• Non ci sono risultati.

Esercizi da fare su equazion sito Matematika

N/A
N/A
Protected

Academic year: 2021

Condividi "Esercizi da fare su equazion sito Matematika"

Copied!
7
0
0

Testo completo

(1)Equazioni logaritmiche. Logaritmi. equazioni logaritmiche risolubili mediante definizione ed applicazione dei teoremi sui logaritmi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 v 3.0. 𝑙𝑙𝑙𝑙𝑙𝑙3 𝑥𝑥 = 2. 𝑥𝑥 = 9. 𝑙𝑙𝑙𝑙𝑙𝑙 1 𝑥𝑥 = −3. 𝑥𝑥 = 103. 10. 𝑙𝑙𝑙𝑙(𝑥𝑥 + 2) = 0. 𝑥𝑥 = −1. 𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) = −2. 𝑥𝑥 =. 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 + 2𝑥𝑥 2 ) − 𝑙𝑙𝑙𝑙𝑙𝑙3 9 = 1. 𝑥𝑥 =. 𝑙𝑙𝑙𝑙𝑙𝑙4 (2𝑥𝑥 − 1) = 𝑙𝑙𝑙𝑙𝑙𝑙4 𝑥𝑥. 𝑙𝑙𝑙𝑙(4𝑥𝑥 + 5) + 𝑙𝑙𝑙𝑙(𝑥𝑥 − 2) = 𝑙𝑙𝑙𝑙3 + 𝑙𝑙𝑙𝑙(5 − 𝑥𝑥) 𝑙𝑙𝑙𝑙 10 − 𝑙𝑙𝑙𝑙(𝑥𝑥 − 1) = 𝑙𝑙𝑙𝑙 8 − 𝑙𝑙𝑙𝑙(𝑥𝑥 + 3) 𝑙𝑙𝑙𝑙 2 + 𝑙𝑙𝑙𝑙 𝑥𝑥 = 2 𝑙𝑙𝑙𝑙(4𝑥𝑥 − 15) 𝑥𝑥 = 𝑙𝑙𝑙𝑙4 2. 𝑥𝑥 = 𝑥𝑥 =. 19 5 5 2. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 =. 9 2. 𝑥𝑥 =. 1 4. 𝑥𝑥 = 2. 𝑙𝑙𝑙𝑙𝑙𝑙 = 2𝑙𝑙𝑙𝑙2𝑥𝑥. 𝑙𝑙𝑙𝑙𝑙𝑙5 (𝑥𝑥 2 + 𝑥𝑥 + 1) = 1. 𝑙𝑙𝑙𝑙(𝑥𝑥 2 + 12𝑥𝑥 + 5) = 𝑙𝑙𝑙𝑙 2 + 𝑙𝑙𝑙𝑙(𝑥𝑥 − 10) 𝑙𝑙𝑙𝑙 𝑥𝑥 + 𝑙𝑙𝑙𝑙 3 = 𝑙𝑙𝑙𝑙(𝑥𝑥 2 + 2). 𝑙𝑙𝑙𝑙𝑙𝑙3 4 + 𝑙𝑙𝑙𝑙𝑙𝑙3 2 + 2 𝑙𝑙𝑙𝑙𝑙𝑙3 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙3 (𝑥𝑥 2 − 3) + 𝑙𝑙𝑙𝑙𝑙𝑙3 (𝑥𝑥 2 + 3) 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 2 =. −1 ± √65 4. 𝑥𝑥 = 1. 𝑙𝑙𝑙𝑙(𝑥𝑥 − 2) − 𝑙𝑙𝑙𝑙 3 = 𝑙𝑙𝑙𝑙(5 − 𝑥𝑥) − 𝑙𝑙𝑙𝑙 2. 𝑙𝑙𝑙𝑙2𝑥𝑥 + 𝑙𝑙𝑙𝑙. 1 −1 𝑒𝑒 2. 1. √2. 1 1 𝑙𝑙𝑙𝑙𝑙𝑙3 2 + 𝑙𝑙𝑙𝑙𝑙𝑙3 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙3 + 𝑙𝑙𝑙𝑙𝑙𝑙3 2 𝑥𝑥. 𝑙𝑙𝑙𝑙𝑙𝑙(2𝑥𝑥 + 2) − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 − 1) = 1 − [𝑙𝑙𝑙𝑙𝑙𝑙(3𝑥𝑥 − 2) − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥] 𝑙𝑙𝑙𝑙𝑙𝑙3 𝑥𝑥 = 1. 𝑙𝑙𝑙𝑙𝑙𝑙3 (2𝑥𝑥 − 1) = −1. 𝑥𝑥 =. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 𝑥𝑥 = 1 ∪ 𝑥𝑥 = 2 𝑥𝑥 = 3 𝑥𝑥 = 2√2 𝑥𝑥 = 𝑥𝑥 =. 1 2. 3 ± √5 2. 𝑥𝑥 = 3 𝑥𝑥 =. © 2016 - www.matematika.it. −1 ± √17 2. 2 3 1 di 7.

