachievedforunconvertedorlate-converting pho-tonsarisingfromtheH →γ γ decay.Theremainingbarrelphotons haveanenergyresolutionofabout1.3%uptoapseudorapidityof

|η| =1,risingtoabout2.5%at |η| =1.4[42].

AmoredetaileddescriptionoftheCMSdetector,togetherwith a definitionofthecoordinatesystemusedandtherelevant kine-maticvariables,canbefoundinRef.[43].

3. Objectreconstructionandsimulation

Photons are reconstructed [42] fromclustersin theECAL bar-rel with |η| <1.44 and are required to be isolated. The energy deposit in the HCAL tower closest to the seed of the ECAL su-percluster assignedto the photon divided by the energy deposit in theECALisrequiredto be lessthan 5%. Aphoton-like shower shape isrequired.Thephoton isolationisdeterminedby comput-ing the transverse energy in a cone centered around the pho-ton momentum vector. The cone has an outer radius of 0.3 in R =(φ)2+ (η)2, where φ is azimuthal angle in radians, andthecontributionofthephotonisremoved.Correctionsforthe effectsofmultipleinteractionsinthesamebunchcrossing(pileup) are applied to all isolation energies, depending on the η of the photon. Discrimination against electrons is achieved by requiring that photonshavenomatchingpatternofhitsinthepixel detec-tor.

(3)

Allobjects used in thissearch, i.e.photons, electrons, muons, and jets, are reconstructed using the particle-flow (PF) algo-rithm [44,45]. Jets are reconstructed with the anti-kT clustering

algorithm[46]asimplementedinthe FastJet[47]package,usinga distanceparameterof0.5.Thejetsarerequiredtohavetransverse momentaabove 30 GeV and to satisfy the requirement|η| <2.4. Pileupcorrectionsandcorrectionsfortheresponseofthedetector areappliedtothemomentaofthejets[48,49].

The missing pT vector is defined as the projection onto the

plane perpendicular to the beams of the negative vector sumof themomenta of all reconstructed particles in an event. Its mag-nitude is referred to as Emiss

T . The EmissT is calculated using all

particlesidentifiedbythePFalgorithm.Filtersagainstanomalously highEmissT frominstrumentaleffectsareapplied[50].

The dimensionless variable EmissT -significance (ETmiss,signif) [50] is a measure of the probability that the Emiss

T in a given event

arisesfrom genuine noninteracting stable particles, such as neu-trinosor gravitinos, andnotasa consequenceof thelimited en-ergy resolution of objects, such asjets, photons, or leptons. The

Emiss,signifT is proportional to the logarithm of the likelihood ra-tio of both hypotheses. Energy and angular resolutions of the relevant objects, determined by data and simulation studies, are takeninto account. For processes where the reconstructed EmissT onlyarisesfromthelimitedenergyresolution,the Emiss,signifT isan exponentially falling distribution, falling by threeorders of mag-nitude for 0<Emiss,signifT <25. SM processes withgenuine EmissT

haveapproximatelythe samedecrease between0 and125. Elec-troweakSUSY processes intrinsically havehighvaluesof genuine

EmissT alongwithasignificantlylower presenceofjets,which oth-erwiseincrease theenergyuncertaintyused inthe calculationof

Emiss,signifT .Therefore,the Emiss,signifT distributionofthoseprocesses doesnot decreasemonotonically, and aconsiderable fractionhas

Emiss,signifT >200.

The SM ttγ andQCD multijet productionsamples, aswell as theTChiNg and TChiWg signal scenarios, are simulated withthe MadGraph5.1.3generator[51].Thedibosoneventsamplesandthe electroweakGGMsignal scanaregeneratedusing pythia 6.4[52]. AllMonteCarlo(MC)samplesincorporatetheCTEQ6L1[53]parton distribution functions (PDF) and use the pythia program to de-scribe the parton showering and the hadronization. The Geant4 [54] package is used to model the detector and detector re-sponse. The cross sections of the electroweak GGM signal scan are calculated at next-to-leading-order (NLO) accuracy using the prospino2.1.[55] program,thecrosssectionsfortheTChiNgand TChiWgsignalpointsarecalculatedatNLO+NLL(next-to-leading logarithm)accuracy[56–58].

4. Analysis

The data are selected by a trigger with EmissT and photon pT

requirements.The eventsare subsequentlyrequiredto containat leastonetightlyisolatedphotonmeasuredintheECALbarrelwith a pTofatleast40 GeV.The EmissT isrequiredtoexceed100 GeV.In

addition, HT isrequiredtoexceed100 GeV, improvingthe

signal-to-backgroundratio.Withthisselectiontheparkeddatasettrigger efficiencyisuniformandmeasured to be 86.5+11..03%. No selection criteria were applied on the presence or absence of an identi-fiedlepton.All eventsare requiredto have Emiss,signifT >80 and a transversemass MT(EmissT , pTγ1)>300GeV,whereT1 isthe trans-versemomentum ofthe photon withthe highest pT.The cut on

Emiss,signifT strongly reducesthecontributionofbackgrounds with-out genuine EmissT , whereas the cut on MT(EmissT ,p

γ1

T ) affects all

backgrounds butretains mostof the signal events, since only in

signalprocessesthephotonandthesourcefor Emiss

T areexpected

tooriginatefromthesamemotherparticle.Toincreasethe sensi-tivity tohigher gauginomasses, the signal region is divided into four exclusive bins defined by regions in the variables T and

Emiss,signifT ,where SγT isdefinedby SγT =ip

γi

T +E miss

T .The

bound-ariesofthebinsareatSTγ=600GeV and Emiss,signifT =200. The dominant SM backgrounds are vector-boson production withinitial- orfinal-statephotonradiation(Vγ)anddirectphoton production(γ+jets).Thenormalizationofthesetwobackgrounds isdeterminedsimultaneouslybya χ2-fitinthecontrolregion

se-lection definedby Emiss,signifT >10 and MT(EmissT , p

γ1

T )>100GeV,

butexcludingthesignal regiondefinedabove.The distributionof

EmissT /HT is chosen as template variable for the χ2-fit, which

sufficientlyseparatestheshapesofVγ and γ+jets,so that scal-ing one background cannot compensate the other. The shape of both backgrounds is simulated with MadGraph 5.1.3. Under the constraintof afixed total yield, thescale factors fortheVγ and

γ +jets simulations are given by the minimum of the χ2/ndf

distribution and found to be fVγ =0.94 ±0.23 and +jets=

2.20 ±0.31,respectively.Beforeperformingthenormalization,the Vγ backgroundis scaled to theNLO cross section [59], whereas

γ +jets is used with LO cross section calculated by the event generator. The upper and lower uncertainty is given by the dif-ference of the best estimate and the scale factor corresponding to the χ2/ndf values at the minimum ofthe parabola increased

by unity.Themeasured scalefactorsandtheir uncertaintieswere studied andfoundstablewithrespect to systematicvariations in thebackgroundpredictionoverdifferentcontrolregions, template variables,andbinningsofthetemplatevariables.The anticorrela-tion of the Vγ and γ +jets systematic uncertainties due to the fixed total normalization is takeninto account in the interpreta-tion. Signal contamination becomes relevant if the gauginos are light because thesignal kinematics for light gauginosare similar tothatofVγ production.Intheexaminedphasespace,signal con-taminationisnegligible.

Asubdominantbackgroundarisesfromelectronsmisidentified as photons (e →γ). The misidentification rate fe→γ = (1.46 ±

0.16)% is determined from Z →e+e− decays in data [20]. The backgroundisestimatedfromadatacontrolsamplewiththesame event selection, but containing an identified electron instead of a photon. The predictionof electrons misidentified asphotons is thenobtainedbyscalingthiscontrolsampleby fe→γ/(1−fe→γ).

The uncertaintyofthisestimationis11%, whichisdominatedby themisidentificationrateuncertainty.Furtherminorcontributions fromttγ,diboson,andQCD multijetproductionareestimated us-ing MC simulations andare corrected for electrons misidentified asphotonsatthe generatorlevelto avoidoverlaps.Forthe cross sections,26%,50%,and100%systematicuncertaintiesareassigned tottγ,diboson,andQCDmultijetbackgrounds,respectively.Based onsimulationstudies,thebackgroundfromQCDmultijeteventsis foundtobenegligible.

