Esercizi da fare su equazion sito Matematika
Testo completo
(2) Equazioni logaritmiche. Logaritmi. 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39. ππππππ1 (π₯π₯ − 2) = 0 2. ππππππ4 (3π₯π₯ − 4) = − π₯π₯ − 2 = −2 3 2. ππππππ3. π₯π₯ = 3. 3 2. π₯π₯ = π₯π₯ =. πππππππ₯π₯ 4 = 1. −1 < π₯π₯ < 0 ∪ π₯π₯ > 0. πππππππ₯π₯−2 9 = 2. π₯π₯ = 5. ππππππ1 −2 = 2 ππππππ3−2π₯π₯. ππππππππππππππππππππππ. 1 = −2 3. ππππππ2 (π₯π₯ + 1) + ππππππ2 3 = ππππππ2 (π₯π₯ − 1) ππππππ3 (3π₯π₯ + 1) − ππππππ3 π₯π₯ = 2. 2 ππππππ2 (π₯π₯ + 2) + ππππππ1 π₯π₯ + 1 = 0 1 ππππππ3 π₯π₯ 2 + 2 = − ππππππ1 2 2 3. 41. v 3.0. π₯π₯ =. 1 6. π₯π₯ = −2. 3. 2 9. 1+√2 π₯π₯ = οΏ½. 2. ππππππ2 (π₯π₯ − 2) − ππππππ4 (3π₯π₯ − 1) = 1. 2. π₯π₯ = 8 + 2√14. 1 2 ππππππ1 οΏ½ π₯π₯ − 1οΏ½ = 2 − ππππππ9 π₯π₯ 4 3 3. ππππππππππππππππππππππ. 3π₯π₯ − 1 =2 π₯π₯. π₯π₯ = −. ππππππ1 ππππππ2 (3π₯π₯ − 1) = 0. π₯π₯ = 1. ππππππ2 ππππ(π₯π₯ + 1) = 1 − ππππππ4 3. equazioni logaritmiche risolubili mediante una posizione. 40. 3 − √3 2. π₯π₯ = ±. 3 ππππππ1 π₯π₯ − 2 = ππππππ2 (π₯π₯ 3 − 1). 3. π₯π₯ =. ππππππππππππππππππππππ. 2. ππππππ2 ππππππ3. 10 3. π₯π₯ = 4. πππππππ₯π₯+1 1 = 0. π₯π₯. 11 8. 2 ππππππ2 π₯π₯ + 5 ππππππ π₯π₯ − 3 = 0. 1 78. 2. π₯π₯ = ππ √3 − 1 π₯π₯ = 10−3 ∪ π₯π₯ = √10. ππππππ2 2 π₯π₯ − 4 ππππππ2 π₯π₯ + 4 = 0. π₯π₯ = 4. © 2016 - www.matematika.it. 2 di 7.
(3) Equazioni logaritmiche. Logaritmi. 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62. v 3.0. 3 ππππππ2 π₯π₯ + ππππππ π₯π₯ = −4. ππππππππππππππππππππππ. 3 ππππππ2 π₯π₯ + 5 ππππππ π₯π₯ = 0. π₯π₯ = 1 ∪ π₯π₯ = 10−3. 2 ππππππ2 π₯π₯ + 3 = 7 ππππππ π₯π₯. π₯π₯ = 103 ∪ π₯π₯ = √10 5. ππππππ32 π₯π₯ + ππππππ3 π₯π₯ − 12 = 0. π₯π₯ = 27 π₯π₯ =. −2ππππ2 π₯π₯ + ππππππ + 1 = 0. π₯π₯ = ππ π₯π₯ =. ππππ3 π₯π₯ − 9ππππππ = 0. ππππππ π₯π₯ (ππππππ π₯π₯ + 1) + 5 ππππππ π₯π₯ = ππππππ2 π₯π₯ + 4 ππππππ π₯π₯ − 7 ππππππ2 2 π₯π₯ + 95 = 8√6 ππππππ2 π₯π₯ 3(ππππππππ + 1) = 5 ππππππ2 π₯π₯. π₯π₯ = ππ. √ππ. 7. π₯π₯ = 10−2. π₯π₯ = 2 4√6−1 ∪ π₯π₯ = 2 4√6+1 3−√69 10. π₯π₯ = 10. 