• Non ci sono risultati.

Addressing circular economy through design for X approaches: A systematic literature review

N/A
N/A
Protected

Academic year: 2021

Condividi "Addressing circular economy through design for X approaches: A systematic literature review"

Copied!
23
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Computers

in

Industry

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / c o m p i n d

Addressing

circular

economy

through

design

for

X

approaches:

A

systematic

literature

review

Claudio

Sassanelli

a,∗

,

Andrea

Urbinati

a,b

,

Paolo

Rosa

a

,

Davide

Chiaroni

a

,

Sergio

Terzi

a aDepartmentofManagement,EconomicsandIndustrialEngineering,PolitecnicodiMilano,PiazzaLeonardodaVinci32,20133Milan,Italy bSchoolofIndustrialEngineering,LIUCUniversitàCattaneo,CorsoG.Matteotti,22,21053,Castellanza,Varese,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16December2019

Receivedinrevisedform10February2020 Accepted15April2020 Keywords: Circulardesign DesignforX Circulareconomy End-of-Life Sustainability Product-ServiceSystem Designguidelines Knowledgemanagement Productdesignapproach Environmentalproductdesign Designforsustainability Designforenvironment Remanufacturing Recycling Recover Reuse Reliability

Circulardesigndecision-support Circulardesignmetricsandevaluation Systematicliteraturereview

a

b

s

t

r

a

c

t

Guidedbyatechnologicalrevolution,widelydiscussedparadigmsasservitizationandCircularEconomy

(CE)areprogressivelypushingmanufacturerstowardsdeliveringincreasinglycomplexsolutions.Design

playsastrategicroleinthissense,eitherconsideringproducts,servicesorProduct-ServiceSystems(PSSs).

Concurrentengineeringand,specifically,DesignforX(DfX)approacheshavebeenwidelyassociated

toproducts,revealinggreatpotentialitiesforenhancingservicefunctionalitieslikesupportabilityand

circularity.Again,DfXapproacheshavebeenalreadyexploitedtosystematicallysupportthePSSdesign

process,giventheirre-knownabilitytoallowabetterinformationsharingbetweenproductdesigners

andservicemanagers.However,evenifseveralDfXapproachesrelatedwiththeEndofLife(EoL)stage

alreadyexist(e.g.Designforrecycling,remanufacturingandEoL),theystillneedtobetterfitwitha

circulardesignperspective.Therefore,theaimofthispaperisexploringandunderstandinghowdesign

cancontributetowardsaCEtransitionthroughtheadoptionofDfXapproaches.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction...2

2. Materialsandmethods...2

3. Literaturereview...3

Abbreviations:AM,AdditiveManufacturing;BM,BusinessModel;CBM,CircularBusinessModel;CLPSS,CircularLifecycleofPSS;CE,CircularEconomy;DfA,Designfor Assembly;DfAd,DesignforAdaptability;BoP,BaseofthePyramid;DfCom,DesignforCompatibility;DfD,DesignforDisassembly;DfD&Rea,DesignforDisassemblyand Reassembly;DfE,DesignforEnvironment;DfEoL,DesignforEndofLife;DfMA,DesignforManufacturingandAssembly;DfM,DesignforMaintenance;DfMo,Designfor Modularity;DfLLUoP,DesignforLongLifeUseofProducts;DfX,DesignofX;DfPSSu,DesignforProductServiceSupportability;DfRecy,DesignforRecycling;DfReco,Design forRecovery;DfRel,DesignforReliability;DfRem,DesignforRemanufacturing;DfRema,DesignforRemake;DfSa,DesignforSafety;DfSC,DesignforSupplyChain;DfSR, DesignforSocialResponsibility;DfSt,DesignforStandardization;DfSu,DesignforSustainability;DfUpg,DesignforUpgradability;EEE,ElectricalandElectronicEquipment; ELV,EndofLifeVehicle;EoL,EndofLife;ICT,InformationandCommunicationTechnology;IS,InformationSystem;KET,KeyEnablingTechnology;MLC,MultipleLifeCycle; PSS,Product-ServiceSystem;SC,SupplyChain;SLC,SlowingLifeCycle;SLIP,Sort-Label-Integrate-Prioritize;SME,SmallandMediumEnterprise;SysC,SystemChange.

∗ Correspondingauthor.

E-mailaddress:claudio.sassanelli@polimi.it(C.Sassanelli). https://doi.org/10.1016/j.compind.2020.103245

0166-3615/©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(2)

2 C.Sassanelli,A.Urbinati,P.Rosaetal./ComputersinIndustry120(2020)103245

3.1. ExtantstateoftheartonDfXapproachessupportingtheadoptionofCircularEconomy...4

3.1.1. Circulardesignimprovement ... 6

3.1.2. Circulardesignmetricsandevaluation ... 9

3.1.3. Circulardesigndecision-support ... 13

3.1.4. Designdrivingcirculartransition...13

3.1.5. Circulardesignknowledgemanagement...13

4. Discussion...13

5. Conclusions...21

Acknowledgements ... 22

References...22

1. Introduction

Considering the highcompetition of current industrial con-texts,manufacturersareaskedtodeliverproductscharacterized byanincreasingcomplexity(Maeda,2006;Norman,2011;Velte andSteinhilper,2016).Productsaresupposedtoaddressnew cir-cularanddigitalfeaturestobeintegratedandsystematizedwith multipletraditionalfunctionalities,oftenthankstothe introduc-tionofnewtechnologies.Fromoneside,thesustainability(WCED, 1987)andCircularEconomy(CE)paradigms(TheEllenMacArthur Foundation,2015)raisedbothcustomers’andproviders’awareness aboutnatural resourcesscarcity.Fromanotherside,the serviti-zationparadigm(Vandermerweand Rada,1988)supportedthe adventofamoresustainableeconomy(Stahel,1997;Botsmanand Rogers,2010; Bocken et al.,2016), by changingthefocus from productstoproduct-relatedservices(Goedkoopetal.,1999).Like evidencedbyliterature,thesetwoparadigms canbeinfluenced andenabledbytechnology(PorterandHeppelmann,2015;Rosa etal., 2019a).In order topursuethis transition,manufacturers havebeencompelledinchangingtheirbusinessmodels(Bocken etal.,2014),bydetectingandavoidingrelatedhurdles(Brax,2005; Gebaueretal.,2005;deJesusPachecoetal.,2019)andexploring potentialbenefits(Rosaetal.,2019b).However,methodsandtools supportingthesystematicintegrationofproduct-servicesundera circularperspectivearestillunderdevelopment.Someinitial ben-efitsgoinginthisdirectionhavebeenreachedthroughconcurrent engineering(ClarkandFujimoto,1991;Clausing,1994). Specifi-cally,DesignforX(DfX)guidelines(GatenbyandFoo,1990;Huang, 1996) are interpreted as a concurrent design of products (and relatedprocesses/systems)pluscertainabilitiesincopingwitha specificrequirement(e.g.features,performance,constraints,etc.). EvenifDFXcanenhance competitivenessmeasures,rationalize product/process/resource design decisions and improve opera-tionalefficiencyinproductdevelopment(Huang,1996;Kuoetal., 2001), they arequite oldapproaches (Gatenby and Foo, 1990). Again,lookingattheEndofLife(EoL)stage,evenifseveralDfX methodsandtoolsalreadyexist,theystillneedforacircular per-spective(Bakkeretal.,2014).WithintheProduct-ServiceSystem (PSS)contextDfX havebeenrarelyconsideredbyexperts:they havebeenproposedasameantofillinthegapofknowledgeof designersaboutproductlifecyclestages,favouringabetter infor-mationsharingbetweenproductdesignersandservicemanagers (SassanelliandPezzotta,2019).Wrappingup,severalDfXresearch attemptsdealingwithCEhavealreadybeenconductedbut lack-ingofanoverallandsystematizedapproach.Therefore,theaimof thisworkistoexploreandunderstandhowdesigncancontribute towardsaCEtransitionthroughtheadoptionofDfXapproachesto deliversuitableproduct/service/PSS.Thepaperisorganizedas fol-lows.Section2explainstheadoptedresearchmethodology.Section 3presentsresultscomingfromtheliteraturereview.Section4 dis-cussesaboutresults.Finally,Section5providessomeconclusions andfutureresearchtrends.

2. Materialsandmethods

InordertobettersystematizetheDfX approaches contribut-ingtoa circulardesign,a systematicliteraturereviewhasbeen conducted.Theareaofinvestigationdidn’tfocusonthespecific contextofeitherproductorservicesorPSSs,lookingattheentire extantliteraturedealingwiththecirculardesignthroughthe adop-tionoftheDfXapproaches.Thekeywords“CircularEconomy”and itsmainsynonym“endoflife”(assuggestedbyarecentsystematic literaturereviewonCE(SassanelliandRosa,2019))werecombined witheither“DesignforX”,“DfX”or“designguideline”andsearched withoutanytime/documentrestriction.Resultsofthesequeries arereportedinTable1,confirmingthatthe“endoflife”context hasbeenexploredmorethanthe“circulareconomy”one.Atotal amountof402and339documentshavebeenfoundonScopus® andScience Direct®,respectively.Ifcompared tothemore dis-cussedsingletopicsofCEandDfX,thesenumbershighlighthow thiscombinedresearchcontextisstillunder-investigatedevenif deservingmoreattentionfrombothresearchers’and practition-ers’side.Moreover,lookingatthesame searchesperformedon titles,abstractsandkeywords,resultsindicatethatthisresearch contextstillrepresentsaniche.Afterdiscardingredundancies,a finalsetof125documentswasconsideredforanalysis.These doc-umentshavebeenassessedintotwoways.Afirstanalysisoftitles, abstractsandkeywordsledtoa setof43 documents.Then,the readingoftheentiremanuscriptsconductedtoafinalamountof 31documents.Theselectionwasbasedontherelevanceof doc-uments,takingintoaccount onlythosecontributions proposing DfXapproachesandrelateddesignguidelinestofosterthe adop-tionoftheCEparadigmthroughthedeliveryofcircularsolutions. Specifically,authorsselectedonlythosedocumentscontributing toarealenhancementofDfXmethodsandpracticesunderaCE lens, enabling theirintegrationand systematization with tradi-tionalproductabilitiesthroughaconcurrentengineeringapproach. In particular,Fig.1 shows theresearchstrategy used inthe systematic literature review (Smart et al.,2017; Sassanelli and Rosa,2019): Table1 reports thefour stringsused tocarry out thesearchesonScopusand ScienceDirectdatabases,leadingto 741results.Furthermore,25documentswereconsideredthrough cross-referencingprocesses and4throughhandsearch.Last,15 moredocumentswererecommendedbyexpertstobeaddedtothe list.Applyingthecriteria,thesetofdocumentsfoundwasreduced attheendto31selectedarticlesthathadbeenfullyanalysed.The entireprocessofselectionandexaminationofthedocumentswas conductedbytwo authors,carrying itout autonomouslytonot fallinbiasofanalysisthroughoutthereview.Finally,theirresults werecomparedandmadeconsistenttoeachother,leadingtothe researchpresentedinthisarticle.