The systematicuncertaintieswithrespect tothe choiceof the PDF inthe signalacceptance aredetermined by thedifference in acceptance using different sets of PDFs [60–64] and vary from less than 1% to 11%. Further systematic uncertainties arise from the jet energy correction (0.1–2.4% for the signal, 1.3% for the backgroundestimation) andfromthe integratedluminosity mea-surement(2.6%)[65].When evaluatingthe exclusioncontoursfor SUSYparticlemassesinspecificmodels,signalcrosssections(σs) are conservativelyloweredby one standarddeviation(4–8%) cor-responding to thecombined theoretical uncertainty in σs due to thechoicesoftherenormalizationandfactorizationscalesandthe PDFs.AllsystematicuncertaintiesaresummarizedinTable 1.

(4)

Table 1

Summarytableofsystematicuncertaintiesrelevantfortheanalysis.Uncertaintiesduetotheluminosityandtriggerefficiency mea-surementapply onlytothebackgroundsestimatedusingMCsimulationwithoutdatanormalization,namelyttγ,diboson,and multijet,andforthesignal.ThetotaluncertaintyisdominatedbytheuncertaintyintheVγbackground.

Source Sample Relative uncert. (%)

In sample In total bkg

Vγnormalization Vγ 24 19

γ+jets normalization γ+jets 14 1

Z→e+e−fit e→γ 11 0.3

Cross section measurement ttγ 26 3

Cross section Diboson 50 1

Cross section Multijet 100 0

Integrated luminosity Diboson, multijet, and signal 2.6 — Trigger efficiency Diboson, multijet, and signal 1.2 — Jet energy scale Diboson, multijet, and signal 1–2 — PDF uncertainty in acceptance Signal <1–11 — PDF and scale uncertainty Signal 4–8 —

Fig. 2. TheEmiss,signifT (left)andT (right)variablesareshowninthesignalselectionandusedtodefinefoursearchregionswithETmiss,signif=200 andT=600GeV partitions. AbenchmarkTChiNgsignalpointwithanNLSPmassof500 GeV isshownforcomparison.

5. Resultsandinterpretation

AsshowninFig. 2,theobserveddataareinagreementwiththe totalstandardmodelbackgroundexpectationwithinthecombined statistical and systematic uncertainties. Shown are the distribu-tionsofEmiss,signifT (Fig. 2,left)andT (Fig. 2,right)usedtodefine thefoursearchregionsdescribedinSection4.Theresultsare sum-marizedinTable 2.Nosignofnewphysicsisobserved.

Cross section limits are calculated combining the results of all four search regions defined inthe T–Emiss,signifT plane atthe 95%CL, usingthemodified frequentistCLs criterion[66–68] with a test statistic corresponding to a profile likelihood ratio of the background-only andsignal-plus-background hypotheses. Asymp-toticformulae[69]areusedinthecalculation.

The interpretation of the TChiNg and TChiWg scenarios is shown in Fig. 3. The analysis excludes NLSP masses below 570 (680) GeV atthe95%CLintheTChiNg(TChiWg)scenario.

The95% CL observedupper crosssection limit,aswell asthe observedandexpectedexclusioncontours,fortheGGMsignalscan in the Mwino–Mbino plane are shown in Fig. 4.For nearly

mass-degenerategauginos,i.e. forMwino=Mbino+10GeV,winomasses

uptoapproximately Mwino=710GeV areexcluded.

6. Conclusion

We have searched for electroweak production of gauginos in the framework ofgauge mediated supersymmetrybreaking in fi-nalstateswithphotonsandEmissT .Adataset,correspondingtoan integrated luminosity of 7.4 fb−1, recorded witha special trigger with low thresholds is used. The data are found to agree with the SM expectation. The analysis issensitive to electroweak pro-duction andcompressedmassspectrawhich arecharacterizedby minimalhadronicactivityinthefinalstate,complementing previ-ouslypublishedsearches.LimitsintheTChiNgscenarioaresetfor the first time, excluding NLSP masses below570GeV at 95% CL. IntheTChiWgscenario,NLSPmassesbelow680GeV areexcluded at95%CL,increasingthepreviousmasslimitinthisscenario[31] by140 GeV.Inthegeneralgaugemediationmodelforcompressed mass spectrumscenarios withe.g. Mwino−Mbino=10GeV,wino

masses below 710GeV can be excluded, increasing the previous CMSlimit[19]byabout220 GeV.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the

(5)

Table 2

Eventyieldsfor datacorrespondingto7.4 fb−1 andthe estimatedbackgrounds.Thesignalyieldscorrespondtothebenchmark TChiNg signal point with Mwino=500 GeV showninFig. 2,alsostatingtheacceptancetimesefficiencyforeachsearchregion.

ThecontributionfromQCDmultijetbackgroundisnegligibleinallregions. Selection Emiss,signifT >200, E miss,signif T <200, E miss,signif T <200, E miss,signif T >200, T>600 GeV S γ T>600 GeV S γ T<600 GeV S γ T<600 GeV Vγ 4.7±1.2 7.0±1.8 42.3±10.4 5.0±1.3 γ+jets 0.1±0.1 1.3±0.3 3.4±0.7 0.0±0.1 ttγ 0.3±0.1 1.1±0.3 5.5±1.5 0.4±0.1 Diboson 0.1±0.1 0.2±0.1 1.5±0.8 0.2±0.1 e→γ 0.1±0.1 0.1±0.1 1.6±0.2 0.2±0.1 Background 5.3±1.2 9.7±1.8 54.3±10.6 5.8±1.3 Data 4 4 65 8 Signal 6.2±0.2 2.1±0.1 4.6±0.1 3.3±0.1 [%] 12.2±0.3 4.2±0.1 9.0±0.2 6.5±0.2

Fig. 3. Exclusionlimitsat95% CLfortheTChiNg(left)andTChiWg(right)scenario.IntheTChiNgscenarioNLSPmassesbelow570GeV areexcluded,intheTChiWgscenario NLSPmassesbelow680GeV areexcluded.

Fig. 4. ObserveduppercrosssectionCLslimitatthe95% CLfortheGGMsignalpointsintheMwino–Mbinoplane(left).Alsoshownarethe95% CLexpectedandobserved

exclusioncontours.TheGGMsignalpointsnearthediagonal,e.g.forMwino=Mbino+10GeV uptoawinomassofMwino=710GeV areexcluded(right). technicalandadministrativestaffs atCERN andatother CMS

in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcenters and personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by

thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES(Bulgaria);CERN;CAS,MOST,andNSFC(China);COLCIENCIAS (Colombia);MSESandCSF(Croatia);RPF(Cyprus);MoER,ERCIUT andERDF(Estonia);Academy ofFinland,MEC,andHIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India);

(6)

IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM(Malaysia); CINVESTAV, CONACYT,SEP,andUASLP-FAI(Mexico);MBIE(NewZealand);PAEC (Pakistan);MSHEandNSC(Poland);FCT(Portugal);JINR(Dubna); MON,RosAtom,RASandRFBR(Russia);MESTD(Serbia);SEIDIand CPAN(Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEPCenter,IPST,STARandNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

References

[1] P.Ramond,Dualtheoryforfreefermions,Phys.Rev.D3(1971)2415,http:// dx.doi.org/10.1103/PhysRevD.3.2415.

[2] P.Ramond,Aninterpretationofdualtheories,NuovoCimentoA4(1971)544,

http://dx.doi.org/10.1007/BF02731370.

[3] Y.A. Golfand, E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation ofP invariance,JETP Lett. 13 (1971) 323, http:// www.jetpletters.ac.ru/ps/1584/article_24309.pdf.

[4] D.V.Volkov,V.P.Akulov,Possibleuniversalneutrinointeraction,JETPLett.16 (1972)438,http://dx.doi.org/10.1007/BFb0105270.