2 =5 ππππππ2 (π₯π₯ + 3). 3+√69 10. ∪ π₯π₯ = 10. π₯π₯ = √2 − 3 ∪ π₯π₯ = 1. 1 2 + =2 ππππππ π₯π₯ ππππππ π₯π₯ + 1. π₯π₯ = 10 ∪ π₯π₯ = √10/10. ππππ π₯π₯ + 1 =1 ππππ2 π₯π₯ + 1. π₯π₯ = 1 ∪ π₯π₯ = ππ. (ππππππ π₯π₯ − 3)(ππππππ π₯π₯ + 3) = 0. π₯π₯ = 103 ∪ π₯π₯ = 10−3. ππππππ5 π₯π₯ − ππππππ25 π₯π₯ = 1. π₯π₯ = 25. 3 3 1 + =− ππππππ4 π₯π₯ 2 + ππππππ4 π₯π₯ ππππππ4 π₯π₯ + 1. π₯π₯ = 2. 4 − 2 ππππππ4 π₯π₯ 5 + 3 ππππππ4 π₯π₯ = ππππππ4 π₯π₯ 3 ππππππ4 π₯π₯ + 5. −2√7±2 √7 4. π₯π₯ = 43. ππππππ22 π₯π₯ − 4 ππππππ2 π₯π₯ + 3 = 0. π₯π₯ = 2 ∪ π₯π₯ = 8. 2ππππ2 (π₯π₯ − 1) − 5 ππππ(π₯π₯ − 1) + 2 = 0. π₯π₯ = √ππ + 1 π₯π₯ = ππ 2 + 1. ππππππ32 (π₯π₯ + 2) − ππππππ3 (π₯π₯ + 2) − 2 = 0. π₯π₯ = −. 3ππππππ12 π₯π₯ − 11ππππππ1 π₯π₯ − 4 = 0 2. 1. π₯π₯ = 1 π₯π₯ = ππ 3 π₯π₯ = ππ −3. ππππ2 π₯π₯ − 2 ππππ π₯π₯ + 1 = 0. 2 ππππππ2 (π₯π₯ + 3) +. 1 81. 3. 5 ∪ π₯π₯ = 7 3. π₯π₯ = √2 π₯π₯ =. 2. © 2016 - www.matematika.it. 1 16. 3 di 7.
(4) Equazioni logaritmiche. Logaritmi. 63 64 65 66 67. ππππ2 (π₯π₯ 2 − 1) + 3ππππ(π₯π₯ 2 − 1) = 0. π₯π₯ = ±οΏ½1 +. ππππππ32 (π₯π₯ − 2) + ππππππ1 (π₯π₯ − 2) = 6. π₯π₯ =. ππππππ22 π₯π₯ − ππππππ2 π₯π₯ 3 + 2 = 0. π₯π₯ = 2 ∪ π₯π₯ = 4. 3. ππππππ22 (2π₯π₯ + 1) − ππππππ1 (2π₯π₯ + 1) = 0 2 πππππππ₯π₯−1 3 − πππππππ₯π₯−1 3 − 2 = 0. π₯π₯ =. ππππππ24 (2π₯π₯ − 3) − 5ππππππ22 (2π₯π₯ − 3) + 4 = 0. 69. 2ππππππ42 π₯π₯(π₯π₯ − 1) + ππππππ1 [π₯π₯(π₯π₯ − 1)]7 + 3 = 0. 71 72 73 74 75. 4. 2 ππππππ2π₯π₯+1 27 + ππππππ2π₯π₯+1 1οΏ½27 − 6 = 0. ππππππ2 (π₯π₯ − 4) − 3 =. 2 ππππππ1 (π₯π₯ − 4) 2. − ππππππ1 (2π₯π₯ + 5) (ππππππ3 (2π₯π₯ + 5) − 1) = 2 3. (ππππππ2 (3π₯π₯ + 4) − 1)2 = ππππππ2 2 2. ππππππ3 2π₯π₯ 2 (ππππππ3 2π₯π₯ 2 − 1) = ππππππ3 2π₯π₯ 2 + 3. 77. ππππππ2 (π₯π₯ − 3)2 (ππππππ2 (π₯π₯ − 3) − 2) − ππππππ1 (π₯π₯ − 3) = 2 2. ππππππ32 (2π₯π₯ 2 − π₯π₯) = 1 equazioni logaritmiche con argomento esponenziale. 79 v 3.0. π₯π₯ = −1 ∪ π₯π₯ = 2 ∪ π₯π₯ =. 1 ± √257 2. π₯π₯ = −. 26 81. √3 − 9 18. π₯π₯ = 6 ∪ π₯π₯ = 8 π₯π₯ = −. 7 ∪ π₯π₯ = 2 3. π₯π₯ = −1 ∪ π₯π₯ = 0 ∪ π₯π₯ = −. 