Asshowninnextsection,allthesepapershavebeencategorized bynationofthefirstauthor,year,documenttype,researchtype (dividedinTheoreticalAssessment;AnalyticalAssessment;Case Studies; Surveys;Action Research;Other) and journal.

(3)

Further-Table1

Searchesbykeywordsanddocumentsselection.

Searchbykeywords Scopus

® ScienceDirect®

Allfields (Title-Abs-Key) Allfields (Title-Abs-Key)

“Designguideline”AND“CircularEconomy” 33 (5) 10 (1)

“(DesignforX”OR“DfX”)AND“CircularEconomy” 45 (5) 59 (0)

“Designguideline”AND“endoflife” 157 (17) 40 (0)

(“DesignforX”OR“DfX”)AND“endoflife” 167 (15) 230 (0)

Total 402 339

Total(withoutredundanciesinthesameDB) 75 67 Total(withoutredundanciesbetweenthetwoDBs) 125

Total(aftertitle,abstractandkeywordsassessment) 43 Total(afterentiremanuscriptassessment) 31

Fig.1.Researchstrategy(adaptedby(Smartetal.(2017))).

Fig.2. Historicalpublicationtrendbyyear.

more,insub-section3.1thecontributionshavebeenanalysedand groupedbasedonthepurposeofusingDfXinthedesignprocess ofcircularsolutions,themainabilitiesrelatedtoDfXapproaches consideredtoaddressthesepurposesand thegapsdeclaredby researchersineachofthesecategories.

3. Literaturereview

Thetrendalong theyears oftheselected31 articles(Fig.2) showsaquitesteadyandweakinterestonDfXapproachesto fos-ter CEadoption,recording a growthfromaround 2015(61.3% ofthecontributionsarefrom2015onward).Thiscanbejustified by the blossom of several directives and regulations

indicat-ingonCE(EuropeanCommission,2014;EuropeanCommission, 2015) always more urgent to put right to global issues like resources depletion, consumerism and population growth (The EllenMacArthurFoundation,2015).

Concerningthetypeofcontributions(seeFig.3),17werearticles publishedin scientific journals,10 papers in international con-ferenceproceedingsand3weremaster/PhDthesis.Inlinewith resultscomingfromotherliteraturereviewsonCE(Sassanelliand Pezzotta,2019),JournalofCleanerProductionandResources, Conser-vationandRecyclingarethemostrecurrentjournals(with50%of thejournalarticlesconsidered).

Inviewofthenationalityofauthors,Europeancountries pro-videdthemajorityofcontributionsselected(71%),followedby North American countries (16,1%) and Southeast Asian/Chinese countries(12,9%)(Fig.4).

Assessingtheliterature,wecheckedthatmostofauthorsgave relevancetothetheoreticalside,inordertotrytodefinea com-mongroundoftheories.19timesresearcherschosetoconducta theoreticalassessmentofthecontextwithoutbeingabletogive acomplete pictureoftheDfXneeded,mostlyduetothe multi-plicityandheterogeneityofthesekindofapproaches.Moreover, 6researchesconductedapplicationcases,mainlytovalidatethe methodsandtoolsproposedand6werecasestudytopractically explaintheproposedapproachesortodemonstratetheir useful-ness.Morethanhalfofthecontributions(19of31)providedonlya theoreticalviewontherelationshipbetweencircularityandDfX approaches:only12 documentsproposedapplicationcasesand

(4)

4 C.Sassanelli,A.Urbinati,P.Rosaetal./ComputersinIndustry120(2020)103245

Fig.3.Typeofcontributions:journalsarticles,conferenceproceedingsandthesis.

Fig.4. Publishingcountries.

casestudiestodemonstratethevalueoftheproposedresearches fromapracticalperspective.These12documentsproposedintotal 59cases:47caseswerecomingfrommasterandPhDtheses,10 fromactionresearchandcasestudiespapersand2from

theoret-icalanalyses(conductedonthespecificautomotiveandmaritime industries).Fig.5showsthetypeofproducts/industrieswherethe proposedguidelines,frameworksandmethodshavebeenapplied, highlightingthatthemostrelevantonesusedtoapplycircularDfX areElectricalandElectronicEquipment(EEE),photocopiers(and relatedtonercartridges)andautomotivesector.Thus,EEEs (con-sideringphotocopiersandtonercartridgesindustryasoneofits sub-group)andEndofLifeVehicles(ELVs)industriesseemmore sensitivetotheimplementationofDfXtoaddressCE.Thiscanbe explainedbythefactthattheyrepresentthetwomostimportant sourcesofwastesglobally,withanottobeneglectedpercentage ofhazardousmaterials.Atthesametime,theyinvolveproducts composedbyalargenumberofdifferentcomponentsand mate-rialsthatremainsunprocessedanddirectedtolandfills(Ongondo etal.,2011;ZorpasandInglezakis,2012).

3.1. ExtantstateoftheartonDfXapproachessupportingthe adoptionofCircularEconomy

In this sub-section, the results of the systematic literature reviewabouttherelationshipamongDfXapproachesandCEare reported.Thesetof 31documentsselectedhavebeenanalysed (throughtheSLIPmethod(whichhelpstoSort,Label,Integrateand Prioritizekeyconcepts)(Maeda,2006))todetectandgroup: • thepurposesofusingDfXapproachestosupportandfosterthe

adoptionofCE,

• foreachofthesepurposes,whichability/iesis/areofmajor inter-est,

• theTripleBottomLine(TBL)perspectiveconsidered(sinceDfX approachestraditionallyaddresseconomicaspectsbutcanalso be oriented to enhance environmental and social ones) and throughwhichabilitieseachoftheseperspectiveisachievedby authors.

All the contributions were focused on understanding how designcancontributetothecirculartransitionthroughthe adop-tionofDfXapproaches.Themajority(15)wasaimedatimproving thedesignprocessunderacircularperspective,someofthem(8) wereorientedtofocusthedesignprocessattentiononcircular met-ricsandevaluations,fewofthemhadtheobjectivetosupportthe

(5)

Table2

DfXpurposesfosteringcircularityadoption.

DfXpurpose Circulardesign improvement

Circulardesignmetrics andevaluation Circulardesign decision-support Designdriving circulartransition Circulardesign knowledge management Total 15 8 3 3 2 (Bakkeretal.(2014)); (Ceschinand Gaziulusoy(2016)); (Goetal.(2015)); (Morenoetal.(2016)); (PigossoandMcAloone (2017));

(vanderLaanand Aurisicchio(2019)); (Vanegasetal.(2018)); (Wahabetal.(2018)); (Sundin(2004)); (Hultgren(2012)); (Allwoodetal.(2011)); (Rose(2000)); (Peetersetal.(2012)); (Arnetteetal.(2014)) (Favietal.(2019))

(BoveaandPérez-Belis (2004));

(Mendozaetal. (2017));

(Rochaetal.(2019)); (Rossietal.(2016)); (VandenBergand Bakker(2015)); (ShuandFlowers (1999)); (DesaiandMital (2003));

(Mayyasetal.(2012))

(Gouldetal. (2017)); (Kuoetal.(2019)); (PozoArcosetal. (2018))

DeLosRiosand Charnley(2017); (Bhamra(2004)); (Rahitoetal. (2019)) (Favietal.(2016)); (Toxopeusetal. (2018))

decision-makingalongcirculardesignprocess(3),thetransition throughdesigntowardscircularity(3)andtheknowledge manage-mentprocessthroughoutcirculardesign(2).Table2reportssome detailsaboutthefinalsetof31papers.

AllthedetectedpurposesplayedbyDfXapproachesundera cir-cularperspective(seeFig.6below),havebeenanalysedinterms ofmeanproposed/used(method,tool,framework,guidelines, rec-ommendations, literaturereview, model) toaddress circularity, mainabilitiestobeaddressed(andrelatedsecondaryabilitiesand features),TBLperspective consideredtoaddress circularityand researchgapstobefilled.

