• Non ci sono risultati.

The Sivers asymmetry in Drell–Yan production at the J /Ψ peak at COMPASS

N/A
N/A
Protected

Academic year: 2021

Condividi "The Sivers asymmetry in Drell–Yan production at the J /Ψ peak at COMPASS"

Copied!
5
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 65 65

The

Sivers

asymmetry

in

Drell–Yan

production

at

the

J

/

peak

at COMPASS

M. Anselmino

a

,

V. Barone

b

,

c

,

M. Boglione

a aUniversitàdiTorinoandINFN-Torino,via Giuria 1,10125Torino,Italy bUniversitàdelPiemonteOrientale,VialeT.Michel 11,I-15121Alessandria,Italy cINFN-Torino,via Giuria 1,10125Torino,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received 13 February 2017

Received in revised form 24 April 2017 Accepted 28 April 2017

Available online xxxx Editor: A. Ringwald Keywords: Drell–Yan process

Transverse momentum dependent distribution functions

Sivers effect Single spin asymmetry

The abundant production oflepton pairs via J/ creation atCOMPASS,

π

±p↑→ J/X→ +X,

allowsameasurementofthetransversesinglespinasymmetry,ANJ/,generatedbytheSiverseffect.The crucialissueofthesignchangeoftheSiversfunctioninDrell–Yanleptonpairproduction,withrespectto SemiInclusiveDeepInelasticScatteringprocesses,canbeaddressedinadifferentcontext.Assumingthat theSiversasymmetryisrelatedtoauniversaland intrinsicpropertyoftheproton,predictionsforthe expectedmagnitudeof ANJ/,whichturnsouttobelarge,aregiven.Acomparisonwiththesuggested measurement ofthissingle spin asymmetry– an importantquantityby itself – should givevaluable information.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Thedistribution,in momentumspace, of unpolarizedquarksandgluonsinside a transverselypolarizednucleon, firstintroduced by Sivers[1,2],isoneoftheeightleading-twistTransverseMomentumDependentPartonicDistributionFunctions(TMD-PDFs),whichcanbe accessedthroughexperimentsandencodeourinformationonthe3-Dimensionalnucleonstructure.TheSiversdistributionforunpolarized quarks(orgluons)withtransversemomentumkinsideaprotonwith3-momentump andspin S ,isdefinedas

ˆ

fq/p

(

x

,

k

)

=

fq/p

(

x

,

k

)

+

1 2



Nf q/p

(

x

,

k

)

S

· ( ˆ

p

× ˆ

k

)

=

fq/p

(

x

,

k

)

kmp f1Tq

(

x

,

k

)

S

· ( ˆ

p

× ˆ

k

) ,

(1)

where fq/p

(

x

,

k

)

istheunpolarizedTMD-PDFand



Nfq/p

= (−

2k

/

mp

)

f1Tq istheSiversfunction.

The Sivers function is one of the bestknown polarized TMD-PDFs andhas a clearexperimental signature [3–5].It is of particular interestforseveralreasons;one expectsittoberelatedtofundamentalintrinsicfeaturesofthenucleonandtobasicQCDproperties.In fact,theSivers distributionrelatesthemotionofunpolarizedquarks andgluonstothenucleonspin S ;then,inorderto builda scalar, parityinvariantquantity,S mustcoupletotheonlyotheravailablepseudo-vector,thatisthepartonorbitalangularmomentum,Lqor Lg. AnotherpeculiarfeatureoftheSiversdistributionisthatitsoriginatpartoniclevelcanbetracedinQCDinteractionsbetweenthequarks (or gluons) active in inelastic high energy interactions andthe nucleon remnants [6,7]; thus, it is expected to be process dependent andhaveoppositesigninSemiInclusiveDeepInelasticScattering(SIDIS)andDrell–Yan(D–Y)processes[8,9].Thisimportantprediction remainstobetested.