76. 78. 5 7 ∪ π₯π₯ = 2 2 7 13 ∪ π₯π₯ = ∪ π₯π₯ = 4 8 π₯π₯ =. π₯π₯ = −2 ± √5. ππππππ12 [π₯π₯(π₯π₯ + 4)] = ππππππ1 [π₯π₯(π₯π₯ + 4)] 2. 1 4. 4 ∪ π₯π₯ = 1 + √3 3. π₯π₯ = 1 ∪ π₯π₯ =. ππππππ12 (3π₯π₯ + 1) + ππππππ3 (3π₯π₯ + 1)6 = −9 3. 19 ∪ π₯π₯ = 29 9. π₯π₯ = 0 ∪ π₯π₯ = −. 2. 68. 70. 1 ∪ π₯π₯ = ±√2 ππ 3. ππππ 2π₯π₯ = 0. 4 ± 3√2 2. 27 π₯π₯ = ±οΏ½ 2. ∪ π₯π₯ = ±οΏ½. 1 6. π₯π₯ = 7 ∪ π₯π₯ =. 1. √2. 3 2 3 ± √33 ∪ π₯π₯ = 12. π₯π₯ = −1 ∪ π₯π₯ =. +3. π₯π₯ = 0 © 2016 - www.matematika.it. 4 di 7.
(5) Equazioni logaritmiche. Logaritmi. 80 81 82 83 84 85 86 87 88 89. ππππππ5 7π₯π₯ = 1. ππππππ5 2π₯π₯ −1 =. π₯π₯ = ππππππ7 5. 1 4. π₯π₯ = 1 +. ππππ(1 − ππ π₯π₯ ) = 0. ππππππππππππππππππππππ. 1 − ππππππ 3π₯π₯ = ππππππ 2π₯π₯. π₯π₯ =. ππππππ(3π₯π₯ + 1) + ππππππ(3π₯π₯ − 1) = 2. π₯π₯ ππππππ2 3 + ππππππ2 5π₯π₯ = (2π₯π₯ − 1) ππππππ2 5 − π₯π₯ ππππππ2 5 ππππ(22π₯π₯ − 9 β 2π₯π₯ + 21) = 0. ππππππ2 (4π₯π₯ + 2π₯π₯ ) − ππππππ2 2 = 0 ππππ 4π₯π₯. 2 −6. 1 4 ππππππ5 2. ππππ 10 ππππ 6. 1 π₯π₯ = ππππππ3 101 2 π₯π₯ = −. ππππ 5 ππππ 3. π₯π₯ = 2 ∪ π₯π₯ = π₯π₯ = 0. − ππππ 64 = 0. ππππππ2 (2π₯π₯ + 1) + ππππππ2 2 (2π₯π₯ + 1) − 2 = 0. ππππ 5 ππππ 2. π₯π₯ = ±3 π₯π₯ = 0. equazioni logaritmiche di riepilogo 90 91 92 93 94 95 96 97 98 99. v 3.0. ππππππ4 (π₯π₯ 2 + 2) − ππππππ4 (π₯π₯ 2 − 1) = ππππππ4 5 − ππππππ4 (π₯π₯ + 1). ππππππππππππππππππππππ. (ππππππ2 π₯π₯ 2 )2 +9 ππππππ2 π₯π₯ + 2 = 0. 1 1 π₯π₯ = , π₯π₯ = 4 4 √2. π₯π₯ √2 ππππππ(10 − π₯π₯ 2 ) − ππππππ 8 = 2 ππππππ − 2 ππππππ 5 5 ππππππ(π₯π₯ − 1) − 2 β ππππππ(π₯π₯ + 1) − ππππππ 8 = −2 3 2 + =2 ππππππ2 π₯π₯ − 1 ππππππ2 π₯π₯ + 1 ππππππ2 3π₯π₯ − 2 = 0 π₯π₯−1 2. ππππππππππππππππππππππ π₯π₯ = 8, π₯π₯ = π₯π₯ =. 2 ππππππ3 4π₯π₯ = ππππππ1 2−π₯π₯ ππππ 2. π₯π₯ = √2. ππππ 4 ππππ 3. π₯π₯ = 0. 3. π₯π₯ = 1 +. −1=0. 3 1 ππππ 2π₯π₯ +1 − 2 ππππ = 1 2 2. √2 2. 2 ππππ 2. 1 2 π₯π₯ = οΏ½ − 7οΏ½ 3 ππππ 2. −2 πΏπΏπΏπΏπΏπΏ 42−π₯π₯ + 5 πΏπΏπΏπΏπΏπΏ 2π₯π₯+1 = 1. π₯π₯ = ππππππ512 80 © 2016 - www.matematika.it. 5 di 7.