Indeed,eachdocumenthasbeenanalysedunderatwofold per-spectivewiththeDfXlensestounderstandhowtheseapproaches havebeenusedtoaddressCEsofar.Thedocumentsselectedhave beenanalysed not only tounderstand for which purposes DfX approacheshavecontributedtoCEadoption(leadingtothe clas-sificationpresentedinFig.6above)butalsotodefinewhichDfX abilitieshavebeenconsideredtoaddressthesedifferentpurposes. TheDfXAbilityisbasedonthe“function”conceptexplainedby (Mitaletal.,2008),p.251).Theydefineafunctionastheabilityof aproduct“todosomething(performance),safely,reliably,inausable manner,inahigh-qualitymanner,withconcernformanufacturability andenvironmentfriendliness”.Abilitiesarehencethoseprinciples throughwhichthefunctioncanbeexplicatedandexplainedand representswhat precisely the DfX approach addresses (Huang, 1996;SassanelliandPezzotta,2019).Giventhehuge amountof approaches in extantliterature, abilities reported in theset of documentsanalysedwerefirstgroupedinmainandsecondary abil-itiesorientedtoachievecircularity.Finally,onlythemainabilities havebeenconsideredandgroupedinthisanalysis(usingtheSLIP method(Maeda,2006))tosetthecategoriesofcircularDfXabilities. Theseabilitiesareclusteredin5mainclasses:

1SupplyChain(SC):ittakesaccountoftheroleoftheSCduringthe designphaseintermsofcoordination,collaborationand integra-tiontodelivercircularor/andsustainablevaluetothecustomer (LeeandBillington,1992),coveringthewholespectrumofvalue creationforbothbiologicalandtechnologicalcycles(Charnley etal.,2011).ItisdeclinedinapproachesasDesignfor:

-Designfor:SC;Circular/SustainableSC;SystemChange. 2Resource/energyefficiency:itconsiderstheontological

charac-teristicoftheCEparadigmofminimizingthenegativeeffects

of finite resources consumption, by focusing on intelligent designofmaterials,productsandsystems(TheEllenMacArthur Foundation,2015)tominimiseemissions,resourceuse, pollu-tionandwaste,andmaximisetheresourceefficiencyofmaterial assets (Stahel and Reday-Mulvey, 1981; Pearce and Turner, 1991).Itgathersapproachesas:

-DesignforResourceefficiencyandconservation(DfREf&C). 3Reliability:itincludesapproachesaimedatimprovingeitherthe

inner capacityof theproducttoaddressreliability andsafety throughouttheentirelifecycleorthoseonesorientedat slow-ingandextendingthelifecycletoprolongtheirusephase(e.g. throughmaintenance).Thiscategoryisdeclinedinapproaches as:

-DesignforSlowingLifecycle(DfSLC);DesignforLonglifeUse ofProducts(DfLLUoP);DesignforMaintenance(DfMa);Design forProduct-lifeextension(DfPLExt),

-DesignforReliability(DfRel)andDesignforSafety(DfSa). 4Multiple Life Cycle (MLC): this category considers all those

approachesaimedatenablingtheMLCofresources.Several cir-clesareenabledclosingtheloopandaddressingthesustainable useofresources.Bothbiologicalandtechnicalcyclesare con-sideredin thesevirtuousapproaches.Six mainsub-categories havebeendetected,mainlybasedoneitherthedifferentstrategy adoptedtoclosetheloop(e.g.disassemblyorremanufacturing orrecycling)ortheinnerproductspropertiesabletofosterthe adoptionofthesestrategies(e.g.modularityoreaseofaccess). Theyconsistinapproachesas:

-DesignforMultipleLifeCycles(DfMLC);futureproofdesign; technicalcycle;biologicalcycle;closed-loopPSS;easeof clean-ing/storage/access,

-DesignforDisassemblyandReassembly(DfD&Rea),

-Design for Remanufacturing (DfRem); Design for Remake (DfRema);DesignforRecovery(DfReco),

-DesignforRecycling(DfRecy), -DesignforEnd-of-Life(DfEoL),

-Designfor:Adaptability;Standardization;Compatibility; Mod-ularity;Upgradability.

5Sustainability:thiscategory isfunded onthetangledrelation betweensustainabilityandCE(Merlietal.,2018).Hereconverge alltheapproachesaddressingsustainability,declinedthroughout theTBL(WCED,1987)withitsthreefoldperspective(economic, environmental,social).

(6)

6 C.Sassanelli,A.Urbinati,P.Rosaetal./ComputersinIndustry120(2020)103245

Fig.6.SchemeofDfXpurposesfosteringCircularEconomyadoption.

-DesignforSustainability(DfSu), -DesignforEnvironment(DfE), -DesignforSocialResponsibility(DfSR).

Moreover,authorsconsiderrelevanttoprovideabriefoverview alsoofthesecondaryapproaches,reportingsomeexamples.From oneside,ontheproductlevel,emotionallydurabledesign,design forproductattachment,greenandeco-design,designfor sustain-ablebehaviour, cradle-to-cradle design and biomimicry design. Instead,fromaPSSperspective,PSSdesignforeco-efficiency,PSS designforsustainabilityandPSSdesignfortheBottomofthe Pyra-mid(BoP),designforsocialinnovation,systemicdesign,designfor systemsinnovationsandtransitions.Inaddition,designfor logis-tics,designforprocurement,designforreverselogisticcontributed toenrichtheSCcategory.Finally,otherapproacheswereaimed mainlyatstrengtheningthesustainableandenvironmentalaspect: radicalinnovationforsustainability,designforcascadeduse,design forenergyperformance,designfordematerialization,design for responsibleuser-behaviour,designforflexibility,designformass customization,designforchronicriskreduction,designforenergy conservation,design formaterialconservation,designforwaste minimization&recovery.

Furthermore,itisworthtoanalysethetwofoldDfX-CEresearch contextthroughthetypeofresearchesconductedandthe contribu-tionsproposedbyresearchers(Table3).Ingeneral,mostresearches conductedweremostlytheoretical.Indeed,justoneofthefiveDfX purposecategories, CircularDesignKM,is characterizedonlyby practicalcontributions.Inthiscaseonlymethodsandtoolswere proposedtofosteraneasiersharingandutilizationofdesign knowl-edge.Instead,inthecaseofCircularDesignImprovementcategory, themajorityofcontributionsweretheoretical,sometimes gather-ingasaresultguidelinesprovidedinliteratureandsometimealso proposingnewmethodstodefinevaluesastheproductlifespan anddisassemblytimeortoimprovetheproductcharacteristicsfor easingrecyclingandremanufacturing.TheCircularDesignMetrics andEvaluationscategorymainlypresentsframeworksandmodels

toensureabetterimplementationofCErequirementsorto quan-tifythecostofjointsthroughouttheremanufacturingprocesses. IntheCircularDesignDecision-Supportcategory,literaturereviews andacasestudyconcurtoprovidenotonlya frameworkanda methodselectingthemostsuitablesustainabledesignstrategies andprovidinghintsonhow toimplementthembutalso recov-ery guidelines supportingthedecision-support process. Finally, intheDesignDrivingCircularTransitioncontributions,only theo-reticalassessmentswereconducted,providingliteraturereviews concerningtheresearchcontext.

In the following sub-sections, the set of 31 contributions selectedaredescribedbasedontheaggregatedimensionof anal-ysis,named DfXpurposesfosteringcircular adoption(shownin Fig.6).

3.1.1. Circulardesignimprovement

AsreportedinTable2,themostcommonpurposejustifyingthe adoptionofDfXtofosterandaddresscircularityistheimprovement ofthedesignofproducts/service/systemsfromacircular perspec-tive(Rose,2000; Sundin,2004; Allwoodet al., 2011;Hultgren, 2012;PeetersandDewulf,2012;Arnetteetal.,2014;Bakkeretal., 2014;Goetal.,2015;CeschinandGaziulusoy,2016;Morenoetal., 2016;PigossoandMcAloone,2017;Vanegasetal.,2018;Wahab etal.,2018;vanderLaanandAurisicchio,2019).

(Bakkeretal.(2014))exploredhowproductdesigncanmore proactivelyaddressproductlifeextension(throughlongerproduct life,refurbishmentand remanufacturing)andproductrecycling. BasedontheWasteFrameworkDirective,theyselectedthreemain strategies for product life extension and recycling: prevention, reuseandrecycling.Inordertoaddressoneofthesethree strate-gies,itisimportanttorealizehowtodefineproductlifespanfrom bothanenvironmentalandeconomicperspective.Thechallenge istodeterminewhentoapplywhichproductlifeextension strat-egy.Forthisreason,theyproposedamethodologytodeterminethe optimalproductlifespan,appliedtotwocasestudiesonadomestic refrigeratorandalaptop.

(7)

Table3

Typeofresearchesandcontributionsproposed.

DfXpurposesfostering circularadoption Authors

Researchtype Mean

Theoretical assessment Case studies Action research Method/tool Framework /model Guidelines Literature review CircularDesign Improvement (Bakkeretal.(2014)) x x (Ceschinand Gaziulusoy(2016)) x x (Goetal.(2015)) x x x (Morenoetal.(2016)) x x x

(PigossoandMcAloone (2017))

x x

(vanderLaanand Aurisicchio(2019)) x x (Vanegasetal.(2018)) x x (Favietal.(2019)) x x (Wahabetal.(2018)) x x (Sundin(2004)) x x (Hultgren(2012)) x x (Allwoodetal.(2011)) x x (Rose(2000)) x x (Peetersetal.(2012)) x x (Arnetteetal.(2014)) x x

TotalperDfXpurpose 10 3 2 4 1 6 5

CircularDesign Metricsand Evaluation

(BoveaandPérez-Belis (2004))

x x

(Mendozaetal.(2017)) x x

(Rochaetal.(2019)) x x

(Rossietal.(2016)) x x x

(VandenBergand Bakker(2015))

x x

(ShuandFlowers (1999))

x x

(DesaiandMital (2003))

x x

(Mayyasetal.(2012)) x x

TotalperDfXpurpose 4 2 2 2 4 1 2

CircularDesign Decision-Support

(Gouldetal.(2017)) x x

(Kuoetal.(2019)) x x

(PozoArcosetal. (2018))

x x

TotalperDfXpurpose 2 1 0 1 1 0 1

DesignDriving CircularTransition

DeLosRiosand Charnley(2017)

x x

(Bhamra(2004)) x x

(Rahitoetal.(2019)) x x

TotalperDfXpurpose 3 0 0 0 0 0 3

CircularDesignKM (Favietal.(2016)) x x

(Toxopeusetal.(2018)) x x

TotalperDfXpurpose 0 0 2 2 0 0 0

TotalofallDfXpurposes 19 6 6 10 6 7 11

(CeschinandGaziulusoy(2016))exploredhowDfSuapproach evolved,groupingthedesignapproachesproposedintheextant literature in fourinnovation levels: Product, PSS, Spatial-Social andSocio-TechnicalSystem.Tothisaim,theyassessedDfX guide-linesandtoolkitssupportingsustainableattitudes.Atproductlevel, emotionallydurable design and Design for productattachment weredefinedcomplementarytothemorebasicgreen and eco-design approaches. Moreover,Design for SustainableBehaviour addressestheproductimpactthroughoutitswholelifecycle,while cradle-to-cradledesignandbiomimicrydesignwereconsideredto contributetotheEoL.Inaddition,DesignfortheBaseofthe Pyra-mid(BoP)wassupposedtosupportsocialissues,mostlythrough PSS-basedBMsadoption(Emilietal.,2016).InthePSScontext, researchersconsideredenvironmentalandeconomicapproaches (as PSS design for eco-efficiency) and included also the social aspects(throughPSSDfSuandPSSDfBoP).Thespatial-sociallevel unveiledaneedfortechnologicalinnovationstobecomplemented by social innovations through approaches as design for social innovation. In this dimension also systemic design was intro-duced,focusing ontheconceptofwaste(materialsandenergy) flows,designedtobecomeinputstootherprocesses.Lastly,atthe

socio-technicalsysteminnovationlevel,DesignforSystems Inno-vationsandTransitionswasconsideredasthestrategicapproach toembodythePSSdesign.