[5] J.Wess,B.Zumino,Supergaugetransformationsinfour-dimensions,Nucl.Phys. B70(1974)39,http://dx.doi.org/10.1016/0550-3213(74)90355-1.

[6] D.Z.Freedman,P.vanNieuwenhuizen,S.Ferrara,Progresstowardatheoryof supergravity,Phys.Rev.D13(1976)3214,http://dx.doi.org/10.1103/PhysRevD. 13.3214.

[7] S.Deser,B.Zumino,Consistentsupergravity,Phys.Lett.B62(1976)335,http:// dx.doi.org/10.1016/0370-2693(76)90089-7.

[8] D.Z.Freedman,P.vanNieuwenhuizen,Propertiesofsupergravitytheory,Phys. Rev.D14(1976)912,http://dx.doi.org/10.1103/PhysRevD.14.912.

[9] S.Ferrara,P.vanNieuwenhuizen,Consistentsupergravitywithcomplexspin 3/2 gaugefields,Phys. Rev.Lett. 37(1976) 1669, http://dx.doi.org/10.1103/ PhysRevLett.37.1669.

[10] P.Fayet,SupergaugeinvariantextensionoftheHiggsmechanismandamodel fortheelectronanditsneutrino,Nucl.Phys.B90(1975)104,http://dx.doi.org/ 10.1016/0550-3213(75)90636-7.

[11] A.H.Chamseddine,R.L.Arnowitt,P.Nath,Locallysupersymmetricgrand unifi-cation,Phys.Rev.Lett.49(1982)970,http://dx.doi.org/10.1103/PhysRevLett.49. 970.

[12] R.Barbieri, S.Ferrara,C.A.Savoy,Gauge modelswithspontaneouslybroken localsupersymmetry,Phys.Lett.B119(1982)343,http://dx.doi.org/10.1016/ 0370-2693(82)90685-2.

[13] L.J.Hall,J.D. Lykken,S. Weinberg, Supergravityasthe messenger of super-symmetry breaking,Phys.Rev.D 27(1983) 2359, http://dx.doi.org/10.1103/ PhysRevD.27.2359.

[14] G.L. Kane, C.F.Kolda,L. Roszkowski, J.D. Wells,Study ofconstrained mini-malsupersymmetry,Phys. Rev.D49(1994)6173, http://dx.doi.org/10.1103/ PhysRevD.49.6173,arXiv:hep-ph/9312272.

[15] CMSCollaboration,Observationofanewbosonatamassof125GeVwiththe CMSexperimentattheLHC,Phys.Lett.B716(2012)30,http://dx.doi.org/10. 1016/j.physletb.2012.08.021,arXiv:1207.7235.

[16] ATLASCollaboration,Observationofanewparticleinthesearchforthe stan-dardmodelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2013)1,http://dx.doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214. [17] R.Barbieri,G.F. Giudice,Upper boundson supersymmetricparticle masses,

Nucl.Phys.B306(1988)63,http://dx.doi.org/10.1016/0550-3213(88)90171-X. [18] CMSCollaboration,Searchforsupersymmetryinppcollisionsat√s=7TeV in

eventswithtwophotonsandmissingtransverseenergy,Phys.Rev.Lett.106 (2011) 211802, http://dx.doi.org/10.1103/PhysRevLett.106.211802, arXiv:1103. 0953.

[19] CMSCollaboration,Searchfornewphysicsineventswithphotons,jets,and missingtransverseenergyinppcollisionsat√s=7TeV,J.HighEnergyPhys. 03(2013)111,http://dx.doi.org/10.1007/JHEP03(2013)111,arXiv:1211.4784. [20] CMS Collaboration,Searchforsupersymmetrywithphotonsinppcollisionsat

s=8TeV,Phys.Rev.D92(2015)072006,http://dx.doi.org/10.1103/PhysRevD. 92.072006,arXiv:1507.02898.

[21] ATLASCollaboration, Searchfor photonicsignatures of gauge-mediated su-persymmetry in8TeV ppcollisions with the ATLASdetector, Phys. Rev.D 92 (2015) 072001, http://dx.doi.org/10.1103/PhysRevD.92.072001, arXiv:1507. 05493.

[22] R.Barbier,C.Berat,M.Besancon,M.Chemtob,A.Deandrea,E.Dudas,P.Fayet, S.Lavignac,G.Moreau,E.Perez,Y.Sirois,R-parityviolatingsupersymmetry, Phys.Rep.420(2005)1,http://dx.doi.org/10.1016/j.physrep.2005.08.006,arXiv: hep-ph/0406039.

[23] G.R.Farrar,P.Fayet,Phenomenologyoftheproduction,decay,anddetectionof newhadronicstatesassociatedwith supersymmetry,Phys. Lett.B76(1978) 575,http://dx.doi.org/10.1016/0370-2693(78)90858-4.

[24] P. Fayet, Mixing between gravitational and weak interactions through the massivegravitino,Phys.Lett.B70(1977)461, http://dx.doi.org/10.1016/0370-2693(77)90414-2.

[25] H.Baer,M.Brhlik,C.H.Chen,X.Tata,Signalsfortheminimalgauge-mediated supersymmetrybreakingmodelatthe FermilabTevatroncollider,Phys.Rev. D55(1997)4463,http://dx.doi.org/10.1103/PhysRevD.55.4463,arXiv:hep-ph/ 9610358.

[26] H. Baer, P.G. Mercadante, X. Tata, Y.L. Wang, Reach of Tevatron upgrades ingauge-mediated supersymmetrybreaking models,Phys.Rev.D60(1999) 055001,http://dx.doi.org/10.1103/PhysRevD.60.055001,arXiv:hep-ph/9903333. [27] S.Dimopoulos,S.Thomas,J.D.Wells,Sparticlespectroscopyandelectroweak

symmetrybreakingwithgauge-mediatedsupersymmetrybreaking,Nucl.Phys. B 488 (1997) 39, http://dx.doi.org/10.1016/S0550-3213(97)00030-8, arXiv: hep-ph/9609434.

[28] J.R. Ellis, J.L. Lopez, D.V. Nanopoulos, Analysis of LEP constraints on su-persymmetricmodels with alight gravitino, Phys. Lett. B394(1997) 354,

http://dx.doi.org/10.1016/S0370-2693(97)00019-1,arXiv:hep-ph/9610470. [29] M.Dine,A.E.Nelson,Y.Nir,Y.Shirman,Newtoolsforlowenergydynamical

su-persymmetrybreaking,Phys.Rev.D53(1996)2658,http://dx.doi.org/10.1103/ PhysRevD.53.2658,arXiv:hep-ph/9507378.

[30]G.F.Giudice,R.Rattazzi,Gauge-mediatedsupersymmetrybreaking,in: Perspec-tivesonSupersymmetry,WorldScientific,Singapore,1998,p. 355.

[31]CMSCollaboration,Searchfor supersymmetry withaphoton,alepton, and missing transversemomentum in pp collisions at √s=8TeV, arXiv:1508. 01218,2015.

[32] CMSCollaboration,Searchesforelectroweakneutralinoandchargino produc-tioninchannelswithHiggs,Z,andW bosonsinppcollisionsat8TeV,Phys. Rev.D90(2014)092007,http://dx.doi.org/10.1103/PhysRevD.90.092007,arXiv: 1409.3168.

[33] ATLASCollaboration,Searchfordirectpairproductionofacharginoanda neu-tralinodecayingtothe125GeV Higgsbosonin√s=8TeV ppcollisionswith theATLAS detector,Eur.Phys. J.C75(2015)208,http://dx.doi.org/10.1140/ epjc/s10052-015-3408-7,arXiv:1501.07110.

[34] ATLASCollaboration,Searchfordirectproductionofcharginosandneutralinos ineventswiththreeleptonsandmissingtransversemomentumin√s=8TeV ppcollisions with theATLAS detector,J. HighEnergy Phys. 04(2014)169,

http://dx.doi.org/10.1007/JHEP04(2014)169,arXiv:1402.7029.