Infact,onemightstillwonderwhethertheSiverseffectoriginatesdirectlyfromanintrinsicpropertyoftheproton,ratherthanbeing mediatedthroughinitialorfinal stateinteractions, whichleadtotheopposite signsinSIDISandD–Yprocesses[6–9].Itistempting to relatetheSivers effect,atleastforvalencequarks,to theirorbital motion,which,inturn,mustbelinked tothe parentprotonspin.In suchacaseoneexpectsauniversalityoftheSivers asymmetry.Thus,itisimportanttofindprocessesinwhichmeasurableSingleSpin AsymmetriescanbegeneratedbytheSiversasymmetricdistribution(1)andstudythem.

E-mailaddress:boglione@to.infn.it(M. Boglione). http://dx.doi.org/10.1016/j.physletb.2017.04.074

0370-2693/©2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

(2)

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 65 65

Usually, theSivers distribution can be accessed through thestudy ofazimuthal asymmetries inpolarized SIDISandD–Y processes. Thesehavebeenclearlyobservedinthelastyears,inSIDIS,by theHERMES [3]andCOMPASS[4]Collaborations,allowingextractionsof theSIDISSivers function [10–12].However, noinformationcould be obtainedontheD–Y Siversfunction, asnopolarizedD–Yprocess hadeverbeenmeasured.

AsymmetriesrelatedtotheSiverseffectcanalsobemeasuredinthesocalledgeneralised D–Yprocesses[13,14],thatisthecreationof leptonpairsviavectorbosons, p p

W±X

→ 

±

ν

X and p p

Z0X

→ 

+



X . AlsointhiscaseoneexpectsaSiversfunctionopposite tothatobservedinSIDIS.

Recently, firstfew data fromD–Yweak boson productionatRHIC, pp

W±

/

Z0X , have becomeavailable [15].Theyshow some azimuthalasymmetrywhichhints,withlargeerrorsandsizeableuncertainties,atasignchangebetweentheSiversfunctionobservedin thesegeneralisedD–YprocessesandtheSIDISSivers function,although muchcautionisstillnecessary[16].MoredataongenuineD–Y processes,

π

±p

γ

X

→ 

+



X , areexpectedsoonfromtheCOMPASSCollaboration.However,alsointhiscase,duetotheenergyof theCOMPASS experiment,

s

=

18

.

9 GeV,andtheacceptedsaferegionforD–Y events,M



4 GeV

/

c2,where M is theinvariant mass ofthe lepton pair, only a limited numberof events,and consequently large statisticalerrors, are expected, asit is confirmedby first data[17].

FollowingRefs.[18,19]weproposeheretomeasuretheleptonpairproductionatCOMPASSatthepeakofthe J

/

production,where thenumberofeventsisgreatlyenhanced.Noticethatthespin-parityquantumnumbersof J

/

arethesameasforaphoton.

LetusstartfromtheusualD–Yprocess.AccordingtotheTMDfactorisationscheme,thecrosssectionforthisprocess,

h1

h2

q q X

¯



+



X , inwhichonemeasuresthefour-momentum

q of

theleptonpair,canbewritten,atleadingorder,as[20,21]:

d

σ

h1h2→+X dy dM2d2q T

= ˆ

σ

0



q e2q



d2k1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

fq/h¯ 1

(

x1,k⊥1) fq/h2

(

x2,k⊥2) (2)

wherethe



qrunsoverallrelevantquarksandantiquarksandwehaveadoptedtheusualvariables: q

= (

q0,qT

,

qL

)

q2

=

M2 y

=

1 2ln q0

+

qL q0

qL s

= (

p1

+

p2)2

·

(3)

The fq/h

(

x

,

k

)

aretheunpolarizedTMD-PDFsand

e

q2

σ0

ˆ

isthecrosssectionforthe

q

q

¯

→ 

+



−process: e2q

σ

ˆ

0

=

e2q

4

π α

2

9M2

·

(4)

k1 andk⊥1 arethepartontransversemomenta,whilethepartonlongitudinalmomentumfractionsaregivenat

O (

k

/

M

)

,by x1,2

=

M

se ±y so that x F

=

2 qL

s

=

x1

x2

=



x1

M2 s x1



=



M2 s x2

x2



,

y

=

1 2ln x1 x2

=

lnx1

s M

·

(5)

Eq.(2)holdsinthekinematicalregion:

q2T



M2 k



qT

.