Aswell,(Morenoetal.(2016))proposedaconceptual frame-work for CEdesign strategies starting from an analysis of the extantliteratureonDfSucombinedwithCBMs.BasedontheDfX approachestaxonomyby(DelosRiosandCharnley(2017)),they detectedfivemaincirculardesignstrategies:

1Designforcircularsupplies 2Designforresourceconservation 3DfMLC

4DfLLUoP 5DfSysC

AfterreviewingDfXapproachesandproposingtheiradoption asafundamentalmeantopursuethetransitiontowardscircular design,theyproposed10recommendationstobeconsideredwhen designingforaCE.

Instead, (Go et al.(2015)) analysed and groupedthe design guidelinescomingfromthoseDfXapproaches concurringtothe

(8)

8 C.Sassanelli,A.Urbinati,P.Rosaetal./ComputersinIndustry120(2020)103245 definitionof DfMLC. They defined DfMLC as a mixture of

eco-designstrategies(DfE,DfRem,DesignforUpgradability,DfA,DfDis, DesignforModularity,DfMaandDfRel)thattheymappedwith MLC options (reuse/remanufacturing/recycling) processes (core collection,inspection,disassembly,cleaning&storage, remedia-tion,reassembly,testing).Theyreportedthemainguidelinesper eachoftheseapproachesarguingthattheirconcurrentadoption cangroundthecirculardesignoffutureproducts.

(PigossoandMcAloone(2017)),throughasystematicliterature review,identified“designmethodsandtools”,“Product,serviceand systemdesign”and“DesignforX/DesigntoX”asthethreemain designtopicsintheCEcontext.ConcerningDfX,theyrecognized thekeyroleofsuchapproachesincirculardesign(impactingon differentaspectsascost,aestheticsandperformance),also reveal-ingtheroleofdigitaltechnologies, IoTandbigdataasenablers forCE.Moreover,alsointhiscasePSSseemedtobeapromising approachforCE,tobesupportedbysuitabledesignguidelinesand sustainabilityevaluationmethods.

SinceextantresearchesfocusedondevelopingPSSsthatnarrow andslowresourceflows(Bockenetal.,2016;Blomsmaetal.,2018) ratherthanclosingresourceloops,(vanderLaanandAurisicchio (2019))provided10guidelinesforthedesignofclosed-loopPSSs, groupedin4dimensions:statelifetime;governlifetime;intercept obsoletes;transitionobsoletes.

Based on the need raised in the EU action plan for theCE (EuropeanCommission,2015)todevelopstandardsonmaterial efficiencytosetdurability,reparabilityandrecyclability require-ments,(Vanegasetal.(2018))proposedamethod,“eDiM”(easeof DisassemblyMetric),aimedatcomputingthedisassemblytimeto measureeaseofdisassembly,comparealternativeproductdesigns andmeasurerecoverability.Beingtimeavalidmetricfor disassem-blymodelling,theycategorizeddisassemblytasksinsixcategories (tool change, identifyingconnectors, manipulation, positioning, disconnection, removing)to better understand which ones are themosttime-consumingandhowtheycouldbeimproved.(Favi etal.(2019))proposedaDfDmethodandtool,theLeanDfD,toaid designersandengineersintheimplementationofre-designactions forimprovingproductde-manufacturabilityandEoLperformances. Themethodology is composedof fourmain steps(target com-ponents,precedencies,liaisonsandproperties,disassemblytimes &costs).Quantitativelyassessingthedisassemblabilityand recy-clabilityofmechatronicproductsthroughsuitableindicators,the LeanDfDpackagecan:

• assessthedesigndecisions

• storeandclassifydisassemblydata(standardtimesand correc-tivefactorsofeachdisassemblyliaisonandoperation)tocreate valuableknowledge,usefulto:

-conducttime-basedanalysisandimprovethedisassemblability performanceoftargetcomponents

-estimatethequantitiesofmaterialsthatcouldbepotentially recycledattheproductEoL.

(Wahab etal. (2018)) performeda review of remanufactur-ingtoextendlifecycleofmarinestructures,presentingDfRemas theenablerforlifecyclereliabilityandsafety.Indeed,demanding awarrantytoproducts’originalspecification andrequiring for-malcertificationstoensurefunctionalityandsafetyperformances, remanufacturingcanbeconsideredthebestEoLrecoverystrategy. Inthiscontext,theydiscussedhowtheincorporationofDfRem con-tributestoenhancereliabilityandsafetyforlifecycleextensionin eachofthedifferentstagesofembodimentdesign.Inarchitecture design,architecturesmodularityensuresreliabilityandsafety dur-ingtheusephase,minimizingdesigncomplexityandfacilitating accessibility,partreplacementandmaintenance.Inconfiguration design,durablematerials,reliableandstandardpartsare

consid-eredtosupportandeasedisassemblyandreassembly,inspection and cleaning,repair and restoration.In parametricdesign, DfD, DesignforEasyCleaning,DesignforRestoration,Designforease ofinspection,wereselectedtoimprovetheremanufacturing per-formances.

(Sundin (2004)) focused on DfE and DfRem, not neglecting conflicts between different DfX approaches. He introducedthe RemPro-matrix,identifyingtheproductpropertiestobe consid-eredwhenaproducthastoberemanufactured(wearresistance, easeof: identification,verification,access, handling,separation, securing,alignment,stacking)andshowingtheirrelationshipwith the steps composing the remanufacturing process (inspection, cleaning,disassembly,storage,repair,reassembly,testing).Finally, inRef.(Sundinetal.,2009),inlightofthepreviousresearchthey underlinedhowtoadaptproducttoPSSwithalifecycleperspective inthedesignphase.

(Hultgren(2012))createdguidelinesanddesignstrategieson recyclabilitytosupportengineersindesigningproductsthatare easiertorecycle.Sheobtained4mainguidelines(mainlydealing with:hazardousmaterialsandcomponents;theireaseofaccess and removal; recyclable materials; connections enabling liber-ation) declined in a set of 14 design strategies. Indeed, these guidelinescanbeexplodedinseveraldesignstrategiescontaining morespecificpracticalDfRecyadvices.Sheinvolveddifferent con-cepts(suchasDfEandDfSu,DfDandDfReco)ingeneralguidelines toimprovetheenvironmentalperformanceofproducts.

(Allwoodetal.(2011))discussedfourmainstrategiesfor reduc-ingmaterialdemandthroughmaterialefficiency(longer-lasting products; modularization and remanufacturing; component re-use;designingproductswithless material)andreporteddesign guidelinessupportingremanufacturing,basedon(SundinandBras (2005))work.

(Rose(2000))proposedadesigntool,EoLDesignAdvisor(ELDA), usingsimpleproductcharacteristicstomakeEoLstrategydecisions basedondesigners’andproductmanagers’recyclingexperiences. Moreover,shedefinedsixEoLstrategies(reuse,service, remanu-facture,recyclingwithassembly,recyclingwithoutdisassembly, disposal) to map product characteristics withthe possible EoL treatmentoftheproduct.Shedetectedsixfinaltechnicalproduct characteristics(wear-outlife,technologycycle,levelofintegration, numberofparts,designcycle,reasonforredesign)becauseoftheir stronginfluenceovertheproductEoLstrategy.In(RoseandStevels, 2001),theEnvironmentalValueChainAnalysiswascombinedwith ELDA.ByanalysingthevaluechainsofexistingproductEoL sys-tems,theywereabletoidentifytheappropriateEoLstrategyand enhancesomeofthemastake-backandrecyclingsystems.

(Peetersetal. (2012))gatheredgeneraldesignguidelinesfor differentdemanufacturingstrategies,highlightingthatguidelines relatedtodisassemblyareoftenclashingwiththoseaimedat dis-mantling,smashing or shredding. However, alsoin this case it wasrecognized theimportance of fasteners for productstobe repaired,reconditionedorremanufacturedinviewofthe disassem-blyprocess(eithermanualorautomatedoractive).Theyconcluded categorizingthreedifferenttypesofproductstobeinvolvedinthe remanufacturingprocess:

• PSS-basedproducts(inwhichtheproviderisimpelledto imple-mentdesignimprovementtoeasethedemanufacturingprocess) • electronicproducts(inwhichnon-orsemi-destructive deman-ufacturingprocesses,throughactivefasteners,stronglyfacilitate multiplelifecyclesoftheproducts)

• productstobenotrepaired,remanufacturedorrefurbished(in whichthevalueofdesigntosupportdisassemblyisminor,and largeformlockingfastenersandloosefitscanbeusedtoenact destructivedemanufacturingprocess)

(9)

On the same line, (Arnette et al. (2014)) started from the considerationthat forproductssoldwithina PSS,in whichthe providerretainstheproductpropertyrights,therearedirect eco-nomic stimuli for manufacturers or retailers for implementing designimprovementswhichfacilitatedemanufacturingprocesses. Thus,theygroupedDfXapproachesinfourcategoriesunderthe DfSu umbrella.Under the economy dimensiontheyconsidered approachesas:SC,Logistics,ManufacturingandAssembly, Flex-ibility(MassCustomization,Modularity), QualityandReliability, Procurement,Supportability(Maintainability,Serviceability).The ecologydimensiongroupsapproachasDesignfor:Environment, ChronicRiskReduction,EnergyConservation,Material Conserva-tion,WasteMinimization&Recovery,Remanufacturing,Reuse& Recycling.ThetwofolddimensionEconomyandEcologywas com-posedbyDfDandDesignforReverseLogistic.Last,underanEquity perspective,DfSRwasconsidered.Thethreedimensionsof sustain-abilityseemtobeinterrelatedthroughtheirthreemainapproaches detectedbythe authors:DfSC (economic), DfE(environmental) andDfSR (social).In detail,theeconomicdimensioncollectsall thetraditionalDfXapproachesundertheconceptofDfSC, focus-ingonthesourcing,productionanddistributionprocesses.Atthis purpose,sincethedecisionoftheDfXcriteriatobeappliedare linkedtotheproductlifecyclephasestobestrengthened,DfX con-sideredin thetaxonomywerealsomappedbasedonfivemain lifecyclesub-phases(sourcing,production,distribution,use,EoL) andcombinedwiththebusinessstrategytobeadopted(low-cost leadership,productdifferentiation).