[35] P. Meade, N. Seiberg,D. Shih,General gaugemediation, Prog. Theor. Phys. Suppl.177(2009)143,http://dx.doi.org/10.1143/PTPS.177.143,arXiv:0801.3278. [36] M. Buican, P. Meade,N. Seiberg,D. Shih,Exploring general gauge media-tion,J.HighEnergyPhys.03(2009)016,http://dx.doi.org/10.1088/1126-6708/ 2009/03/016,arXiv:0812.3668.

[37] J.T.Ruderman, D.Shih, Generalneutralino NLSPsat the earlyLHC,J. High EnergyPhys.08(2012)159,http://dx.doi.org/10.1007/JHEP08(2012)159,arXiv: 1103.6083.

[38] Y.Kats,P.Meade,M.Reece,D.Shih,ThestatusofGMSBafter1/fb attheLHC, J.HighEnergyPhys.02(2012)115,http://dx.doi.org/10.1007/JHEP02(2012)115, arXiv:1110.6444.

[39] Y.Kats,M.J.Strassler,Probingcoloredparticleswithphotons,leptons,andjets, J.HighEnergyPhys.11(2012)097,http://dx.doi.org/10.1007/JHEP11(2012)097, arXiv:1204.1119.

[40] P. Grajek,A.Mariotti, D.Redigolo,Phenomenologyofgeneral gauge media-tioninlightofa125 GeV Higgs,J.HighEnergy Phys.07(2013)109,http:// dx.doi.org/10.1007/JHEP07(2013)109,arXiv:1303.0870.

[41] CMS Collaboration,Dataparkinganddata scoutingat theCMSexperiment, CMSperformancenoteCMS-DP-2012-022,https://cds.cern.ch/record/1480607, 2012.

[42] CMS Collaboration, Performanceofphoton reconstructionand identification withtheCMSdetectorinproton–protoncollisionsat√s=8TeV,J.Instrum. 10 (2015) P08010, http://dx.doi.org/10.1088/1748-0221/10/08/P08010, arXiv: 1502.02702.

[43] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[44] CMSCollaboration,Particle-floweventreconstructioninCMSandperformance forjets,taus,and Emiss

T ,CMSphysicsanalysissummaryCMS-PAS-PFT-09-001,

http://cdsweb.cern.ch/record/1194487,2009.

[45] CMS Collaboration,Commissioning oftheparticle-flowevent reconstruction withthefirstLHCcollisionsrecordedintheCMSdetector,CMSphysicsanalysis summaryCMS-PAS-PFT-10-001,http://cdsweb.cern.ch/record/1247373,2010. [46] M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,http://dx.doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[47] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,http://dx.doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [48] M.Cacciari,G.P.Salam,Pileupsubtractionusingjetareas,Phys. Lett.B659

(2008)119,http://dx.doi.org/10.1016/j.physletb.2007.09.077,arXiv:0707.1378. [49] CMS Collaboration, Determination of jet energy calibration and transverse

momentumresolutioninCMS,J.Instrum.6(2011)11002,http://dx.doi.org/ 10.1088/1748-0221/6/11/P11002,arXiv:1107.4277.

(7)

[50] CMSCollaboration,PerformanceoftheCMSmissingtransversemomentum re-constructioninpp dataat √s=8TeV,J.Instrum.10(2015)P02006,http:// dx.doi.org/10.1088/1748-0221/10/02/P02006,arXiv:1411.0511.

[51] J.Alwall,R.Frederix,S.Frixione,V.Hirschi,F.Maltoni,O.Mattelaer,H.S. Shao, T.Stelzer,P.Torrielli,M.Zaro,Theautomatedcomputationoftree-leveland next-to-leading orderdifferentialcrosssections, andtheir matchingto par-tonshowersimulations,J.HighEnergyPhys.07(2014)079,http://dx.doi.org/ 10.1007/JHEP07(2014)079,arXiv:1405.0301.

[52] T.Sjöstrand,S.Mrenna,P.Z.Skands,PYTHIA6.4physicsandmanual,J.High EnergyPhys.05(2006)026,http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[53] J.Pumplin, D.R. Stump,J. Huston,H.L. Lai, P.M.Nadolsky, W.K. Tung,New generationofpartondistributionswithuncertaintiesfromglobalQCD analy-sis,J.HighEnergyPhys.07(2002)012,http://dx.doi.org/10.1088/1126-6708/ 2002/07/012,arXiv:hep-ph/0201195.

[54] S.Agostinelli,etal.,GEANT4Collaboration,GEANT4—asimulationtoolkit,Nucl. Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom.Detect.Assoc.Equip.506 (2003)250,http://dx.doi.org/10.1016/S0168-9002(03)01368-8.

[55]W.Beenakker,R.Hopker,M.Spira,PROSPINO:aprogramfortheproductionof supersymmetricparticlesinnext-to-leadingorderQCD,arXiv:hep-ph/9611232, 1996.

[56]M. Kramer, A.Kulesza,R. van derLeeuw, M. Mangano,S. Padhi, T.Plehn, X. Portell,Supersymmetryproductioncrosssectionsinpp collisionsat√s=

7TeV,arXiv:1206.2892,2012.

[57] B.Fuks,M.Klasen,D.R.Lamprea,M.Rothering,Gauginoproductioninproton– protoncollisionsatacenter-of-massenergyof8TeV,J.HighEnergyPhys.10 (2012)081,http://dx.doi.org/10.1007/JHEP10(2012)081,arXiv:1207.2159. [58] B.Fuks,M.Klasen,D.R.Lamprea,M.Rothering,Precisionpredictionsfor

elec-troweaksuperpartner production at hadron colliders with Resummino,Eur. Phys. J.C73(2013)2480, http://dx.doi.org/10.1140/epjc/s10052-013-2480-0, arXiv:1304.0790.

[59] CMS Collaboration, Searchfor new phenomena inmonophotonfinalstates inproton–protoncollisionsat√s=8TeV,Phys.Lett.B755(2016)102–124,

http://dx.doi.org/10.1016/j.physletb.2016.01.057,arXiv:1410.8812.

[60]S.Alekhin,etal.,ThePDF4LHCWorkingGroupinterimreport,arXiv:1101.0536, 2011.

[61]M. Botje,J.Butterworth, A.Cooper-Sarkar,A.deRoeck,J. Feltesse,S.Forte, A. Glazov,J.Huston,R.McNulty,T.Sjöstrand,R.S.Thorne,ThePDF4LHC Work-ingGroupinterimrecommendations,arXiv:1101.0538,2011.

[62] R.D.Ball,V.Bertone,S.Carrazza,C.S.Deans,L.DelDebbio,S.Forte,A. Guf-fanti,N.P.Hartland,J.I.Latorre,J.Rojo,M.Ubiali,NNPDFCollaboration,Parton distributionswith LHCdata,Nucl.Phys.B867(2013)244,http://dx.doi.org/ 10.1016/j.nuclphysb.2012.10.003,arXiv:1207.1303.

[63] A.D. Martin,W.J. Stirling,R.S. Thorne, G.Watt, Partondistributionsfor the LHC,Eur.Phys.J.C63(2009)189, http://dx.doi.org/10.1140/epjc/s10052-009-1072-5,arXiv:0901.0002.

[64] H.-L. Lai,M. Guzzi, J. Huston, Z. Li, P.M.Nadolsky, J. Pumplin, C.-P.Yuan, Newpartondistributionsforcolliderphysics,Phys.Rev.D82(2010)074024,

http://dx.doi.org/10.1103/PhysRevD.82.074024,arXiv:1007.2241.

[65] CMSCollaboration,CMSluminositybased onpixelclustercounting— sum-mer 2013 update, CMS physics analysis summary CMS-PAS-LUM-13-001,

https://cds.cern.ch/record/1598864,2013.

[66] T. Junk, Confidence level computation for combining searches with small statistics,Nucl.Instrum.MethodsA434(1999)435,http://dx.doi.org/10.1016/ S0168-9002(99)00498-2,arXiv:hep-ex/9902006.