(6)

Inthecaseinwhichoneofthehadrons,say

h

2↑,ispolarized,Eq.(2)simplymodifiesbyreplacing fq/h2

(

x2

,

k⊥2

)

with

ˆ

fq/h2

(

x2

,

k⊥2

)

as giveninEq.(1).WethenhavetheSiverssingletransversespinasymmetry:

AN

=

d

σ

h1h↑2→+X

d

σ

h1h↓2→+X d

σ

h1h↑2→+X

+

d

σ

h1h↓2→+X

d

σ

d

σ

d

σ

+

d

σ

↓ (7)

=



qe2q



d2k1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

S

· ( ˆ

p2

× ˆ

k⊥2

)

fq/h¯ 1

(

x1

,

k⊥1

) 

Nf q/h2

(

x2

,

k⊥2

)

2



qe2q



d2k ⊥1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

fq/h¯ 1

(

x1,k⊥1)fq/h2

(

x2,k⊥2)

·

(8)

Whentheleptonpairproductionoccursvia

q

q annihilation

¯

intoavectormesonV rather thanavirtualphoton

γ

∗,Eqs.(2),(4)and(8) stillhold,withthereplacements[18]:

16

π

2

α

2e2 q

→ (

gqV

)

2

(

gV

)

2 1 M4

1

(

M2

M2 V

)

2

+

M2V

2V

,

(9) where

g

V

q and

g

V arethe V vector couplingsto

q

q and

¯



+



− respectively.

V isthewidthofthevectormesonandthenewpropagator isresponsibleforalargeincreaseinthecrosssectionat

M

2

=

M2

V. Wethenhave: AVN

=



q

(

gqV

)

2



d2k1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

S

· ( ˆ

p2

× ˆ

k⊥2) fq/h¯ 1

(

x1,k⊥1)  Nf q/h2

(

x2,k⊥2) 2



q

(

gV q

)

2



d2k ⊥1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

fq/h¯ 1

(

x1,k⊥1) fq/h2

(

x2,k⊥2)

·

(10)

Wepropose touse Eq.(10)forleptonpairproductionatCOMPASS,

π

±p

→ 

+



X , atthe J

/

peak, M2

=

M2

J/.There areseveral reasonswhichmakethischannelveryinterestingandpromising,aswellassomereasonsofattentionandcaution.

(3)

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 65 65

1) At COMPASSenergyonehas

x1

x2

=

M2

J/

/

s



0

.

027.Duetothisrelationboth

x1

and

x2

mustbegreaterthan0.027andoneofthem mustbegreaterthan

0

.

027



0

.

16.Atsmallvaluesof

x

F ory one hasapproximately

x

1



x2



0

.

16.Itisthenreasonabletoexpectthat themainchannelforthe J

/

productionisindeed

q

q annihilation

¯

(ratherthangluonfusion).

Theexactelementarymechanismthroughwhichthe

q

q give

¯

origintothe J

/

isstillnotclear(see,forexample,Refs.[22,23]).Wedo notattemptanyexplanationofsuch amechanism:itssubtleties andcomplicationsare simplyhiddenintheunknown couplings gV

q.In theexpressionofthespinasymmetry,Eq.(10),suchcouplingscancel:exactly,iftheydonotdependontheflavour

q or,

approximately,if oneflavourdominates.Thiswillbethecaseforthe J

/

productionin

π

p interactions. Althoughwedonotattemptapredictionforthe crosssection,weareconfidentthattheexpression(10)oftheasymmetryisadequateenoughtostudytheSiverseffectin J

/

production atCOMPASS.