Table 4 shows that, when the purpose of DfX approaches is Circular designimprovement, researchers involvedall thefive macro-categoriesofDfXdetectedbutfocusingonMLCand sus-tainabilitycategories,mostlyadoptingDfRem/Rema/Reco,DfEand DfD&Rea.Ingeneralterms,theTBLperspectivewasalwaysfocused onenvironmentalaspects,sometimesrelatedtoeconomicaspects andfewtimeswiththesocialside.

3.1.2. Circulardesignmetricsandevaluation

(BoveaandPérez-Belis(2004))re-organizedfromaCE perspec-tive46designguidelinescomingfromtheeco-designframework (Bhamra,2004)andseveralDfXapproaches(DfE(Gertsakisetal., 2001),DfDis(DowieandSimon,1994),DfReco(Hultgren,2012), DfRem(Sundin,2004)).Inaddition,othernewdesignguidelines wereproposedandgatheredinfivemaincirculardesigngroups: extending life span, disassembling, product reuse, components reuse, and materialrecycling. Afterproviding a setof practical designguidelines,theyalsopresentedamethodologythatallows theanalysisofhowanexistingproductdesignmeetsthedesign guidelinesrequiredfromthecircular economy perspective.The methodologywas appliedontwelve case studies,defining two maincriteriatodefinecircularitydegree(marginofimprovement andrelevance).

(Mendozaetal.(2017))presentedaframework,Backcasting andEco-designfortheCircularEconomy(BECE),toensurethat businesses canimplement CE requirementsmore readily.They categorizedproductdesignandbusinessmodelstrategiesintwo mainactions,slowing(i.e.designforlong-lifeproducts,DfPLExt (DfMaandrepair,upgradabilityandadaptability,standardization andcompatibility,andDfD&Rea),andclosingresourceloops(i.e. designforatechnologicalcycle,designforabiologicalcycle,and DfD&Rea).

(Rochaetal.(2019))proposedananalyticalframeworkforDfSu models,distinguishingthestrategic,tacticalandoperationaldesign activitiesand linkingeach dimensionwithdesign management andcorporatesocialresponsibilityliteratures.Thecorporate sus-tainabilitymanagementanddesignmanagementweresuitableto buildaframeworkforanalysisoftheexistingselectedmodels,and

allowedtoexploreDfSuuseintopractice,atstrategic,tacticaland operationallevels.

(Rossietal.(2016))conductedareviewofeco-designmethods andtoolstoenableaneffectiveimplementationofCEin indus-trialcompanies.Amongtheothers,theysuggestedchecklistand guidelinesapproachtoquicklyevaluatetheproduct’s environmen-talprofileand tomakesuggestionstothedesign teamtosolve problemsduringthefirstdesignphases.DfXapproaches,usually used by thedesign team tomanage product-specific solutions, aresuggestedtobestronglyconsideredinthefieldofeco-design: DfD,DfRema,DfReco,DfRecyandtheDesignforEnergyEfficiency approaches.

(VandenBergandBakker(2015))providedaCEframeworkfrom aproductdesignperspective.InordertoextendthedesignforCE researchcontextbyalreadyexploredfieldsasdisassembly, reman-ufacturingandrecycling,theyperformedareviewoftheextantCE terminologyanddefinedfivemostdesign-relevanttopics:future proofdesign,DfD,DfMa,remakeandDfRecy.Twomainstreams weredetected.Ononeside,futureproofisaimedatmaking prod-uctslastlonger(involvingprinciplesasperformance,reliability, durability)oratprolongingtheiruse(throughupgradability, adapt-ability,timelessdesign,road-mapping,anticipatinglegislation).On theother side,disassembly canbe consideredalone (actingon connectionsorproductarchitecturethroughprinciplesaseaseof access,quickdisconnections,simplearchitectures,clarityof dis-assembly,etc.)orcombined.Whencombined,itcanbeaddressed eitherwithonlynon-destructivepractices,maintenanceforreuse of products(based onease ofcleaning, ease of repair/upgrade, onsiterepairabilityandupgradability)andremakeofcomponents (groundedonmodularity,reliabilityassessmentandreverse logis-tics),ordestructive/non-destructivepractices,i.e.recycle(toreuse materials,electronicsorconnectionsthroughafastandeasy detec-tion,modularity,useofnon-fixedconnections).

(ShuandFlowers(1999))investigatedbothliteratureand prac-ticetoexplore DfRem:in particular,itsconflictwithotherDfX approaches was assessed (focusingonDfMA, DfMa, and scrap-materialrecycling),reportingexamplesofdesigntipsineachof them.Theydetectedsixprocesses(disassembly,sorting,cleaning, refurbishment,reassemblyandtesting)toeaseremanufacturing, consideringfasteners andjoints design asstrategic inallthem. Finally,theyproposedaframework(toquantifyinallthese pro-cessesthecostofjoints,betterdescribingrepairactivitiesexecuted throughout remanufacture). (Desai and Mital (2003)) proposed a methodologythat assignstime-basednumericindices to sev-eral design factors(e.g. effortof manual forcefor disassembly, precisionrequiredfortoolplacement,weight,size,disassembled componentsmaterialandshape,handtools,etc),sofarconsidered onlyseparately inliterature.Theircalculationallowsthe detec-tionofdisassemblyanomalies(addressingdisassemblysequence planningoreconomicanalysis),designmodificationsandfinally alsodisassemblyimprovement.(Mayyasetal.(2012))conducteda reviewoftheextantcontributionsonvehicles’lifecycle,disposal andEoLanalyses,alsostudyingthesustainabilitymetricsusedto measuretheenvironmentalimpact.Thereviewcategorizedundera TBLperspectivetheliteratureintofourmainresearchareas(thelife cycleassessmentapproach,theEoLperspective,theDfX,the light-weightengineeringandmaterialselectionstudies).ConcerningDfX area, basedonapreviousstudyby(Jawahiretal.(2007)), they declinedDfSuinto4maingroups:DfMA,DfRecy/DfEoL (compris-ingDfD,DfRem,DfRecy,Designforreusability),DesignforMinimize MaterialUsage(durability,energyefficiency).

Table5illustratesthattosupportthecategoryCirculardesign metrics andevaluationresearchersdidnot focusonSCabilities. Instead, they concentrated their efforts on both enabling MLC (mainlythroughDfRem/Rema/RecoandDfD)andaddressing sus-tainability(mostlythroughDfE).Indeed, MLCandsustainability

(10)

10 C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 Table4

Circulardesignimprovementcategory.

Authors Objective

MainAbilities TBL

SC Res/EnEffRel MultipleLifeCycle(MLC) Sustainability

Other Eco Env Soc C/SSC; SysC REf&C SLC;LLUoP; Ma;PLExt Rel&Sa MLC;FPD; TecC;BioC; CLPSS; EofC/S/A D&Rea Rem; Rema; Reco

Recy EoL Ad;St; Com;Mo; Upg Su E SR (Bakkeretal. (2014)) Todeterminethe optimalproduct lifespan. x x x x x x x (Ceschinand Gaziulusoy (2016)) TodefineDfSu. x x x x (Goetal. (2015)) TodetectDfX approaches concurringtothe definitionof DfMLC. x x (Morenoetal. (2016))

Toguidethedesign processundera circulareconomy perspective. x x x x x (Pigossoand McAloone (2017)) Todefinehow designcan contributetoCE. x Properties; Cost; Aesthetics; Perfor-mance x x

(vanderLaan andAurisicchio (2019))

Toprovide guidelinesforthe Designof closed-loopPSSs. x x x (Vanegasetal. (2018)) Tocomputethe disassemblytime. x x x (Favietal. (2019)) Tosupportthe implementationof re-designactions forimproving product de-manufacturability andEoL x x x x (Wahabetal. (2018))

Todiscussthelink among

remanufacturing, reliabilityand safetyforlifecycle extension. x x x x (Sundin (2004)) Toidentifythe productproperties tobeconsidered whenaproducthas tobe remanufactured x x x (Hultgren (2012)) Tosupport engineersin designingproducts thatareeasierto recycle.