(6) Equazioni logaritmiche. Logaritmi. 100 101 102 103 104 105 106. π₯π₯−1. 2 ππππ 33π₯π₯+1 = ππππ 9. π₯π₯ = −1. π₯π₯ ππππππ2 3 − ππππππ4 9 = 0. π₯π₯ = 1. − ππππ 2π₯π₯ + 2 ππππ 3 = 1 − ππππ 4−π₯π₯ (2π₯π₯ − 1) ππππππ7 2 = 1 + π₯π₯ ππππππ1 4 (π₯π₯ + 1) ππππ 3 − ππππ. 7. 1 1 π₯π₯ = 2 ππππ οΏ½ οΏ½ 9 3. π₯π₯ =. ππππ 9 − 1 ππππ 8. π₯π₯ =. ππππ 14 ππππ 16. π₯π₯ = −1. 1 ππππ 2 + 4 ππππππ2 ππ = 0 π₯π₯. π₯π₯ = −ln2 √2. ππππ 3π₯π₯ + 2 ππππππ3π₯π₯ ππ − 3 = 0. π₯π₯ =. 1 2 ∪ π₯π₯ = ππππ 3 ππππ 3. ππππ 10 ππππ 2 ππππ 10 ∪ π₯π₯ = 3 ππππ 2. π₯π₯ = −. 107. π₯π₯π₯π₯π₯π₯π₯π₯ 2 − 3 ππππππ2π₯π₯ 10 − 2 = 0. 108. 2 − 3π₯π₯ ππππππ4 3π₯π₯ + 2(ππππππ4 9 − ππππππ4 4) = 0. 2 π₯π₯ = ± √3 3. πΏπΏπΏπΏπΏπΏ(24π₯π₯ − 1) + 2 πΏπΏπΏπΏπΏπΏ 3 = (1 − 2π₯π₯) πΏπΏπΏπΏπΏπΏ 4. 4 π₯π₯ = ππππππ16 οΏ½ οΏ½ 3. 109 110 111 112 113 114 115 116 117 118 119 120 v 3.0. οΏ½(π₯π₯ + 1) πΏπΏπΏπΏπΏπΏ 3 − 1οΏ½(1 + πΏπΏπΏπΏπΏπΏ 3π₯π₯ +1 ) = 0 3 − π₯π₯ + ππππππ2 32π₯π₯+1 = 0 3. ππππππ3 οΏ½9π₯π₯+2 − 2οΏ½ = π₯π₯ + 1. π₯π₯ = −1 ±. π₯π₯ = −. 1 πΏπΏπΏπΏπΏπΏ 3. ππππ 24 ππππ 9 − ππππ 2. π₯π₯ = −1. ππππ|3π₯π₯ − 1| = π₯π₯π₯π₯π₯π₯ 9. πΏπΏπΏπΏπΏπΏ(4π₯π₯ − 1) + πΏπΏπΏπΏπΏπΏ 2 = πΏπΏπΏπΏπΏπΏ(22π₯π₯ + 3 β 2π₯π₯+1 − 10) ππππππ 5 − ππππππ(2π₯π₯ − 3) = 1. (2 ππππππ π₯π₯ − 5) ππππππ π₯π₯ = 3 − ππππππ π₯π₯. π₯π₯ = ππππππ3 οΏ½ π₯π₯ = 2 π₯π₯ =. 7 4. π₯π₯ = 10. ππππππ(ππ π₯π₯ + 1) = ππππππ(ππ 2π₯π₯ − 1). ππππππ 5 + (π₯π₯ − 2) ππππππ 4 = ππππππ(4π₯π₯ − 11) 1 3 1 + = 2 2 ππππππ2 π₯π₯ − 2 ππππππ2 π₯π₯ − 1 4. ππππππ π₯π₯ − 2 ππππππ π₯π₯ − 2 ππππππ2 π₯π₯ − 4 + = ππππππ π₯π₯ − 1 ππππππ π₯π₯ − 3 (ππππππ π₯π₯ − 3)(1 − ππππππ π₯π₯). © 2016 - www.matematika.it. 2−√10 2. √5 − 1 οΏ½ 2. ∪ π₯π₯ = 10. 2+√2 2. π₯π₯ = ln 2 π₯π₯ = 2 π₯π₯ =. 1 ∪ π₯π₯ = 32 8. 2. π₯π₯ = 102 ∪ π₯π₯ = 103 6 di 7.