(2) Equazioni logaritmiche. Logaritmi. 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39. 𝑙𝑙𝑙𝑙𝑙𝑙1 (𝑥𝑥 − 2) = 0 2. 𝑙𝑙𝑙𝑙𝑙𝑙4 (3𝑥𝑥 − 4) = − 𝑥𝑥 − 2 = −2 3 2. 𝑙𝑙𝑙𝑙𝑙𝑙3. 𝑥𝑥 = 3. 3 2. 𝑥𝑥 = 𝑥𝑥 =. 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 4 = 1. −1 < 𝑥𝑥 < 0 ∪ 𝑥𝑥 > 0. 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥−2 9 = 2. 𝑥𝑥 = 5. 𝑙𝑙𝑙𝑙𝑙𝑙1 −2 = 2 𝑙𝑙𝑙𝑙𝑙𝑙3−2𝑥𝑥. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 1 = −2 3. 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 + 1) + 𝑙𝑙𝑙𝑙𝑙𝑙2 3 = 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 − 1) 𝑙𝑙𝑙𝑙𝑙𝑙3 (3𝑥𝑥 + 1) − 𝑙𝑙𝑙𝑙𝑙𝑙3 𝑥𝑥 = 2. 2 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 + 2) + 𝑙𝑙𝑙𝑙𝑙𝑙1 𝑥𝑥 + 1 = 0 1 𝑙𝑙𝑙𝑙𝑙𝑙3 𝑥𝑥 2 + 2 = − 𝑙𝑙𝑙𝑙𝑙𝑙1 2 2 3. 41. v 3.0. 𝑥𝑥 =. 1 6. 𝑥𝑥 = −2. 3. 2 9. 1+√2 𝑥𝑥 = �. 2. 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 − 2) − 𝑙𝑙𝑙𝑙𝑙𝑙4 (3𝑥𝑥 − 1) = 1. 2. 𝑥𝑥 = 8 + 2√14. 1 2 𝑙𝑙𝑙𝑙𝑙𝑙1 � 𝑥𝑥 − 1� = 2 − 𝑙𝑙𝑙𝑙𝑙𝑙9 𝑥𝑥 4 3 3. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 3𝑥𝑥 − 1 =2 𝑥𝑥. 𝑥𝑥 = −. 𝑙𝑙𝑙𝑙𝑙𝑙1 𝑙𝑙𝑙𝑙𝑙𝑙2 (3𝑥𝑥 − 1) = 0. 𝑥𝑥 = 1. 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) = 1 − 𝑙𝑙𝑙𝑙𝑙𝑙4 3. equazioni logaritmiche risolubili mediante una posizione. 40. 3 − √3 2. 𝑥𝑥 = ±. 3 𝑙𝑙𝑙𝑙𝑙𝑙1 𝑥𝑥 − 2 = 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 3 − 1). 3. 𝑥𝑥 =. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 2. 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑙𝑙𝑙𝑙𝑙𝑙3. 10 3. 𝑥𝑥 = 4. 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥+1 1 = 0. 𝑥𝑥. 11 8. 2 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 5 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 3 = 0. 1 78. 2. 𝑥𝑥 = 𝑒𝑒 √3 − 1 𝑥𝑥 = 10−3 ∪ 𝑥𝑥 = √10. 𝑙𝑙𝑙𝑙𝑙𝑙2 2 𝑥𝑥 − 4 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 4 = 0. 𝑥𝑥 = 4. © 2016 - www.matematika.it. 2 di 7.