(11)

C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 11 Authors Objective MainAbilities TBL

SC Res/EnEffRel MultipleLifeCycle(MLC) Sustainability

Other Eco Env Soc C/SSC; SysC REf&C SLC;LLUoP; Ma;PLExt Rel&Sa MLC;FPD; TecC;BioC; CLPSS; EofC/S/A D&Rea Rem; Rema; Reco

Recy EoL Ad;St; Com;Mo; Upg Su E SR (Allwoodetal. (2011)) TosupportDfRem. x x

(Rose(2000)) Tousesimple product characteristicsto makeEoLstrategy decisionsbasedon recycling experienceswith designersand productmanagers. x x (Peetersetal. (2012)) Togathergeneral designguidelines fordifferent demanufacturing strategies. x x (Arnetteetal. (2014)) Toproposea taxonomyofDfX approachesinfour categoriesunder theDfSuumbrella.

x x x x x x x

Totalperability 2 2 2 1 4 4 4 3 1 0 3 4 1 1

8 15 2

Totalperaggregateabilities 2 2 3 16 8 1

l

SC=SupplyChain;C/SSC=Circular/SustainableSC;SysC=SystemChange;Res/EnEff=Resource/EnergyEfficiency;Ref&C=ResourceEfficiencyandConservation;Rel=Reliability;SLC=SlowingLifeCycle;LLUoP=LongLife UseofProducts;Ma=Maintenance;PLExt=ProductLifeExtension;Rel&Sa=ReliabilityandSafety;MLC=MultipleLifeCycle;FPD=FutureProofDesign;TecC=TechnicalCycle;BioC=BiologicalCycle;CLPSS=Closed-loop PSS;EofC/S/A=EaseofCleaning/Storage/Access;D&Rea=DisassemblyandReassembly;Rem=Remanufacturing;Rema=Remake;Reco=Recovery;Recy=Recycling;EoL=EndofLife;Ad=Adaptability;St=Standardization; Com=Compatibility;Mo=Modularity;Upg=Upgradability;Su=Sustainability;E=Environment;SR=SocialResponisibility;TBL=TripleBottomLine;Eco=Economic;Env=Environmental;Soc=Social.

(12)

12 C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 Table5

Circulardesignmetricsandevaluationcategory.

Authors Objective

MainAbilities TBL

SC Res/enEffRel MultipleLifeCycle(MLC) Sustainability

Other Eco Env Soc C/SSC; SysC REf&C SLC;LLUoP; Maint; PLExt Rel&Sa MLC;FPD; TecC;BioC; CLPSS; EofC/S/A D&Rea Rem; Rema;Reco

Recy EoL Ad;St; Com;Mo; Upg Su E SR (Boveaand Pérez-Belis (2004)) toassessifan existingproduct meetsthedesign guidelinesfroma CE perspec-tive+guidelines. x x x x x x (Mendozaetal. (2017)) toensurethat businessescan implementCE requirementsmore readily. x x x x x (Rochaetal. (2019)) toanalyzeDfSu models. x x x x (Rossietal. (2016)) tosuggestchecklist andguidelines approachto quicklyevaluate theproduct’s environmental profile. x x x x

(VandenBerg andBakker (2015))

todefinefivemost design-relevant topics. x x x x x (Shuand Flowers (1999)) toquantifyinall thesix remanufacturing sub-processes (disassembly, sorting,cleaning, refurbishment, reassemblyand testing)thecostof joints. x x (Desaiand Mital(2003)) toassign time-based numericindicesto severaldesign factors. x x (Mayyasetal. (2012)) tomeasurethe environmental impact. x x x x

Totalperability 0 1 2 0 2 5 4 1 1 1 2 1 0 0

4 6 2

Totalperaggregateabilities 0 1 2 14 3 0

SC=SupplyChain;C/SSC=Circular/SustainableSC;SysC=SystemChange;Res/EnEff=Resource/EnergyEfficiency;Ref&C=ResourceEfficiencyandConservation;Rel=Reliability;SLC=SlowingLifeCycle;LLUoP=LongLife UseofProducts;Ma=Maintenance;PLExt=ProductLifeExtension;Rel&Sa=ReliabilityandSafety;MLC=MultipleLifeCycle;FPD=FutureProofDesign;TecC=TechnicalCycle;BioC=BiologicalCycle;CLPSS=Closed-loop PSS;EofC/S/A=EaseofCleaning/Storage/Access;D&Rea=DisassemblyandReassembly;Rem=Remanufacturing;Rema=Remake;Reco=Recovery;Recy=Recycling;EoL=EndofLife;Ad=Adaptability;St=Standardization; Com=Compatibility;Mo=Modularity;Upg=Upgradability;Su=Sustainability;E=Environment;SR=SocialResponisibility;TBL=TripleBottomLine;Eco=Economic;Env=Environmental;Soc=Social.

(13)

werethemostrecurrentability’scategories.FromaTBL perspec-tive,environmentaland economic assessmentswere supported morethansocialones.

3.1.3. Circulardesigndecision-support

Basedonthefactthattherearemanydesignstrategies provid-ingpracticalwaystoembedsustainabilityonproductsfromthe beginningofthelifecycle,Gouldetal.(2017)proposeda decision-supportprototypetochooseamongthem.Inordertodothis,they conductedaliteraturereview,analysingandselectingthemain potentialstrategiesfromsustainableproductdevelopment litera-ture.Asaresult,theycameupwithsixgroups:PSSDfSu,DfRem, designforsustainablebehaviour,DfBoP,designforsustainableSC, anddesignforsocialinnovation.

(Kuoetal.(2019))proposedadecision-makingmodelto eval-uate and implement sustainable PSSs. Comparing the cost of additionaldurabilitywiththeresidualvalueoftheproductatthe endoftheleaseproduct,themodeltracksbothproductdesignand life-cyclecostanalysis.Designplaysastrategicroleinsustainable PSSdesign,aimingatminimizingnegativeenvironmentalimpacts throughresourceusagereduction,materialrecyclingandreusingof theproducts.Indeed,themodelwantsalsotostrengthenthoseDfX strategiesembeddedintotheproductdesignconcurringtoaddress sustainablePSSs,mainlyDfMA,DfD,DfRel,Quality,Modularityand Variety.TheseDfXstrategies,combinedwithmathematical mod-els,couldsupporttheestimationofproduct’sprofitandprovide designsuggestionsstrengtheningthecradle-to-cradleprinciplein sustainablePSSs.

(PozoArcosetal.(2018))exploredtheexistingdesign strate-gies,guidelinesandproductfeaturesenablingfunctionalrecovery operations(asrepair,refurbishingorremanufacturing).Theyalso presenteda categorizationof functionalrecovery guidelinesfor productdesignsincetheyidentifiedtheneedtoplanfor recov-eryatearlydesignstages.Guidelineshavebeengroupedin4main classes:

• easeofcleaningsupportstheusephase • easeofdiagnosisreferstophysicalinspection

• disassembly and reassembly refers to non-invasive ways to implementrepairingandcleaning

• easeofstoragereferstokeepvaluablepartsforfutureusage Table6concernsthecategoryCirculardesigndecision-support: it shows a lack of focus on resource efficiency abilities. Here, researchersconcentratedtheireffortsonbothenablingMLCand addressingsustainability,withasocialfocus.Indeed,MLCand sus-tainabilitywere themost recurrent ability’scategories. Indeed, fromaTBLperspective,socialapproacheswerequiteintegrated toenvironmentalandeconomicones.

3.1.4. Designdrivingcirculartransition

DeLosRiosandCharnley(2017),withtheaimofdepicting suc-cessfulsustainableandCEpracticesbeingimplementedinindustry, operatedaclassificationoftheDfX/methodssupportingthethree typicaldesignstrategiesumbrellaterms:

1Designforlifecycle,aimedat:

aMultiplelifecycles/cradletocradle:Designforcascadeduse, DfRecy,DfRem

bLongerlifecycles:DfRel,DfMa,DesignforReuse

2DfE (preventive conservation of material and energy): biomimicry,DfMA,DfSC

3Whole-systemdesign:radicalinnovationforsustainability (Bhamra(2004))exploredtheliteratureconcerningeco-design. They identified several factors impelling companies, internally

and externally, to pursue eco-design (cost savings, legislative regulations, competition, market pressure, industrial customer requirements,innovation,employeemotivation,company respon-sibility, communications) and reviewed the extant theory and practiceofeco-design.

(Rahitoetal.(2019))providedanoverviewonthecharacteristics of theexisting Additive Manufacturing(AM)technology, focus-ingonthepotentialofDirectEnergyDepositiontechnologyfor repairandrestorationofremanufacturablecomponentsthatcan bereturnedasiftheywereinnewconditionor regeneratedto matchtheoriginalspecification.Inthisdirection,theysuggested thedevelopmentofdesignguidelinesforrestorationof remanu-facturableproductsusingAM.

Table7concernsthecategoryDesigndrivingcirculartransition. Researchers neglectedto consider approaches belonging toSC, ReliabilityandResourceEfficiencycategories,focusingoneither broaderandquiteconsolidatedabilitiesasDesignforLifecycle, Sus-tainability,Environment,WholeSystemdesignornewapproaches asDesignforAMtosupportDfRem.Contributionsfocusedmainly ontheenvironmentalaspects.

3.1.5. Circulardesignknowledgemanagement

(Favietal.(2016))raisedtheneedtostrengthenthe connec-tionsbetweentheproductdesignand EoLphase.Indeed,sofar approachesasDfRem,DfRecyandDfDareonlytheoreticalconcepts withfewapplicationswithinarealindustrialcontext.Indeed,the knowledgeofdismantlersandrecyclingcentresisnotcodifiedtobe usedbydesignersforthere-designofproducts:evenifthiskindof designknowledgewouldbepotentiallyadvantaging,anapproach toformalizeitinpracticalguidelinesisstillmissing.Forthisreason, theyproposeamethodtogatherknowledgeandexpertisefrom dismantlerandremanufacturingcentreswithafocusonthe dis-assemblyprocessesinordertobeusedduringtheproductdesign phase:theideaisthattheresultingknowledgecanbereusedfor boththespecificcomponentbutalsofortheotherpartsassembled withthoseelements.

(Toxopeuset al. (2018))developed a design support tool to provide to designers and engineers with design guidelines for developmentdecisions. Theylinkedproduct characteristicsand reversecycleprocesses(reuse,refurbish,remanufacture,recycle) throughadisassemblylevel(product,module,component, mate-rial)tofostertheresourcecirculationstrategy.