[67] A.L.Read,Presentationofsearchresults:theCLstechnique,J.Phys.G28(2002) 2693,http://dx.doi.org/10.1088/0954-3899/28/10/313.

[68] ATLAS, CMS, LHC Higgs Combination Group Collaborations, Procedure for the LHC Higgs boson search combination inSummer 2011, Technical Re-port CMS-NOTE-2011-005.ATL-PHYS-PUB-2011-11, 2011, https://cds.cern.ch/ record/1379837.

[69] E.Gross,O.Vitells,Trialfactorsorthe lookelsewhereeffectinhighenergy physics, Eur.Phys.J.C70(2010)525, http://dx.doi.org/10.1140/epjc/s10052-010-1470-8,arXiv:1005.1891.

CMSCollaboration

V. Khachatryan,A.M. Sirunyan, A. Tumasyan YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,M. Flechl, M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec,M. Jeitler1,V. Knünz, A. König,

M. Krammer1, I. Krätschmer,D. Liko, T. Matsushita,I. Mikulec, D. Rabady2,N. Rad, B. Rahbaran,

H. Rohringer,J. Schieck1,R. Schöfbeck, J. Strauss,W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1 InstitutfürHochenergiephysikderOeAW,Wien,Austria

V. Mossolov,N. Shumeiko,J. Suarez Gonzalez NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus

S. Alderweireldt, T. Cornelis,E.A. De Wolf,X. Janssen, A. Knutsson,J. Lauwers, S. Luyckx, M. Van De Klundert,H. Van Haevermaet,P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, N. Daci,I. De Bruyn, K. Deroover, N. Heracleous,J. Keaveney, S. Lowette,L. Moreels,A. Olbrechts, Q. Python, D. Strom, S. Tavernier,W. Van Doninck, P. Van Mulders, G.P. Van Onsem,I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

P. Barria, H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, G. Fasanella, L. Favart, R. Goldouzian,

A. Grebenyuk,G. Karapostoli,T. Lenzi, A. Léonard,T. Maerschalk, A. Marinov,L. Perniè, A. Randle-conde, T. Seva,C. Vander Velde, P. Vanlaer,R. Yonamine, F. Zenoni, F. Zhang3

(8)

K. Beernaert,L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot,G. Garcia,M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz,D. Ryckbosch, S. Salva, M. Sigamani, M. Tytgat,W. Van Driessche, E. Yazgan, N. Zaganidis

GhentUniversity,Ghent,Belgium

S. Basegmez, C. Beluffi4,O. Bondu,S. Brochet, G. Bruno, A. Caudron, L. Ceard, C. Delaere, D. Favart, L. Forthomme,A. Giammanco5,A. Jafari, P. Jez, M. Komm,V. Lemaitre, A. Mertens, M. Musich, C. Nuttens, L. Perrini, K. Piotrzkowski,A. Popov6,L. Quertenmont, M. Selvaggi, M. Vidal Marono UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy, G.H. Hammad UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves, L. Brito,M. Correa Martins Junior,M. Hamer, C. Hensel, A. Moraes,M.E. Pol, P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato7,A. Custódio, E.M. Da Costa,

D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera,L. Mundim, H. Nogima,W.L. Prado Da Silva, A. Santoro,

A. Sznajder,E.J. Tonelli Manganote7, A. Vilela Pereira UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa, C.A. Bernardesb, A. De Souza Santosb,S. Dograa, T.R. Fernandez Perez Tomeia,

E.M. Gregoresb, P.G. Mercadanteb,C.S. Moona,8,S.F. Novaesa,Sandra S. Padulaa,D. Romero Abad, J.C. Ruiz Vargas

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria

A. Dimitrov, I. Glushkov,L. Litov, B. Pavlov,P. Petkov UniversityofSofia,Sofia,Bulgaria

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, T. Cheng, R. Du,C.H. Jiang, D. Leggat, R. Plestina9, F. Romeo,S.M. Shaheen, A. Spiezia, J. Tao, C. Wang,Z. Wang, H. Zhang

InstituteofHighEnergyPhysics,Beijing,China

C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu,Y. Mao, S.J. Qian, D. Wang,Z. Xu StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno,J.C. Sanabria UniversidaddeLosAndes,Bogota,Colombia

N. Godinovic, D. Lelas, I. Puljak,P.M. Ribeiro Cipriano

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia Z. Antunovic, M. Kovac

(9)

V. Brigljevic,K. Kadija, J. Luetic,S. Micanovic, L. Sudic InstituteRudjerBoskovic,Zagreb,Croatia

A. Attikis, G. Mavromanolakis,J. Mousa, C. Nicolaou, F. Ptochos,P.A. Razis, H. Rykaczewski UniversityofCyprus,Nicosia,Cyprus

M. Bodlak,M. Finger10, M. Finger Jr.10 CharlesUniversity,Prague,CzechRepublic

A.A. Abdelalim11,12,A. Awad, A. Mahrous11,A. Radi13,14

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt B. Calpas,M. Kadastik, M. Murumaa, M. Raidal, A. Tiko,C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia P. Eerola,J. Pekkanen, M. Voutilainen DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini,S. Lehti, T. Lindén,P. Luukka, T. Peltola,J. Tuominiemi,E. Tuovinen, L. Wendland

HelsinkiInstituteofPhysics,Helsinki,Finland J. Talvitie,T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault,P. Jarry, E. Locci, M. Machet,J. Malcles, J. Rander, A. Rosowsky,M. Titov, A. Zghiche

DSM/IRFU,CEA/Saclay,Gif-sur-Yvette,France

I. Antropov,S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon,C. Charlot,O. Davignon,

N. Filipovic,R. Granier de Cassagnac, M. Jo,S. Lisniak, L. Mastrolorenzo, P. Miné,I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona,P. Paganini, P. Pigard,S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz,A. Zabi

LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3–CNRS,Palaiseau,France

J.-L. Agram15,J. Andrea, A. Aubin,D. Bloch, J.-M. Brom,M. Buttignol, E.C. Chabert,N. Chanon, C. Collard, E. Conte15,X. Coubez, J.-C. Fontaine15, D. Gelé, U. Goerlach,C. Goetzmann, A.-C. Le Bihan, J.A. Merlin2, K. Skovpen,P. Van Hove

InstitutPluridisciplinaireHubertCurien,UniversitédeStrasbourg,UniversitédeHauteAlsaceMulhouse,CNRS/IN2P3,Strasbourg,France S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,E. Bouvier, C.A. Carrillo Montoya, R. Chierici,D. Contardo, B. Courbon,P. Depasse, H. El Mamouni,J. Fan, J. Fay, S. Gascon,M. Gouzevitch, B. Ille, F. Lagarde, I.B. Laktineh,M. Lethuillier, L. Mirabito,A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez,D. Sabes, L. Sgandurra,V. Sordini, M. Vander Donckt, P. Verdier,S. Viret

(10)

T. Toriashvili16

GeorgianTechnicalUniversity,Tbilisi,Georgia Z. Tsamalaidze10

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann, S. Beranek,L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, J.F. Schulte,J. Schulz, T. Verlage,H. Weber, V. Zhukov6

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

M. Ata, M. Brodski,E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann,S. Erdweg, T. Esch, R. Fischer,A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner,S. Knutzen, P. Kreuzer,M. Merschmeyer, A. Meyer, P. Millet,S. Mukherjee, M. Olschewski, K. Padeken,P. Papacz, T. Pook,M. Radziej, H. Reithler, M. Rieger, F. Scheuch,L. Sonnenschein, D. Teyssier, S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

V. Cherepanov, Y. Erdogan,G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, A. Nehrkorn, A. Nowack,I.M. Nugent, C. Pistone, O. Pooth,A. Stahl

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,I. Asin, N. Bartosik, O. Behnke, U. Behrens,K. Borras17,A. Burgmeier, A. Campbell, C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Dolinska, S. Dooling,T. Dorland, G. Eckerlin,

D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo18,J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel19,H. Jung, A. Kalogeropoulos, O. Karacheban19, M. Kasemann,P. Katsas, J. Kieseler,