2) The COMPASS data,whichhavebeentakenin2015andarepresently beinganalysed,referto the

π

p

→ 

+



X process at

s

=

18

.

9 GeV.Theirinterestingfeatureisthatthedominantcontributiontotheasymmetry(10)isgivenbyau quark

¯

fromthe

π

− anda

u

quarkfromtheproton,bothofthemvalencequarks.Allothercontributionswouldalwaysinvolveaseaquarkand,inthecentralrapidity region,arestronglysuppressed.

3) Other productionmechanismsof J

/

mightcontribute,likegluon fusion.However,whilethey mightenhance theunpolarizedcross section,thedenominatorof AV

N,itisveryunlikelythattheysignificantlyaffectthenumeratorof AVN;infactthegluonSiversfunctionis expectedtobesmall,ifnotzero[24].Thus,suchcontributionsmightdecreasethevalueof AVN,buttheycannotaltertheconclusionthat itmainlyoriginatesfromthevalencequarkSiversfunctions.

Thenwehave,forcentralrapidity

π

p

J

/

X

→ 

+



X processes: ANJ/

(

π

;

x1

,

x2

,

qT

)





d2k ⊥1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

S

· ( ˆ

p2

× ˆ

k⊥2)fu/¯ π

(

x1,k⊥1) Nfu/p

(

x2,k2) 2



d2k ⊥1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

fu/¯ π

(

x1

,

k⊥1

)

fu/p

(

x2

,

k⊥2

)

(11)

and,for

π

+p

J

/

X

→ 

+



X processes: ANJ/

(

π

+

;

x1

,

x2

,

qT

)





d2k ⊥1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

S

· ( ˆ

p2

× ˆ

k⊥2)fd/¯π+

(

x1,k⊥1) Nfd/p

(

x2,k⊥2) 2



d2k ⊥1d2k⊥2

δ

2

(

k⊥1

+

k⊥2

qT

)

fd/¯π+

(

x1

,

k⊥1

)

fd/p

(

x2

,

k⊥2

)

·

(12)

Noticethatthevariables

x1

andx2 arerelatedtoeachotherandone canuseonlyoneofthemorthevariable

x

F or y, seeEq.(5)with M2

=

M2

J/.

Eqs.(11)and(12)canbefurtherevaluatedadopting,asusual,aGaussianfactorizedformbothfortheunpolarizeddistributionandthe Siversfunctions,asinRef.[10]:

fq/p

(

x

,

k

)

=

fq

(

x

)

1

π

k2

ek2/ k2 (13)



Nfq/p

(

x

,

k

)

=

2

N

q

(

x

)

h

(

k

)

fq/p

(

x

,

k

)

(14) h

(

k

)

=

2e kM1 ek2⊥/M21

,

(15)

wherethe fq

(

x

)

are theunpolarized PDFs, M1 is a parameter which allows the

k

⊥ Gaussian dependence ofthe Sivers function to be differentfrom that of the unpolarized TMDs and

N

q

(

x

)

is a function which parameterisesthe factorized x dependence of the Sivers function.ThesamefunctionalformasinEq.(13),withthesamevalueof

k2

,isassumedfortheunpolarizedquarkdistributioninsidea pion.

Insuchacasethek integrationscanbeperformedanalyticallyinEqs.(11)and(12),obtaining:

ANJ/

(

π

;

x2,qT

)

=

k 2 S

2

[

k2S

+

k2

]

2 exp



q2T 2

k2

k2 ⊥

k2S

k2

+

k2S

×

2 e qT M1

×

2

N

u

(

x2)S

· ( ˆ

p2

× ˆ

qT

)

(16)

ANJ/

(

π

;

x2

,

qT

)

S

· ( ˆ

p2

× ˆ

qT

)

(17) and ANJ/

(

π

+

;

x2

,

qT

)

=

k2S

2

[

k2S

+

k2

]

2 exp



q2T 2

k2

k2

k2S

k2

+

k2S

×

2 e qT M1

×

2

N

d

(

x2

)

S

· ( ˆ

p2

× ˆ

qT

)

(18)

ANJ/

(

π

+

;

x2,qT

)

S

· ( ˆ

p2

× ˆ

qT

)

(19) where

k2S

=

M 2 1

k2⊥

M12

+

k2

·

(20)

NoticethattheunpolarizedPDFscancelout.