(3) Equazioni logaritmiche. Logaritmi. 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62. v 3.0. 3 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 = −4. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 3 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 5 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 = 0. 𝑥𝑥 = 1 ∪ 𝑥𝑥 = 10−3. 2 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 3 = 7 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥. 𝑥𝑥 = 103 ∪ 𝑥𝑥 = √10 5. 𝑙𝑙𝑙𝑙𝑙𝑙32 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙3 𝑥𝑥 − 12 = 0. 𝑥𝑥 = 27 𝑥𝑥 =. −2𝑙𝑙𝑙𝑙2 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙 + 1 = 0. 𝑥𝑥 = 𝑒𝑒 𝑥𝑥 =. 𝑙𝑙𝑙𝑙3 𝑥𝑥 − 9𝑙𝑙𝑙𝑙𝑙𝑙 = 0. 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 (𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 + 1) + 5 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 4 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 7 𝑙𝑙𝑙𝑙𝑙𝑙2 2 𝑥𝑥 + 95 = 8√6 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 3(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1) = 5 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥. 𝑥𝑥 = 𝑒𝑒. √𝑒𝑒. 7. 𝑥𝑥 = 10−2. 𝑥𝑥 = 2 4√6−1 ∪ 𝑥𝑥 = 2 4√6+1 3−√69 10. 𝑥𝑥 = 10. 2 =5 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 + 3). 3+√69 10. ∪ 𝑥𝑥 = 10. 𝑥𝑥 = √2 − 3 ∪ 𝑥𝑥 = 1. 1 2 + =2 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 + 1. 𝑥𝑥 = 10 ∪ 𝑥𝑥 = √10/10. 𝑙𝑙𝑙𝑙 𝑥𝑥 + 1 =1 𝑙𝑙𝑛𝑛2 𝑥𝑥 + 1. 𝑥𝑥 = 1 ∪ 𝑥𝑥 = 𝑒𝑒. (𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 3)(𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 + 3) = 0. 𝑥𝑥 = 103 ∪ 𝑥𝑥 = 10−3. 𝑙𝑙𝑙𝑙𝑙𝑙5 𝑥𝑥 − 𝑙𝑙𝑙𝑙𝑙𝑙25 𝑥𝑥 = 1. 𝑥𝑥 = 25. 3 3 1 + =− 𝑙𝑙𝑙𝑙𝑙𝑙4 𝑥𝑥 2 + 𝑙𝑙𝑙𝑙𝑙𝑙4 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙4 𝑥𝑥 + 1. 𝑥𝑥 = 2. 4 − 2 𝑙𝑙𝑙𝑙𝑙𝑙4 𝑥𝑥 5 + 3 𝑙𝑙𝑙𝑙𝑙𝑙4 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙4 𝑥𝑥 3 𝑙𝑙𝑙𝑙𝑙𝑙4 𝑥𝑥 + 5. −2√7±2 √7 4. 𝑥𝑥 = 43. 𝑙𝑙𝑙𝑙𝑙𝑙22 𝑥𝑥 − 4 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 3 = 0. 𝑥𝑥 = 2 ∪ 𝑥𝑥 = 8. 2𝑙𝑙𝑙𝑙2 (𝑥𝑥 − 1) − 5 𝑙𝑙𝑙𝑙(𝑥𝑥 − 1) + 2 = 0. 𝑥𝑥 = √𝑒𝑒 + 1 𝑥𝑥 = 𝑒𝑒 2 + 1. 𝑙𝑙𝑙𝑙𝑙𝑙32 (𝑥𝑥 + 2) − 𝑙𝑙𝑙𝑙𝑙𝑙3 (𝑥𝑥 + 2) − 2 = 0. 𝑥𝑥 = −. 3𝑙𝑙𝑙𝑙𝑙𝑙12 𝑥𝑥 − 11𝑙𝑙𝑙𝑙𝑙𝑙1 𝑥𝑥 − 4 = 0 2. 1. 𝑥𝑥 = 1 𝑥𝑥 = 𝑒𝑒 3 𝑥𝑥 = 𝑒𝑒 −3. 𝑙𝑙𝑙𝑙2 𝑥𝑥 − 2 𝑙𝑙𝑙𝑙 𝑥𝑥 + 1 = 0. 2 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 + 3) +. 1 81. 3. 5 ∪ 𝑥𝑥 = 7 3. 𝑥𝑥 = √2 𝑥𝑥 =. 2. © 2016 - www.matematika.it. 1 16. 3 di 7.