Table8 describestheCircular DesignKnowledgeManagement category.Thetwocontributionsmainlycomposingthiscategory mainlyusedapproachesaimedatenablingtheMLC,andinaminor wayalsoatslowinglifecycleandimprovetheresourceefficiency. Theenvironmentalperspectiveisdominantinthiscategory. 4. Discussion

Wrappinguptheresultsofthisresearch,authorsdetectedfive mainpurposeslinkedtotheapplicationofDfXapproachestofoster CEadoption:CircularDesignImprovement,CircularDesignMetrics andEvaluation,CircularDesignDecision-Support,DesignDriving Cir-cularTransition, CircularDesign KM.In thedocumentsanalysed, researcherscitedandinvolvedseveralDfXapproachestoaddress thesefivemaincircular designpurposes.Duetothehigh num-berofapproachesandabilitiesused,inthisresearchtheauthors decidedtodividethemin twocategories(mainandsecondary) andtookinconsiderationfortheiranalysisonlythemainones. ThemainapproacheshavebeengroupedinfivemainDfXabilities categories(SC,Resource/EnergyEfficiency,Reliability,MLC, Sustain-ability): they have the aim of synthesizing the multiplicity of wordsemployedtopursuethesameabilityunderaCE perspec-tive.However,alsoabriefoverviewofthesecondaryapproaches

(14)

14 C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 Table6

Circulardesigndecision-supportcategory.

Authors Objective

MainAbilities TBL

SC Res/enEff Rel MultipleLifeCycle Sustainability

Other Eco Env Soc C/SSC; SysC REf&C SLC; LLUoP; Maint; PLExt Rel& Sa MLC; FPD; TecC; BioC; CLPSS; EofC/S/A D&Rea Rem; Rema;Reco

Recy EoL Ad;St; Com; Mo; Upg Su E SR (Gouldetal. (2017)) tochooseamong manydesign strategies providingpractical waystoembed sustainability x x x x Sustainable behavior; DfBoP;social innovation. x x x (Kuoetal. (2019)) toevaluateand implement sustainablePSSs x x x DfMA;Quality x x (PozoArcos etal.(2018)) functionalrecovery guidelinesfor productdesign x x

Totalperability 1 0 0 1 0 2 1 0 1 1 1 0 1 2

2 2 1

Totalperaggregateabilities 1 0 1 5 2 2

SC=SupplyChain;C/SSC=Circular/SustainableSC;SysC=SystemChange;Res/EnEff=Resource/EnergyEfficiency;Ref&C=ResourceEfficiencyandConservation;Rel=Reliability;SLC=SlowingLifeCycle;LLUoP=LongLife UseofProducts;Ma=Maintenance;PLExt=ProductLifeExtension;Rel&Sa=ReliabilityandSafety;MLC=MultipleLifeCycle;FPD=FutureProofDesign;TecC=TechnicalCycle;BioC=BiologicalCycle;CLPSS=Closed-loop PSS;EofC/S/A=EaseofCleaning/Storage/Access;D&Rea=DisassemblyandReassembly;Rem=Remanufacturing;Rema=Remake;Reco=Recovery;Recy=Recycling;EoL=EndofLife;Ad=Adaptability;St=Standardization; Com=Compatibility;Mo=Modularity;Upg=Upgradability;Su=Sustainability;E=Environment;SR=SocialResponisibility;TBL=TripleBottomLine;Eco=Economic;Env=Environmental;Soc=Social.

(15)

C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 15

Designdrivingcirculartransitioncategory.

Authors Objective

MainAbilities TBL

SC Res/enEff Rel MultipleLifeCycle(MLC) Sustainability

Other Eco Env Soc C/SSC; SysC REf&C SLC;LLUoP; Maint; PLExt Rel&Sa MLC;FPD; TecC;BioC; CLPSS; EofC/S/A D&Rea Rem; Rema;Reco

Recy EoL Ad;St; Com;Mo; Upg

Su E SR

DeLosRiosand Charnley (2017) touse DfX/methodsto supportCE. x x Whole-system design x (Bhamra (2004)) todetectfactors impelling companies, internallyand externally,to pursueeco-design. x x x (Rahitoetal. (2019)) todevelopdesign guidelinesfor restorationof remanufacturable productsthrough theuseofAM.

x DfAM x

Totalperability 0 0 0 0 1 0 1 0 0 0 1 1 0 2

1 3 0

Totalperaggregateabilities 0 0 0 2 1 2

SC=SupplyChain;C/SSC=Circular/SustainableSC;SysC=SystemChange;Res/EnEff=Resource/EnergyEfficiency;Ref&C=ResourceEfficiencyandConservation;Rel=Reliability;SLC=SlowingLifeCycle;LLUoP=LongLife UseofProducts;Ma=Maintenance;PLExt=ProductLifeExtension;Rel&Sa=ReliabilityandSafety;MLC=MultipleLifeCycle;FPD=FutureProofDesign;TecC=TechnicalCycle;BioC=BiologicalCycle;CLPSS=Closed-loop PSS;EofC/S/A=EaseofCleaning/Storage/Access;D&Rea=DisassemblyandReassembly;Rem=Remanufacturing;Rema=Remake;Reco=Recovery;Recy=Recycling;EoL=EndofLife;Ad=Adaptability;St=Standardization; Com=Compatibility;Mo=Modularity;Upg=Upgradability;Su=Sustainability;E=Environment;SR=SocialResponisibility;TBL=TripleBottomLine;Eco=Economic;Env=Environmental;Soc=Social.

(16)

16 C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 Table8

Circulardesignknowledgemanagement.

Authors Objective

MainAbilities TBL

SC Res/enEff Rel MultipleLifeCycle(MLC) Sustainability

Other Eco En Soc C/SSC; SysC REf&C SLC;LLUoP; Maint; PLExt Rel&Sa MLC;FPD; TecC;BioC; CLPSS; EofC/S/A D&Rea Rem; Rema;Reco

Recy EoL Ad;St; Com;Mo; Upg Su E SR (Favietal. (2016)) togather knowledgeand expertisefrom dismantlerand remanufacturing centerswitha focusonthe disassembly x x x x (Toxopeusetal. (2018)) toprovideto designersand engineerswith designguidelines fordevelopment decisionstolink product characteristicsand reversecycle processes x x x x x x

Totalperability 0 1 1 0 1 2 1 2 0 0 0 0 0 0

0 2 0

Totalperaggregateabilities 0 1 1 6 0 0

SC=SupplyChain;C/SSC=Circular/SustainableSC;SysC=SystemChange;Res/EnEff=Resource/EnergyEfficiency;Ref&C=ResourceEfficiencyandConservation;Rel=Reliability;SLC=SlowingLifeCycle;LLUoP=LongLife UseofProducts;Ma=Maintenance;PLExt=ProductLifeExtension;Rel&Sa=ReliabilityandSafety;MLC=MultipleLifeCycle;FPD=FutureProofDesign;TecC=TechnicalCycle;BioC=BiologicalCycle;CLPSS=Closed-loop PSS;EofC/S/A=EaseofCleaning/Storage/Access;D&Rea=DisassemblyandReassembly;Rem=Remanufacturing;Rema=Remake;Reco=Recovery;Recy=Recycling;EoL=EndofLife;Ad=Adaptability;St=Standardization; Com=Compatibility;Mo=Modularity;Upg=Upgradability;Su=Sustainability;E=Environment;SR=SocialResponisibility;TBL=TripleBottomLine;Eco=Economic;Env=Environmental;Soc=Social.

(17)

Table9

DfX,purposesandabilitiesunderaTBLperspective:ageneralview.

DfXpurpose Numberofdocuments MainAbilities TBL SupplyChain Resource/

energy efficiency

Reliability Multiple LifeCycle

SustainabilityOther Economic Environmental Social

CircularDesign Improvement 15 2 2 3 15 8 1 8 15 2 CircularDesign Metricsand Evaluation 8 0 1 2 14 3 0 4 6 2 CircularDesign Decision-Support 3 1 0 1 5 2 2 2 2 1 DesignDriving CircularTransition 3 0 0 0 2 1 2 1 3 0 CircularDesignKM 2 0 1 1 6 0 0 0 2 0

Totalperaggregateabilities 3 4 7 42 14 5 15 28 5

wasprovided,findingapproachesfocusingspecificallyoneither

theproductorthePSSdevelopment.Manyofthemcontributed

totheSCmaincategoryandotherstothesustainability

(specifi-callyonthematerials/energy/wastemanagementandreduction).

Inaddition,thedocumentswereassessedalsointermsofTBL

per-spectiveofsustainability.Thiswasdonetounveilwhichlenseshad

beenusedwhileadoptingspecificDfXabilitiestoaddressacertain

purposethroughcirculardesign.Thesedimensionsofanalysisare

allwrapped-upinTable9.Fromtheresultsshowninthetable,it

standsoutintheeyesthatthemostimportantpurposetoaddress circularitythroughDfXapproachesistheimprovementof prod-ucts/services/PSSsdesign(with15of31contributions).Concerning theDfXabilities,themostusedtoachieveCEarethoseorientedto MLC,pushingtheconceptoflifecyclefromasingledimensionto multiplecircularcycles. Finally,intermsofTBLperspective,the environmentalaspecthasbeenthemostcommonone,whilethe social onehasbeen quiteneglected(asalready stated in some recentliteraturereviewsonCE,e.g.(Rosaetal.,2019b).Morein detail,observingtheresultsfromTable9,theDfXapproachesmore usedtoenablecircularityareDfRem/Remake/Recoincouplewith DfD&Rea.Afterthem,inthesameabilitycategoryofMLC,some attentionhasbeendedicatedalsoonapproaches aimedatboth closingthelifecycleloop(asfutureproofdesign,Designfor Lifecy-cle(multiple,closed-loop,technicalorbiological)),andslowingthe lifecycleofsolutions(asDfMaandDfPLExt).Ontheotherside,also approachesasDfEandDfSudeservedafairattention:however,they wereusedasageneralandwidecategoryforconsideringa mul-tiplicityofdifferentmorespecificfunctionalitiestobeaddressed underacircularperspective.Finally,onlyfewattemptsweredone toconsiderthroughDfXinthecirculardesignalsoabilitiesasSC, thesocialsideofsustainability,resourceefficiencyandthe modu-larity/adaptability/upgradabilityofproducts.Theseapproachesare surelythoseneedingmoreeffortstobedevelopedextensively.