ANJ/

(

π

±

;

x2

,

qT

)

istheamplitude oftheazimuthalmodulationintheangledefinedby S

· ( ˆ

p2

× ˆ

qT

)

.Forexample,takingtheproton movinginthe

−ˆ

z directionandS

≡ ↑

along

+ ˆ

y,inthe

π

p c.m. frame,onehasS

· ( ˆ

p2

× ˆ

qT

)

= −

cos

φ

,where

φ

istheazimuthalangle

(4)

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 65 65

Fig. 1. Plots

of

ANJ/(π−;xN,qT)(left) and ANJ/(π+;xN,qT)(right) versus xN, at qT=1 GeV/c.

These estimates are obtained according to Eqs.

(16)–(19)of the text

(x2≡xN), using the parameters of the Sivers function given in Ref.[12]. The uncertainty of these parameters generates the shaded areas.

Fig. 2. Plots

of

ANJ/(π−;xN,qT)(left) and A J/

N +;xN,qT)(right) versus qT, at xN=0.1. These estimates are obtained according to Eqs.(16)–(19)of the text (x2≡xN),

using the parameters of the Sivers function given in Ref.[12]. The uncertainty of these parameters generates the shaded areas.

ofthe J

/

.Measurementsof ANJ/

(

π

;

x2

,

qT

)

and ANJ/

(

π

+

;

x2

,

qT

)

give a directaccess, respectively,to

N

u

(

x2

)

and

N

d

(

x2

)

,andthe correspondingSiversfunctions,Eq.(14).

Asapossibletestofthe(non)universalityoftheSiversfunctionwegiveanestimateof ANJ/

(

π

;

x2

,

qT

)

and

A

NJ/

(

π

+

;

x2

,

qT

)

,based on theSivers functionsextracted fromSIDISdata.All quantities necessaryto compute the two asymmetriescan be found inRef. [12] (Eq. (40)andthirdcolumnofTable III),takingintoaccountonlythevalencequarkcontributions.

Theprocessweareconsideringis,atthepartoniclevel,morecomplicatedthantheusualcontinuumD–Yleptonpairproductionviaa qq

¯

γ

∗ annihilation.Theargumentsbasedoninitialversus finalstateinteractions inSIDISandD–Yprocesses[6–9]mightnotholdin thiscase.Thus,wedonotchangethesignoftheSIDISSiversfunctions.Ourestimatesareactuallymadeassumingtheuniversalityofthe Siverseffect,thinking ofitasgeneratedby intrinsicpropertiesofthenucleons;one mightthink,forexample,oftheSivers asymmetric distribution(1)asatypicalfeatureofquarksorbitinginsidethenucleon.Comparisonwithdatawillconfirmornotthisassumption.

InFig. 1weplot ANJ/

(

π

;

xN

,

qT

)

(leftplot) and ANJ/

(

π

+

;

xN

,

qT

)

(rightplot),at

q

T

=

1 GeV

/

c, asfunctionsof

x

N intheexpected kinematicalregionoftheCOMPASSexperiment.Forabetterreadingwedenoteby

x

N thelongitudinalmomentumfractionofthenucleon carried by the quark, defined as x2 in the text. The uncertainty bandscorrespond to the uncertainty in the knowledge of the Sivers functionsfromRef.[12].Similarly,inFig. 2weplottheasymmetries,for

x

N

=

0

.

1 (correspondingto

x1

=

0

.

3 and

x

F

=

0

.