(4) Equazioni logaritmiche. Logaritmi. 63 64 65 66 67. 𝑙𝑙𝑙𝑙2 (𝑥𝑥 2 − 1) + 3𝑙𝑙𝑙𝑙(𝑥𝑥 2 − 1) = 0. 𝑥𝑥 = ±�1 +. 𝑙𝑙𝑙𝑙𝑙𝑙32 (𝑥𝑥 − 2) + 𝑙𝑙𝑙𝑙𝑙𝑙1 (𝑥𝑥 − 2) = 6. 𝑥𝑥 =. 𝑙𝑙𝑙𝑙𝑙𝑙22 𝑥𝑥 − 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 3 + 2 = 0. 𝑥𝑥 = 2 ∪ 𝑥𝑥 = 4. 3. 𝑙𝑙𝑙𝑙𝑙𝑙22 (2𝑥𝑥 + 1) − 𝑙𝑙𝑙𝑙𝑙𝑙1 (2𝑥𝑥 + 1) = 0 2 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥−1 3 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥−1 3 − 2 = 0. 𝑥𝑥 =. 𝑙𝑙𝑙𝑙𝑙𝑙24 (2𝑥𝑥 − 3) − 5𝑙𝑙𝑙𝑙𝑙𝑙22 (2𝑥𝑥 − 3) + 4 = 0. 69. 2𝑙𝑙𝑙𝑙𝑙𝑙42 𝑥𝑥(𝑥𝑥 − 1) + 𝑙𝑙𝑙𝑙𝑙𝑙1 [𝑥𝑥(𝑥𝑥 − 1)]7 + 3 = 0. 71 72 73 74 75. 4. 2 𝑙𝑙𝑙𝑙𝑙𝑙2𝑥𝑥+1 27 + 𝑙𝑙𝑙𝑙𝑙𝑙2𝑥𝑥+1 1�27 − 6 = 0. 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 − 4) − 3 =. 2 𝑙𝑙𝑙𝑙𝑙𝑙1 (𝑥𝑥 − 4) 2. − 𝑙𝑙𝑙𝑙𝑙𝑙1 (2𝑥𝑥 + 5) (𝑙𝑙𝑙𝑙𝑙𝑙3 (2𝑥𝑥 + 5) − 1) = 2 3. (𝑙𝑙𝑙𝑙𝑙𝑙2 (3𝑥𝑥 + 4) − 1)2 = 𝑙𝑙𝑙𝑙𝑙𝑙2 2 2. 𝑙𝑙𝑙𝑙𝑙𝑙3 2𝑥𝑥 2 (𝑙𝑙𝑙𝑙𝑙𝑙3 2𝑥𝑥 2 − 1) = 𝑙𝑙𝑙𝑙𝑙𝑙3 2𝑥𝑥 2 + 3. 77. 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 − 3)2 (𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 − 3) − 2) − 𝑙𝑙𝑙𝑙𝑙𝑙1 (𝑥𝑥 − 3) = 2 2. 𝑙𝑙𝑙𝑙𝑙𝑙32 (2𝑥𝑥 2 − 𝑥𝑥) = 1 equazioni logaritmiche con argomento esponenziale. 79 v 3.0. 𝑥𝑥 = −1 ∪ 𝑥𝑥 = 2 ∪ 𝑥𝑥 =. 1 ± √257 2. 𝑥𝑥 = −. 26 81. √3 − 9 18. 𝑥𝑥 = 6 ∪ 𝑥𝑥 = 8 𝑥𝑥 = −. 7 ∪ 𝑥𝑥 = 2 3. 𝑥𝑥 = −1 ∪ 𝑥𝑥 = 0 ∪ 𝑥𝑥 = −. 76. 78. 5 7 ∪ 𝑥𝑥 = 2 2 7 13 ∪ 𝑥𝑥 = ∪ 𝑥𝑥 = 4 8 𝑥𝑥 =. 𝑥𝑥 = −2 ± √5. 𝑙𝑙𝑙𝑙𝑙𝑙12 [𝑥𝑥(𝑥𝑥 + 4)] = 𝑙𝑙𝑙𝑙𝑙𝑙1 [𝑥𝑥(𝑥𝑥 + 4)] 2. 1 4. 4 ∪ 𝑥𝑥 = 1 + √3 3. 𝑥𝑥 = 1 ∪ 𝑥𝑥 =. 𝑙𝑙𝑙𝑙𝑙𝑙12 (3𝑥𝑥 + 1) + 𝑙𝑙𝑙𝑙𝑙𝑙3 (3𝑥𝑥 + 1)6 = −9 3. 19 ∪ 𝑥𝑥 = 29 9. 𝑥𝑥 = 0 ∪ 𝑥𝑥 = −. 2. 68. 70. 1 ∪ 𝑥𝑥 = ±√2 𝑒𝑒 3. 𝑙𝑙𝑙𝑙 2𝑥𝑥 = 0. 4 ± 3√2 2. 27 𝑥𝑥 = ±� 2. ∪ 𝑥𝑥 = ±�. 1 6. 𝑥𝑥 = 7 ∪ 𝑥𝑥 =. 1. √2. 3 2 3 ± √33 ∪ 𝑥𝑥 = 12. 𝑥𝑥 = −1 ∪ 𝑥𝑥 =. +3. 𝑥𝑥 = 0 © 2016 - www.matematika.it. 4 di 7.