C. Kleinwort,I. Korol, W. Lange, J. Leonard,K. Lipka, A. Lobanov, W. Lohmann19,R. Mankel,

I.-A. Melzer-Pellmann,A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme,A. Nayak, E. Ntomari,H. Perrey, D. Pitzl,R. Placakyte, A. Raspereza, B. Roland,M.Ö. Sahin, P. Saxena,

T. Schoerner-Sadenius,C. Seitz, S. Spannagel, K.D. Trippkewitz, R. Walsh, C. Wissing DeutschesElektronen-Synchrotron,Hamburg,Germany

V. Blobel, M. Centis Vignali, A.R. Draeger,J. Erfle, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann,R.S. Höing, A. Junkes, R. Klanner, R. Kogler,N. Kovalchuk, T. Lapsien, T. Lenz,I. Marchesini, D. Marconi,M. Meyer, D. Nowatschin, J. Ott, F. Pantaleo2, T. Peiffer, A. Perieanu, N. Pietsch,J. Poehlsen, D. Rathjens, C. Sander, C. Scharf,P. Schleper, E. Schlieckau, A. Schmidt, S. Schumann,J. Schwandt,

V. Sola, H. Stadie,G. Steinbrück, F.M. Stober,H. Tholen, D. Troendle,E. Usai, L. Vanelderen,A. Vanhoefer, B. Vormwald

UniversityofHamburg,Hamburg,Germany

C. Barth,C. Baus, J. Berger,C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix,

A. Dierlamm, S. Fink,F. Frensch, R. Friese,M. Giffels, A. Gilbert,D. Haitz, F. Hartmann2,S.M. Heindl, U. Husemann,I. Katkov6,A. Kornmayer2,P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz,S. Röcker, F. Roscher, M. Schröder,G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand,M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou, G. Daskalakis,T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Psallidas, I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi NationalandKapodistrianUniversityofAthens,Athens,Greece

(11)

I. Evangelou,G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos,I. Papadopoulos, E. Paradas, J. Strologas

UniversityofIoánnina,Ioánnina,Greece

G. Bencze,C. Hajdu, A. Hazi,P. Hidas, D. Horvath20, F. Sikler,V. Veszpremi, G. Vesztergombi21, A.J. Zsigmond

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni,S. Czellar, J. Karancsi22,J. Molnar, Z. Szillasi2 InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók23,A. Makovec,P. Raics, Z.L. Trocsanyi, B. Ujvari UniversityofDebrecen,Debrecen,Hungary

S. Choudhury24,P. Mal, K. Mandal, D.K. Sahoo, N. Sahoo,S.K. Swain NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta,U. Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar,A. Mehta,M. Mittal, J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

Ashok Kumar,A. Bhardwaj, B.C. Choudhary, R.B. Garg,S. Malhotra, M. Naimuddin,N. Nishu, K. Ranjan, R. Sharma,V. Sharma

UniversityofDelhi,Delhi,India

S. Bhattacharya, K. Chatterjee,S. Dey, S. Dutta, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, A. Roy,D. Roy, S. Roy Chowdhury, S. Sarkar,M. Sharan

SahaInstituteofNuclearPhysics,Kolkata,India

A. Abdulsalam,R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty2,L.M. Pant, P. Shukla, A. Topkar BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,S. Banerjee, S. Bhowmik25, R.M. Chatterjee, R.K. Dewanjee,S. Dugad, S. Ganguly, S. Ghosh, M. Guchait,A. Gurtu26, Sa. Jain, G. Kole, S. Kumar,B. Mahakud, M. Maity25,G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida,T. Sarkar25,N. Sur, B. Sutar, N. Wickramage27

TataInstituteofFundamentalResearch,Mumbai,India

S. Chauhan,S. Dube, A. Kapoor, K. Kothekar, S. Sharma IndianInstituteofScienceEducationandResearch(IISER),Pune,India

H. Bakhshiansohi,H. Behnamian,S.M. Etesami28, A. Fahim29, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi,F. Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b, C. Caputoa,b, A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia,G. Minielloa,b,S. Mya,c,S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c,R. Radognaa,b,A. Ranieria, G. Selvaggia,b, L. Silvestrisa,2,R. Vendittia,b

(12)

bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilana2, A.C. Benvenutia,D. Bonacorsia,b,S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b,

M. Cuffiania,b,G.M. Dallavallea,F. Fabbria,A. Fanfania,b,D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b,S. Marcellinia,G. Masettia,A. Montanaria,F.L. Navarriaa,b, A. Perrottaa,A.M. Rossia,b, T. Rovellia,b,G.P. Sirolia,b,N. Tosia,b,2

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

G. Cappellob,M. Chiorbolia,b,S. Costaa,b,A. Di Mattiaa,F. Giordanoa,b,R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia, V. Ciullia,b,C. Civininia, R. D’Alessandroa,b,E. Focardia,b,V. Goria,b, P. Lenzia,b, M. Meschinia, S. Paolettia,G. Sguazzonia,L. Viliania,b,2

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo, F. Primavera2 INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea,b,E. Robuttia,S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

L. Brianza,M.E. Dinardoa,b, S. Fiorendia,b,S. Gennaia,R. Gerosaa,b,A. Ghezzia,b, P. Govonia,b,

S. Malvezzia, R.A. Manzonia,b,2, B. Marzocchia,b,D. Menascea,L. Moronia, M. Paganonia,b,D. Pedrinia, S. Ragazzia,b, N. Redaellia,T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,2, M. Espositoa,b, F. Fabozzia,c,A.O.M. Iorioa,b,G. Lanzaa, L. Listaa,S. Meolaa,d,2,M. Merolaa,P. Paoluccia,2,C. Sciaccaa,b,F. Thyssen

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,2, N. Bacchettaa, L. Benatoa,b,D. Biselloa,b, A. Bolettia,b,R. Carlina,b,P. Checchiaa,

M. Dall’Ossoa,b,2,T. Dorigoa,U. Dossellia, F. Gasparinia,b, U. Gasparinia,b,F. Gonellaa,A. Gozzelinoa, M. Gulminia,31,S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b,F. Montecassianoa,J. Pazzinia,b,2, N. Pozzobona,b,P. Ronchesea,b, F. Simonettoa,b,E. Torassaa,M. Tosia,b,M. Zanetti,P. Zottoa,b, A. Zucchettaa,b,2,G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b, V. Rea, C. Riccardia,b,P. Salvinia,I. Vaia,b, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

(13)

L. Alunni Solestizia,b, G.M. Bileia,D. Ciangottinia,b,2, L. Fanòa,b,P. Laricciaa,b,G. Mantovania,b, M. Menichellia,A. Sahaa,A. Santocchiaa,b

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,32,P. Azzurria,2,G. Bagliesia, J. Bernardinia,T. Boccalia,R. Castaldia, M.A. Cioccia,32, R. Dell’Orsoa,S. Donatoa,c,2, G. Fedi,L. Foàa,c,†,A. Giassia, M.T. Grippoa,32, F. Ligabuea,c,T. Lomtadzea, L. Martinia,b,A. Messineoa,b,F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,33, A.T. Serbana,P. Spagnoloa, R. Tenchinia,G. Tonellia,b, A. Venturia,P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b, F. Cavallaria,G. D’imperioa,b,2, D. Del Rea,b,2, M. Diemoza,S. Gellia,b, C. Jordaa,

E. Longoa,b, F. Margarolia,b, P. Meridiania,G. Organtinia,b, R. Paramattia,F. Preiatoa,b, S. Rahatloua,b, C. Rovellia,F. Santanastasioa,b,P. Traczyka,b,2

aINFNSezionediRoma,Roma,Italy bUniversitàdiRoma,Roma,Italy

N. Amapanea,b,R. Arcidiaconoa,c,2,S. Argiroa,b,M. Arneodoa,c,R. Bellana,b, C. Biinoa, N. Cartigliaa, M. Costaa,b, R. Covarellia,b, A. Deganoa,b,N. Demariaa,L. Fincoa,b,2,B. Kiania,b, C. Mariottia,S. Masellia, E. Migliorea,b,V. Monacoa,b, E. Monteila,b,M.M. Obertinoa,b,L. Pachera,b,N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b,F. Raveraa,b,A. Romeroa,b,M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,V. Candelisea,b, M. Casarsaa,F. Cossuttia,G. Della Riccaa,b,B. Gobboa,C. La Licataa,b, M. Maronea,b, A. Schizzia,b, A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