(7) Equazioni logaritmiche. Logaritmi. 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140. v 3.0. ππππππ2 (2π₯π₯ − 1) ππππππ2 (2π₯π₯+1 − 2) = 0. π₯π₯ = 1 ∪ π₯π₯ = log 2. ππππππ3 οΏ½π₯π₯ 2 − π₯π₯ = ππππππ3 √2. π₯π₯ = −1 ∪ π₯π₯ = 2. ππππ(ππ 2π₯π₯ − 1) = ππππ(1 − ππ π₯π₯ ). ππππππππππππππππππππππ. ππππππ3 (2π₯π₯ − 1) + ππππππ1 (π₯π₯ − 4) = −1. ππππππππππππππππππππππ. 3. ππππππ1 (π₯π₯ − 1) − ππππππ2 (π₯π₯ + 1) = 3. π₯π₯ =. 2. ππππππ(32π₯π₯ + 2) + ππππππ 1 (3π₯π₯ − 2) = 1 10. 1 1 ππππ(π₯π₯ − 1) + ππππ √3 = [ππππ(5π₯π₯ 2 − 20) − ππππ(π₯π₯ − 2)] 2 2 πππππποΏ½51+√π₯π₯ + 51−√π₯π₯ οΏ½ = 1 πππποΏ½√3π π π π π π π π + πππππππποΏ½ = 0. π₯π₯. =. π₯π₯ π₯π₯ = 1. 3√2 4. π₯π₯ = log 3 5 + √3 ππππππππππππππππππππππ π₯π₯ = 0 ππππππππππππππππππππππ. 2π₯π₯ 2 ππππ π₯π₯ + 5π₯π₯ ππππ π₯π₯ − 3 = 0 ππππππππ. 3 2. ππππππππππππππππππππππ. ππ π₯π₯ = 1 ∪ π₯π₯ = ± + 2ππππ 6. √3 π₯π₯ 2. π₯π₯ = 1. πππππππ₯π₯ π₯π₯ = 0. π₯π₯ = 1. π₯π₯ π₯π₯ = π₯π₯ 3−π₯π₯. ππππππ2 (3 − 2π₯π₯) − 2 ππππππ1 π₯π₯ = 0 ππππππ32 (3π₯π₯ − 1) − ππππππ1 (3π₯π₯ − 1)4 + 3 = 0 3. π₯π₯ − ππππππ4 3π₯π₯ = 1 2 1 1 οΏ½ ππππ 2π₯π₯ − ππππ 3οΏ½ οΏ½ − 4οΏ½ = 0 2 ππππ π₯π₯ ππππππ2. 3 ∪ π₯π₯ = 1 2. π₯π₯ =. 1 ππππ 3. π₯π₯ = 1. 2. π₯π₯π₯π₯π₯π₯π₯π₯ 3 = 1. π₯π₯ =. π₯π₯ =. π₯π₯ = 48 π₯π₯ =. πππππππ₯π₯ 3 = 2 ππππππ1 +1 √3. π₯π₯ =. π₯π₯. © 2016 - www.matematika.it. 4 28 ∪ π₯π₯ = 9 81 9 4 ∪ π₯π₯ = √ππ 2 1 + √5 2. 7 di 7.
(8)
Documenti correlati
Riguardo ai valori associati ai brand ospitanti (convenienza e prezzo), in entrambe le alleanze lβassociazione al brand partner ha comportato una contrazione del
[r]
Infatti, nonostante il sistema operativo Cisco consenta la gestione diretta del routing multicast, per un suo corretto funzionamento eβ necessario che tutte le parti in causa,
Giocando sul doppio significato della parola inglese, che significa appunto βsovraccaricoβ ma anche βdisordineβ si puΓ² intuire come il problema essenziale per lo sviluppo
Rispetto al passato, le Regioni hanno lβopportunitΓ di parteci- pare attivamente a tutti e tre le sezioni presenti in Interreg III, attraverso la presentazione
The muon trigger efficiency as a function of the truth transverse decay position (L xy ) of the dark photon is shown in Figure 7.14 for the Run-2 setup, in blue, and the HL-LHC
This can be understood by the fact that in a matter only dominated universe the Hubble factor, which as we pointed out is what really identifies our position along the time
Dopo aver verificato che, oltre al punto O, tali grafici hanno in comune un altro punto A, determinare sul segmento OA un punto P tale che, condotta per esso la retta parallela