(5) Equazioni logaritmiche. Logaritmi. 80 81 82 83 84 85 86 87 88 89. 𝑙𝑙𝑙𝑙𝑙𝑙5 7𝑥𝑥 = 1. 𝑙𝑙𝑙𝑙𝑙𝑙5 2𝑥𝑥 −1 =. 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙7 5. 1 4. 𝑥𝑥 = 1 +. 𝑙𝑙𝑙𝑙(1 − 𝑒𝑒 𝑥𝑥 ) = 0. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 1 − 𝑙𝑙𝑙𝑙𝑙𝑙 3𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙 2𝑥𝑥. 𝑥𝑥 =. 𝑙𝑙𝑙𝑙𝑙𝑙(3𝑥𝑥 + 1) + 𝑙𝑙𝑙𝑙𝑙𝑙(3𝑥𝑥 − 1) = 2. 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙2 3 + 𝑙𝑙𝑙𝑙𝑙𝑙2 5𝑥𝑥 = (2𝑥𝑥 − 1) 𝑙𝑙𝑙𝑙𝑙𝑙2 5 − 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙2 5 𝑙𝑙𝑙𝑙(22𝑥𝑥 − 9 ∙ 2𝑥𝑥 + 21) = 0. 𝑙𝑙𝑙𝑙𝑙𝑙2 (4𝑥𝑥 + 2𝑥𝑥 ) − 𝑙𝑙𝑙𝑙𝑙𝑙2 2 = 0 𝑙𝑙𝑙𝑙 4𝑥𝑥. 2 −6. 1 4 𝑙𝑙𝑙𝑙𝑙𝑙5 2. 𝑙𝑙𝑙𝑙 10 𝑙𝑙𝑙𝑙 6. 1 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙3 101 2 𝑥𝑥 = −. 𝑙𝑙𝑙𝑙 5 𝑙𝑙𝑙𝑙 3. 𝑥𝑥 = 2 ∪ 𝑥𝑥 = 𝑥𝑥 = 0. − 𝑙𝑙𝑙𝑙 64 = 0. 𝑙𝑙𝑙𝑙𝑙𝑙2 (2𝑥𝑥 + 1) + 𝑙𝑙𝑙𝑙𝑙𝑙2 2 (2𝑥𝑥 + 1) − 2 = 0. 𝑙𝑙𝑙𝑙 5 𝑙𝑙𝑙𝑙 2. 𝑥𝑥 = ±3 𝑥𝑥 = 0. equazioni logaritmiche di riepilogo 90 91 92 93 94 95 96 97 98 99. v 3.0. 𝑙𝑙𝑙𝑙𝑙𝑙4 (𝑥𝑥 2 + 2) − 𝑙𝑙𝑙𝑙𝑙𝑙4 (𝑥𝑥 2 − 1) = 𝑙𝑙𝑙𝑙𝑙𝑙4 5 − 𝑙𝑙𝑙𝑙𝑙𝑙4 (𝑥𝑥 + 1). 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. (𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 2 )2 +9 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 2 = 0. 1 1 𝑥𝑥 = , 𝑥𝑥 = 4 4 √2. 𝑥𝑥 √2 𝑙𝑙𝑙𝑙𝑙𝑙(10 − 𝑥𝑥 2 ) − 𝑙𝑙𝑙𝑙𝑙𝑙 8 = 2 𝑙𝑙𝑙𝑙𝑙𝑙 − 2 𝑙𝑙𝑙𝑙𝑙𝑙 5 5 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 − 1) − 2 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥 + 1) − 𝑙𝑙𝑙𝑙𝑙𝑙 8 = −2 3 2 + =2 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 − 1 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 + 1 𝑙𝑙𝑙𝑙𝑙𝑙2 3𝑥𝑥 − 2 = 0 𝑥𝑥−1 2. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 = 8, 𝑥𝑥 = 𝑥𝑥 =. 2 𝑙𝑙𝑙𝑙𝑙𝑙3 4𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙1 2−𝑥𝑥 𝑙𝑙𝑙𝑙 2. 𝑥𝑥 = √2. 𝑙𝑙𝑙𝑙 4 𝑙𝑙𝑙𝑙 3. 𝑥𝑥 = 0. 3. 𝑥𝑥 = 1 +. −1=0. 3 1 𝑙𝑙𝑙𝑙 2𝑥𝑥 +1 − 2 𝑙𝑙𝑙𝑙 = 1 2 2. √2 2. 2 𝑙𝑙𝑙𝑙 2. 1 2 𝑥𝑥 = � − 7� 3 𝑙𝑙𝑙𝑙 2. −2 𝐿𝐿𝐿𝐿𝐿𝐿 42−𝑥𝑥 + 5 𝐿𝐿𝐿𝐿𝐿𝐿 2𝑥𝑥+1 = 1. 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙512 80 © 2016 - www.matematika.it. 5 di 7.