A. Kropivnitskaya,S.K. Nam KangwonNationalUniversity,Chunchon,RepublicofKorea

D.H. Kim,G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh,A. Sakharov, D.C. Son KyungpookNationalUniversity,Daegu,RepublicofKorea

J.A. Brochero Cifuentes,H. Kim, T.J. Kim ChonbukNationalUniversity,Jeonju,RepublicofKorea

S. Song

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea

S. Cho,S. Choi, Y. Go, D. Gyun,B. Hong, H. Kim,Y. Kim,B. Lee, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

KoreaUniversity,Seoul,RepublicofKorea H.D. Yoo

SeoulNationalUniversity,Seoul,RepublicofKorea

M. Choi,H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu UniversityofSeoul,Seoul,RepublicofKorea

(14)

Y. Choi,J. Goh, D. Kim, E. Kwon, J. Lee,I. Yu SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali34,F. Mohamad Idris35,W.A.T. Wan Abdullah, M.N. Yusli,Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz36, A. Hernandez-Almada,R. Lopez-Fernandez, A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico S. Carrillo Moreno, F. Vazquez Valencia UniversidadIberoamericana,MexicoCity,Mexico

I. Pedraza, H.A. Salazar Ibarguen BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico D. Krofcheck

UniversityofAuckland,Auckland,NewZealand P.H. Butler

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan, T. Khurshid,M. Shoaib NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska, M. Bluj,B. Boimska, T. Frueboes,M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper,P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

G. Brona, K. Bunkowski, A. Byszuk37,K. Doroba, A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho,M. Gallinaro, J. Hollar, N. Leonardo,L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas,O. Toldaiev,

D. Vadruccio,J. Varela, P. Vischia

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

S. Afanasiev,P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavin, A. Lanev,

A. Malakhov,V. Matveev38,39,P. Moisenz, V. Palichik,V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

(15)

V. Golovtsov,Y. Ivanov, V. Kim40,E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov,L. Uvarov, S. Vavilov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov, A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia

A. Bylinkin, M. Chadeeva,R. Chistov, M. Danilov,V. Rusinov NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin39,I. Dremin39, M. Kirakosyan, A. Leonidov39,G. Mesyats, S.V. Rusakov P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Baskakov,A. Belyaev, E. Boos,M. Dubinin41,L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova,I. Lokhtin,I. Miagkov, S. Obraztsov, S. Petrushanko,V. Savrin, A. Snigirev

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

I. Azhgirey,I. Bayshev,S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov,V. Krychkine, V. Petrov, R. Ryutin, A. Sobol,L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian,A. Volkov

StateResearchCenterofRussianFederation,InstituteforHighEnergyPhysics,Protvino,Russia P. Adzic42,P. Cirkovic, J. Milosevic,V. Rekovic

UniversityofBelgrade,FacultyofPhysicsandVincaInstituteofNuclearSciences,Belgrade,Serbia

J. Alcaraz Maestre,E. Calvo, M. Cerrada,M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle,C. Fernandez Bedoya, J.P. Fernández Ramos,J. Flix, M.C. Fouz,P. Garcia-Abia, O. Gonzalez Lopez,S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino,

A. Pérez-Calero Yzquierdo,J. Puerta Pelayo, A. Quintario Olmeda,I. Redondo, L. Romero,J. Santaolalla, M.S. Soares

CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain C. Albajar, J.F. de Trocóniz,M. Missiroli, D. Moran UniversidadAutónomadeMadrid,Madrid,Spain

J. Cuevas,J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero,E. Palencia Cortezon, J.M. Vizan Garcia

UniversidaddeOviedo,Oviedo,Spain

I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, P. De Castro Manzano,M. Fernandez, J. Garcia-Ferrero, G. Gomez,A. Lopez Virto, J. Marco,R. Marco,C. Martinez Rivero, F. Matorras, J. Piedra Gomez,T. Rodrigo, A.Y. Rodríguez-Marrero,A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani,I. Vila, R. Vilar Cortabitarte

InstitutodeFísicadeCantabria(IFCA),CSIC–UniversidaddeCantabria,Santander,Spain

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis,P. Baillon, A.H. Ball, D. Barney, A. Benaglia,J. Bendavid, L. Benhabib,G.M. Berruti, P. Bloch,A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, R. Castello, G. Cerminara, M. D’Alfonso,D. d’Enterria, A. Dabrowski,V. Daponte, A. David,M. De Gruttola, F. De Guio,

(16)

A. De Roeck, S. De Visscher, E. Di Marco43,M. Dobson, M. Dordevic, B. Dorney, T. du Pree,D. Duggan, M. Dünser,N. Dupont, A. Elliott-Peisert,G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill,D. Giordano, M. Girone, F. Glege, R. Guida,S. Gundacker, M. Guthoff, J. Hammer, P. Harris,J. Hegeman, V. Innocente, P. Janot,H. Kirschenmann, M.J. Kortelainen, K. Kousouris,K. Krajczar,P. Lecoq,C. Lourenço,M.T. Lucchini, N. Magini,L. Malgeri, M. Mannelli,A. Martelli, L. Masetti,F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi,H. Neugebauer, S. Orfanelli44,L. Orsini, L. Pape, E. Perez, M. Peruzzi,A. Petrilli, G. Petrucciani, A. Pfeiffer,M. Pierini, D. Piparo,A. Racz, T. Reis,G. Rolandi45, M. Rovere, M. Ruan, H. Sakulin,C. Schäfer, C. Schwick,M. Seidel, A. Sharma,P. Silva,M. Simon,

P. Sphicas46, J. Steggemann, B. Stieger,M. Stoye, Y. Takahashi,D. Treille, A. Triossi, A. Tsirou,G.I. Veres21, N. Wardle,H.K. Wöhri, A. Zagozdzinska37, W.D. Zeuner

CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland

W. Bertl,K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,U. Langenegger, T. Rohe

PaulScherrerInstitut,Villigen,Switzerland

F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss,G. Kasieczka, P. Lecomte†, W. Lustermann,B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard,D. Meister,F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss,L. Perrozzi,M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov47,M. Takahashi, V.R. Tavolaro, K. Theofilatos,R. Wallny

InstituteforParticlePhysics,ETHZurich,Zurich,Switzerland

T.K. Aarrestad, C. Amsler48, L. Caminada,M.F. Canelli, V. Chiochia,A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster,C. Lange, J. Ngadiuba, D. Pinna,G. Rauco, P. Robmann, D. Salerno, Y. Yang UniversitätZürich,Zurich,Switzerland

M. Cardaci, K.H. Chen,T.H. Doan, Sh. Jain,R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov,S.S. Yu

NationalCentralUniversity,Chung-Li,Taiwan

Arun Kumar, P. Chang, Y.H. Chang,Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz,F. Fiori,

U. Grundler,W.-S. Hou, Y. Hsiung, Y.F. Liu,R.-S. Lu, M. Miñano Moya,E. Petrakou, J.f. Tsai, Y.M. Tzeng NationalTaiwanUniversity(NTU),Taipei,Taiwan

B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas,N. Suwonjandee ChulalongkornUniversity,FacultyofScience,DepartmentofPhysics,Bangkok,Thailand

A. Adiguzel, M.N. Bakirci49, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, F.H. Gecit,S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar,I. Hos, E.E. Kangal50,G. Onengut51,M. Ozcan,K. Ozdemir52, A. Polatoz, D. Sunar Cerci53,B. Tali53, H. Topakli49,C. Zorbilmez