Finally,onceassessed anddiscussedthestateof theart and detected theopportunities, some comments about the gaps in theresearchcontextanalysedaregraspedfromTable10.Aspects claimingfurtherinvestigationintermsofamoreeffective tran-sitionfromlineartocirculardesignthroughtheadoptionofDfX approacheshavebeendetectedandgrouped,alsointhiscase,in5 macro-classes:

1Hybridstrategiesandapproaches:

• eithertopursuebothcostanddifferentiationstrategies, • ortoaddressbothproviderproductdesignanduserbehaviour, • ortointegratedifferentcircular designguidelinesinhybrid

approaches.

ThiskindofgapsaremainlypresentintwoDfXpurposes categories (Circular Design Improvement and Circular Design

MetricsandEvaluation),showingthattheeaseofcirculardesign isstronglylinkedtotheneedofsuchhybridapproaches provid-ingconcurrentlydifferentperspectivessometimesalsounder thesameDfXabilityumbrella.

2Method/Tool:

• tosupportdesigntoreduceenvironmentalimpactandexploit CEpotential,

• tosupportdesigndecisionmakingtowardscircularBM, quan-titativelyassessingcircularity(eventuallyincludinglegislation parameters),

• toprovidedetailedDfXguidelineswithalifecycleperspective, • todefineatrade-offamongneededfunctionalitiesandselect

themostsuitableapproachestofostersustainability/CE, • tounderstandlimitationsofsingleapproachesand

revolution-izethePSSdesignprocess.

Thisisbyfarthemostrecurringcategoryofgapsinallthe fiveDfXpurposecategories,apartDesignDrivingCircular Tran-sition.Indeed,newDfXmethodsandtoolsareneededtosatisfy quiteheterogeneousissues.Theyareneededeitherto practi-callysupportdesigndecision-making process(alsoaidedby quantitativelyindicators)ortofindabalanceamongthe sev-eralDfXabilitiesexistingortounveiltheirsinglelimitations. Sometimes,theycanbealsorequiredtocompletelyrebuildand restructurethedesignprocessofproductorPSSs.Thiscategory ofneedisvalidifreferredeithertothegeneralcontextofDfX adoptioninthedesignprocessofnewproducts/services/PSSs ortospecificallysupportamoreproficientexploitationofCE potentialsthroughdesign.

3DesignKnowledgeandcompetencies:

• todevelopmoreextensivelycircularDfXapproaches andto generatesuitableguidelines.

Suchknowledgeisstronglyneededtoenhancebothcircular designandmetricsandevaluationprocesses.Itisalsostrategic fortheDfXpurposecategoryDesignDrivingCircularTransition: indeed,asetofnewcapabilities,todesignsustainablesolutions and ofnew knowledge,areneeded asa guidancefor man-ufacturingcompaniesseekingtotackleclimatechange.Also newdesignknowledgerelatedtonewtechnologies(asAM) arestronglyrequiredtoguidethejointpursuittowardsCEand Industry4.0.

4Technology:

• tomakeproductdesigninformation/KWavailablealongtheSC topursueacertainBMthrougharobustinformationsystem andsingleinputdatasheet,

• to integrate DfX methods/tools with: KM systems (aiding designersinthealternativeproductsolutionsdefinition)and CADsystems(tosupporttheautomaticidentificationofthe differentproductlevels(throughthetopologicalanalysisof product3Dgeometry)andtoreducemanualinputs),

(18)

18 C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 Table10

GapsofDfXapproachesinCEresearchcontext. DfXpurposes

fostering circular economy adoption

Authors GapsCategories

Hybridstrategiesandapproaches Method/Tool DesignKW & compe-tencies

Technology Designstrategies

topursue costand differentia-tion strategies toaddress provider product designand user behavior tointegrate different circular design guidelines inhybrid approaches toreduce environ-mental impactand exploitCE through design tosupport design decision making towards CBM toprovide detailed DfX guidelines witha lifecycle perspective todefinea trade-off among functionali-tiesand selectthe most suitable sustain-able/circular ones todetect single approaches limitations to revolu-tionizePSS design process todevelop more extensively circular DfX approaches andto generate suitable guidelines tomake design informa-tion/KW available alongthe circularSC through robust informa-tion system, CADand single inputdata sheet todevelop new tech-nologiesto exploitCE potentiali-ties tofoster take-back andreverse logistics, toquantify thevalueof resources alongthe MLC todefine the usefullife of products todefine whichtype of products, needa specificEoL abilityand its economic convenience Circular Design Improve-ment (Bakkeretal. (2014)) x (Ceschinand Gaziulusoy(2016)) x (Goetal.(2015)) x (Morenoetal. (2016)) x (Pigossoand McAloone(2017)) x x

(vanderLaanand Aurisicchio(2019)) x x (Vanegasetal. (2018)) x (Favietal.(2019)) x (Wahabetal. (2018)) x (Sundin(2004)) x (Hultgren(2012)) x x (Allwoodetal. (2011)) x (Rose(2000)) x (Peetersetal. (2012)) x (Arnetteetal. (2014)) x x x x x TotalperDfX purposeper gap 1 1 0 1 3 2 2 1 3 2 0 1 1 2 2

(19)

C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 19 DfXpurposes fostering circular economy adoption

Authors GapsCategories

Hybridstrategiesandapproaches Method/Tool DesignKW & compe-tencies

Technology Designstrategies

topursue costand differentia-tion strategies toaddress provider product designand user behavior tointegrate different circular design guidelines inhybrid approaches toreduce environ-mental impactand exploitCE through design tosupport design decision making towards CBM toprovide detailed DfX guidelines witha lifecycle perspective todefinea trade-off among functionali-tiesand selectthe most suitable sustain-able/circular ones todetect single approaches limitations to revolu-tionizePSS design process todevelop more extensively circular DfX approaches andto generate suitable guidelines tomake design informa-tion/KW available alongthe circularSC through robust informa-tion system, CADand single inputdata sheet todevelop new tech-nologiesto exploitCE potentiali-ties tofoster take-back andreverse logistics, toquantify thevalueof resources alongthe MLC todefine the usefullife of products todefine whichtype of products, needa specificEoL abilityand its economic convenience TotalperDfX purposeper gapcategory 2 9 3 2 6 Circular Design Metrics and Evaluation (Boveaand Pérez-Belis(2004)) x x x (Mendozaetal. (2017)) x x x x x x (Rochaetal. (2019)) x x (Rossietal.(2016)) x

(VandenBergand Bakker(2015))

x x

(ShuandFlowers (1999)) (DesaiandMital (2003)) (Mayyasetal. (2012)) x TotalperDfX purposeper gap 0 0 2 2 2 1 2 1 4 0 1 0 0 0 0 TotalperDfX purposeper gapcategory 2 8 4 1 0 Circular Design Decision Support (Gouldetal. (2017)) x (Kuoetal.(2019)) x

(PozoArcosetal. (2018)) x TotalperDfX purposeper gap 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1

(20)

20 C. Sassanelli, A. Urbinati, P. Rosa et al. / Computers in Industry 120 (2020) 103245 Table10(Continued) DfXpurposes fostering circular economy adoption

Authors GapsCategories

Hybridstrategiesandapproaches Method/Tool DesignKW & compe-tencies

Technology Designstrategies

topursue costand differentia-tion strategies toaddress provider product designand user behavior tointegrate different circular design guidelines inhybrid approaches toreduce environ-mental impactand exploitCE through design tosupport design decision making towards CBM toprovide detailed DfX guidelines witha lifecycle perspective todefinea trade-off among functionali-tiesand selectthe most suitable sustain-able/circular ones todetect single approaches limitations to revolu-tionizePSS design process todevelop more extensively circular DfX approaches andto generate suitable guidelines tomake design informa-tion/KW available alongthe circularSC through robust informa-tion system, CADand single inputdata sheet todevelop new tech-nologiesto exploitCE potentiali-ties tofoster take-back andreverse logistics, toquantify thevalueof resources alongthe MLC todefine the usefullife of products todefine whichtype of products, needa specificEoL abilityand its economic convenience TotalperDfX purposeper gapcategory 0 2 0 0 1 Design Driving Circular Transition

DeLosRiosand Charnley(2017) x (Bhamra(2004)) x (Rahitoetal. (2019)) x x TotalperDfX purposeper gap 0 0 0 0 0 0 0 1 2 0 1 0 0 0 0 TotalperDfX purposeper gapcategory 0 1 2 1 0 Circular DesignKM (Favietal.(2016)) (Toxopeusetal. (2018)) x x TotalperDfX purposeper gap 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 TotalperDfX purposeper gapcategory 0 1 0 1 0

Totalpergap 1 1 2 4 5 3 6 3 9 3 2 1 1 2 3

Totalpergap category

Riferimenti

Documenti correlati

Furthermore, the European Commission has adopted a Circular Economy Package, including revised legislative proposals on waste, to stimulate Europe’s transition towards a

To cite this article: Steve Cayzer, Percy Griffiths & Valentina Beghetto (2017): Design of indicators for measuring product performance in the circular economy,

Dottore di ricerca in “Cultura del Design” (Politecnico di Torino), è docente di Scienze della Progettazione Gastronomica, EcoDesign e Food Packaging, Systemic Food Design, Circular

Il primo, elaborato dal sottoscritto e Maria Ranieri (entrambi ricercatori presso la Facoltà di Scienze della Formazione dell’Università di Firenze), presenta il modello che abbiamo

2 (CM lifetimes are slightly lower when the PDEP procedure is adopted, both for the bare and the bare+screened cases) are probably due to the different size of the cell used in

The following analysis refers to Ex-Filanda of Sulbiate, where the regeneration of an industrial building led to a design-driven project built on an anticipatory model where

Therefore, in this work, we are reporting some high productivity results for both the reactions, collected using simple and inexpensive photocatalysts, trying to focus on

Photocatalytic approaches to circular economy: CO 2 photoreduction to regenerated fuels and chemicals and H 2 production from wastewater Ilenia Rossetti 1 , Gianguido Ramis 2..