(6) Equazioni logaritmiche. Logaritmi. 100 101 102 103 104 105 106. 𝑥𝑥−1. 2 𝑙𝑙𝑙𝑙 33𝑥𝑥+1 = 𝑙𝑙𝑙𝑙 9. 𝑥𝑥 = −1. 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙2 3 − 𝑙𝑙𝑙𝑙𝑙𝑙4 9 = 0. 𝑥𝑥 = 1. − 𝑙𝑙𝑙𝑙 2𝑥𝑥 + 2 𝑙𝑙𝑙𝑙 3 = 1 − 𝑙𝑙𝑙𝑙 4−𝑥𝑥 (2𝑥𝑥 − 1) 𝑙𝑙𝑙𝑙𝑙𝑙7 2 = 1 + 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙1 4 (𝑥𝑥 + 1) 𝑙𝑙𝑙𝑙 3 − 𝑙𝑙𝑙𝑙. 7. 1 1 𝑥𝑥 = 2 𝑙𝑙𝑙𝑙 � � 9 3. 𝑥𝑥 =. 𝑙𝑙𝑙𝑙 9 − 1 𝑙𝑙𝑙𝑙 8. 𝑥𝑥 =. 𝑙𝑙𝑙𝑙 14 𝑙𝑙𝑙𝑙 16. 𝑥𝑥 = −1. 1 𝑙𝑙𝑙𝑙 2 + 4 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑒𝑒 = 0 𝑥𝑥. 𝑥𝑥 = −ln2 √2. 𝑙𝑙𝑙𝑙 3𝑥𝑥 + 2 𝑙𝑙𝑙𝑙𝑙𝑙3𝑥𝑥 𝑒𝑒 − 3 = 0. 𝑥𝑥 =. 1 2 ∪ 𝑥𝑥 = 𝑙𝑙𝑙𝑙 3 𝑙𝑙𝑙𝑙 3. 𝑙𝑙𝑙𝑙 10 𝑙𝑙𝑙𝑙 2 𝑙𝑙𝑙𝑙 10 ∪ 𝑥𝑥 = 3 𝑙𝑙𝑙𝑙 2. 𝑥𝑥 = −. 107. 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 2 − 3 𝑙𝑙𝑙𝑙𝑙𝑙2𝑥𝑥 10 − 2 = 0. 108. 2 − 3𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙4 3𝑥𝑥 + 2(𝑙𝑙𝑙𝑙𝑙𝑙4 9 − 𝑙𝑙𝑙𝑙𝑙𝑙4 4) = 0. 2 𝑥𝑥 = ± √3 3. 𝐿𝐿𝐿𝐿𝐿𝐿(24𝑥𝑥 − 1) + 2 𝐿𝐿𝐿𝐿𝐿𝐿 3 = (1 − 2𝑥𝑥) 𝐿𝐿𝐿𝐿𝐿𝐿 4. 4 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙16 � � 3. 109 110 111 112 113 114 115 116 117 118 119 120 v 3.0. �(𝑥𝑥 + 1) 𝐿𝐿𝐿𝐿𝐿𝐿 3 − 1�(1 + 𝐿𝐿𝐿𝐿𝐿𝐿 3𝑥𝑥 +1 ) = 0 3 − 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙2 32𝑥𝑥+1 = 0 3. 𝑙𝑙𝑙𝑙𝑙𝑙3 �9𝑥𝑥+2 − 2� = 𝑥𝑥 + 1. 𝑥𝑥 = −1 ±. 𝑥𝑥 = −. 1 𝐿𝐿𝐿𝐿𝐿𝐿 3. 𝑙𝑙𝑙𝑙 24 𝑙𝑙𝑙𝑙 9 − 𝑙𝑙𝑙𝑙 2. 