CukurovaUniversity,Adana,Turkey

B. Bilin, S. Bilmis, B. Isildak54, G. Karapinar55, M. Yalvac, M. Zeyrek MiddleEastTechnicalUniversity,PhysicsDepartment,Ankara,Turkey

E. Gülmez,M. Kaya56,O. Kaya57, E.A. Yetkin58, T. Yetkin59 BogaziciUniversity,Istanbul,Turkey

A. Cakir,K. Cankocak, S. Sen60,F.I. Vardarlı IstanbulTechnicalUniversity,Istanbul,Turkey

(17)

B. Grynyov

InstituteforScintillationMaterialsofNationalAcademyofScienceofUkraine,Kharkov,Ukraine L. Levchuk,P. Sorokin

NationalScientificCenter,KharkovInstituteofPhysicsandTechnology,Kharkov,Ukraine

R. Aggleton,F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans,H. Flacher, J. Goldstein,M. Grimes, G.P. Heath, H.F. Heath,J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold61, S. Paramesvaran,A. Poll, T. Sakuma,S. Seif El Nasr-storey, S. Senkin, D. Smith,V.J. Smith

UniversityofBristol,Bristol,UnitedKingdom

K.W. Bell,A. Belyaev62,C. Brew, R.M. Brown, L. Calligaris,D. Cieri, D.J.A. Cockerill, J.A. Coughlan,

K. Harder,S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea,I.R. Tomalin, T. Williams, S.D. Worm

RutherfordAppletonLaboratory,Didcot,UnitedKingdom

M. Baber,R. Bainbridge, O. Buchmuller, A. Bundock,D. Burton, S. Casasso,M. Citron, D. Colling, L. Corpe, P. Dauncey,G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, D. Futyan,G. Hall, G. Iles, R. Lane, R. Lucas61,L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko47,J. Pela, M. Pesaresi, D.M. Raymond, A. Richards,A. Rose,C. Seez, A. Tapper,K. Uchida, M. Vazquez Acosta63, T. Virdee,S.C. Zenz

ImperialCollege,London,UnitedKingdom

J.E. Cole, P.R. Hobson,A. Khan, P. Kyberd,D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner BrunelUniversity,Uxbridge,UnitedKingdom

A. Borzou,K. Call,J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika BaylorUniversity,Waco,USA

O. Charaf,S.I. Cooper, C. Henderson, P. Rumerio TheUniversityofAlabama,Tuscaloosa,USA

D. Arcaro, A. Avetisyan, T. Bose,D. Gastler, D. Rankin, C. Richardson,J. Rohlf, L. Sulak,D. Zou BostonUniversity,Boston,USA

J. Alimena,E. Berry, D. Cutts, A. Ferapontov,A. Garabedian, J. Hakala, U. Heintz, O. Jesus, E. Laird, G. Landsberg, Z. Mao,M. Narain, S. Piperov,S. Sagir, R. Syarif

BrownUniversity,Providence,USA

R. Breedon,G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan,M. Chertok, J. Conway, R. Conway, P.T. Cox,R. Erbacher, G. Funk, M. Gardner,W. Ko, R. Lander, C. Mclean,M. Mulhearn, D. Pellett,J. Pilot, F. Ricci-Tam,S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi,S. Wilbur, R. Yohay

UniversityofCalifornia,Davis,Davis,USA

R. Cousins,P. Everaerts, A. Florent, J. Hauser,M. Ignatenko, D. Saltzberg, E. Takasugi,V. Valuev, M. Weber UniversityofCalifornia,LosAngeles,USA

K. Burt,R. Clare, J. Ellison, J.W. Gary, G. Hanson,J. Heilman, M. Ivova Paneva, P. Jandir, E. Kennedy, F. Lacroix,O.R. Long, M. Malberti,M. Olmedo Negrete, A. Shrinivas, H. Wei,S. Wimpenny, B.R. Yates UniversityofCalifornia,Riverside,Riverside,USA

(18)

J.G. Branson, G.B. Cerati,S. Cittolin, R.T. D’Agnolo, M. Derdzinski, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill,D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel,A. Vartak,

S. Wasserbaech64,C. Welke, F. Würthwein,A. Yagil, G. Zevi Della Porta UniversityofCalifornia,SanDiego,LaJolla,USA

J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta,K. Flowers, M. Franco Sevilla,P. Geffert, C. George, F. Golf, L. Gouskos,J. Gran, J. Incandela, N. Mccoll, S.D. Mullin,J. Richman, D. Stuart, I. Suarez,C. West, J. Yoo

UniversityofCalifornia,SantaBarbara,SantaBarbara,USA

D. Anderson,A. Apresyan, A. Bornheim,J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman,C. Pena, M. Spiropulu, J.R. Vlimant,S. Xie, R.Y. Zhu

CaliforniaInstituteofTechnology,Pasadena,USA

M.B. Andrews,V. Azzolini, A. Calamba,B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

CarnegieMellonUniversity,Pittsburgh,USA

J.P. Cumalat, W.T. Ford,A. Gaz, F. Jensen, A. Johnson, M. Krohn,T. Mulholland, U. Nauenberg, K. Stenson, S.R. Wagner

UniversityofColoradoBoulder,Boulder,USA

J. Alexander, A. Chatterjee, J. Chaves,J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson,A. Rinkevicius, A. Ryd, L. Skinnari,L. Soffi, W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng,P. Wittich

CornellUniversity,Ithaca,USA

S. Abdullin,M. Albrow, G. Apollinari,S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill,P.C. Bhat, G. Bolla,K. Burkett,J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira,I. Fisk, J. Freeman, E. Gottschalk,L. Gray, D. Green, S. Grünendahl, O. Gutsche,J. Hanlon, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer,Z. Hu, B. Jayatilaka,S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre,D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá,J. Lykken,K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride,P. Merkel,S. Mrenna, S. Nahn, C. Newman-Holmes†,V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, E. Sexton-Kennedy,A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe,L. Taylor, S. Tkaczyk, N.V. Tran,L. Uplegger, E.W. Vaandering,C. Vernieri, M. Verzocchi, R. Vidal,M. Wang, H.A. Weber, A. Whitbeck

FermiNationalAcceleratorLaboratory,Batavia,USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov,A. Brinkerhoff, A. Carnes, M. Carver, D. Curry,S. Das, R.D. Field, I.K. Furic, S.V. Gleyzer, J. Konigsberg,A. Korytov, K. Kotov, P. Ma,K. Matchev, H. Mei,

P. Milenovic65, G. Mitselmakher,D. Rank, R. Rossin, L. Shchutska, M. Snowball, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang,J. Yelton

UniversityofFlorida,Gainesville,USA

S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez FloridaInternationalUniversity,Miami,USA

A. Ackert, J.R. Adams,T. Adams, A. Askew,S. Bein, J. Bochenek, B. Diamond,J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada,H. Prosper,M. Weinberg

Riferimenti

Documenti correlati

was previously shown to bind human recombinant PrP C , and inhibit the replication of a mouse prion in vitro.. and in cells, by acting as a pharmacological chaperone for the native

Word type contrasts showed that, compared to taboo words, non-taboo words elicited greater activation in: fusiform gyrus bilaterally, precentral gyrus bilaterally, left

In this section we focus on the time evolution of the one-body density matrix and the momentum distribution function: these are the most suitable quantities to investigate the

Il timore di Lazarillo della progressiva avarizia di eventuali nuovi padroni si esprime, sul principio, con l’idea di una gradazione decre- scente basata sulla nozione di

Percent changes in serum total AP, bone AP, and f-DPD in Neridronate-treated (closed circles) and control patients (open circles). The symbols (*p ⬍ 0.05; †p ⬍ 0.01; ‡p ⬍

The empirical analysis of interprovincial migration in Canada is carry out by estimating a logit model where the probability that a person moves from one province

Per quanto riguarda le abitudini dei cincillà intervistati l’88,8% ha la possibilità di uscire dalla gabbia/voliera almeno parte del tempo e questo dato risulta

As matter of fact their offer many advantages compared to their semiconductor equivalent (based on PIN diodes or GaAs transistors): very low losses (specially at higher