𝑥𝑥 = −1. 𝑙𝑙𝑙𝑙|3𝑥𝑥 − 1| = 𝑥𝑥𝑥𝑥𝑥𝑥 9. 𝐿𝐿𝐿𝐿𝐿𝐿(4𝑥𝑥 − 1) + 𝐿𝐿𝐿𝐿𝐿𝐿 2 = 𝐿𝐿𝐿𝐿𝐿𝐿(22𝑥𝑥 + 3 ∙ 2𝑥𝑥+1 − 10) 𝑙𝑙𝑙𝑙𝑙𝑙 5 − 𝑙𝑙𝑙𝑙𝑙𝑙(2𝑥𝑥 − 3) = 1. (2 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 5) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 = 3 − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥. 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙3 � 𝑥𝑥 = 2 𝑥𝑥 =. 7 4. 𝑥𝑥 = 10. 𝑙𝑙𝑙𝑙𝑙𝑙(𝑒𝑒 𝑥𝑥 + 1) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑒𝑒 2𝑥𝑥 − 1). 𝑙𝑙𝑙𝑙𝑙𝑙 5 + (𝑥𝑥 − 2) 𝑙𝑙𝑙𝑙𝑙𝑙 4 = 𝑙𝑙𝑙𝑙𝑙𝑙(4𝑥𝑥 − 11) 1 3 1 + = 2 2 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 − 2 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 − 1 4. 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 2 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 2 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑥𝑥 − 4 + = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 1 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 3 (𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − 3)(1 − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥). © 2016 - www.matematika.it. 2−√10 2. √5 − 1 � 2. ∪ 𝑥𝑥 = 10. 2+√2 2. 𝑥𝑥 = ln 2 𝑥𝑥 = 2 𝑥𝑥 =. 1 ∪ 𝑥𝑥 = 32 8. 2. 𝑥𝑥 = 102 ∪ 𝑥𝑥 = 103 6 di 7.

(7) Equazioni logaritmiche. Logaritmi. 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140. v 3.0. 𝑙𝑙𝑙𝑙𝑙𝑙2 (2𝑥𝑥 − 1) 𝑙𝑙𝑙𝑙𝑙𝑙2 (2𝑥𝑥+1 − 2) = 0. 𝑥𝑥 = 1 ∪ 𝑥𝑥 = log 2. 𝑙𝑙𝑙𝑙𝑙𝑙3 �𝑥𝑥 2 − 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙3 √2. 𝑥𝑥 = −1 ∪ 𝑥𝑥 = 2. 𝑙𝑙𝑙𝑙(𝑒𝑒 2𝑥𝑥 − 1) = 𝑙𝑙𝑙𝑙(1 − 𝑒𝑒 𝑥𝑥 ). 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 𝑙𝑙𝑙𝑙𝑙𝑙3 (2𝑥𝑥 − 1) + 𝑙𝑙𝑙𝑙𝑙𝑙1 (𝑥𝑥 − 4) = −1. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 3. 𝑙𝑙𝑙𝑙𝑙𝑙1 (𝑥𝑥 − 1) − 𝑙𝑙𝑙𝑙𝑙𝑙2 (𝑥𝑥 + 1) = 3. 𝑥𝑥 =. 2. 𝑙𝑙𝑙𝑙𝑙𝑙(32𝑥𝑥 + 2) + 𝑙𝑙𝑙𝑙𝑙𝑙 1 (3𝑥𝑥 − 2) = 1 10. 1 1 𝑙𝑙𝑙𝑙(𝑥𝑥 − 1) + 𝑙𝑙𝑙𝑙 √3 = [𝑙𝑙𝑙𝑙(5𝑥𝑥 2 − 20) − 𝑙𝑙𝑙𝑙(𝑥𝑥 − 2)] 2 2 𝑙𝑙𝑙𝑙𝑙𝑙�51+√𝑥𝑥 + 51−√𝑥𝑥 � = 1 𝑙𝑙𝑙𝑙�√3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� = 0. 𝑥𝑥. =. 𝑥𝑥 𝑥𝑥 = 1. 3√2 4. 𝑥𝑥 = log 3 5 + √3 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 = 0 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 2𝑥𝑥 2 𝑙𝑙𝑙𝑙 𝑥𝑥 + 5𝑥𝑥 𝑙𝑙𝑙𝑙 𝑥𝑥 − 3 = 0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 3 2. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 𝜋𝜋 𝑥𝑥 = 1 ∪ 𝑥𝑥 = ± + 2𝑘𝑘𝑘𝑘 6. √3 𝑥𝑥 2. 𝑥𝑥 = 1. 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 𝑥𝑥 = 0. 𝑥𝑥 = 1. 𝑥𝑥 𝑥𝑥 = 𝑥𝑥 3−𝑥𝑥. 𝑙𝑙𝑙𝑙𝑙𝑙2 (3 − 2𝑥𝑥) − 2 𝑙𝑙𝑙𝑙𝑙𝑙1 𝑥𝑥 = 0 𝑙𝑙𝑙𝑙𝑙𝑙32 (3𝑥𝑥 − 1) − 𝑙𝑙𝑙𝑙𝑙𝑙1 (3𝑥𝑥 − 1)4 + 3 = 0 3. 𝑥𝑥 − 𝑙𝑙𝑙𝑙𝑙𝑙4 3𝑥𝑥 = 1 2 1 1 � 𝑙𝑙𝑙𝑙 2𝑥𝑥 − 𝑙𝑙𝑙𝑙 3� � − 4� = 0 2 𝑙𝑙𝑙𝑙 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙2. 3 ∪ 𝑥𝑥 = 1 2. 𝑥𝑥 =. 1 𝑙𝑙𝑙𝑙 3. 𝑥𝑥 = 1. 2. 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 3 = 1. 𝑥𝑥 =. 𝑥𝑥 =. 𝑥𝑥 = 48 𝑥𝑥 =. 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 3 = 2 𝑙𝑙𝑙𝑙𝑙𝑙1 +1 √3. 𝑥𝑥 =. 𝑥𝑥. © 2016 - www.matematika.it. 4 28 ∪ 𝑥𝑥 = 9 81 9 4 ∪ 𝑥𝑥 = √𝑒𝑒 2 1 + √5 2. 7 di 7.

(8)

Riferimenti

Documenti correlati

[r]

Infatti, nonostante il sistema operativo Cisco consenta la gestione diretta del routing multicast, per un suo corretto funzionamento e’ necessario che tutte le parti in causa,

Giocando sul doppio significato della parola inglese, che significa appunto ‘sovraccarico’ ma anche ‘disordine’ si può intuire come il problema essenziale per lo sviluppo

Riguardo ai valori associati ai brand ospitanti (convenienza e prezzo), in entrambe le alleanze l’associazione al brand partner ha comportato una contrazione del

Rispetto al passato, le Regioni hanno l’opportunità di parteci- pare attivamente a tutti e tre le sezioni presenti in Interreg III, attraverso la presentazione

The muon trigger efficiency as a function of the truth transverse decay position (L xy ) of the dark photon is shown in Figure 7.14 for the Run-2 setup, in blue, and the HL-LHC

This can be understood by the fact that in a matter only dominated universe the Hubble factor, which as we pointed out is what really identifies our position along the time

Dopo aver verificato che, oltre al punto O, tali grafici hanno in comune un altro punto A, determinare sul segmento OA un punto P tale che, condotta per esso la retta parallela