2),versus qT. InbothcasestheSivers asymmetriescanbe large,withawell definedsign, drivenby thesignoftheSiversfunctionsoftheproton valencequarks,

u quark

for ANJ/

(

π

)

and

d quark

for ANJ/

(

π

+

)

.Notice thatwithintheuncertaintybandstheexpectedmagnitudesof ANJ/

(

π

)

and ANJ/

(

π

+

)

mightsizeablyvary,keepinghoweveradefinitesign.

Inordertoobtainabetterstatistics,onecouldgatherdataoverthefullrangeof

q

T forwhichEq.(6)holds;thentheasymmetriesare givenbyEqs.(11)and(12)withnumeratoranddenominatorintegratedover

q

T from0upto,say,2 GeV/c.

In conclusion, we propose a simple measurement of the single transverse spin asymmetry AN in the channel

π

±p

J

/

X



+



X , forwhichabundant datahave beenalreadycollected by theCOMPASS Collaboration.If, aswe expect atthe kinematicsof the experiment,the asymmetryismainlygeneratedby theSiversdistributionofunpolarizedvalencequarksinsidethepolarizedproton,its signrevealsthesignofthecorrespondingSiversfunction.

Wegivesomeestimatesfortheasymmetryinasimplifiedfactorizedschemewhichavoidsthecomplicationsoftheactualknowledge ofthepartonicinteractionswhichcouplea

q

q pair

¯

tothe J

/

.Wedonotattempt, andcannotgive,anypredictionforthecrosssection oftheprocess,buttheexpressionoftheasymmetryismuchsimplerandwelldefined, duetocancellationsofunknownquantities.Our mainassumptionisindeedthedominanceofthe

q

q channel.

¯

Admittedly,ourresultsfortheasymmetrymightbetoooptimisticasother production mechanism might increase the denominator of Eq. (7): however, we do believe that any measured asymmetry should be relatedtothequarkSiverseffect.

Ourestimatesaregivenassuming thesameSivers functionsasthoseextractedfromSIDIS, withoutanysignchange.Wedonottake intoaccounttheir possibleTMD evolution: the Q2 region oftheSIDISdata,afew GeV2,isnotfar fromthe M2

J/ valuerelevant here. Moreover, we expect that,while TMD evolution mightbe relevantfor crosssections,it doesnot affectmuch the value oftheir ratios, whichappearin theasymmetries.Adetailedstudyofthe issuesrelatedtothe phenomenologicalimplementationofTMD evolution in

(5)

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 65 65

SIDISprocessesatCOMPASS kinematics, stronglydominated by non-perturbativeeffects,can be found inRef. [25],where estimatesof theirimpactisgiven.

Anexperimental confirmation ofour estimatedsigns wouldfavour the universalityof the Sivers functions. An opposite signmight indicate that the argument according to which the Sivers functionsin SIDIS and D–Y processes must be opposite holds also for this process,

π

±p

J

/

X

→ 

+



X . Inanycasethemeasurementof ANJ/ atCOMPASSisinterestingandworthbeingperformed.

Acknowledgements

WeareverygratefultoBakurParsamyanforusefuldiscussionsontheCOMPASSphysicsprogrammeandresults. M.A.andM.B. acknowledgesupportfromthe“ProgettodiRicercaAteneo/CSP”(code TO-Call3-2012-0103).

References

[1] D.W. Sivers, Single spin production asymmetries from the hard scattering of point – like constituents, Phys. Rev. D 41 (1990) 83. [2] D.W. Sivers, Hard scattering scaling laws for single spin production asymmetries, Phys. Rev. D 43 (1991) 261–263.

[3] A. Airapetian, et al., Observation of the Naive-T-odd Sivers effect in deep-inelastic scattering, Phys. Rev. Lett. 103 (2009) 152002, http://dx.doi.org/10.1103/PhysRevLett.103. 152002, arXiv:0906.3918.

[4] C. Adolph, et al., II Experimental investigation of transverse spin asymmetries in μ-p SIDIS processes: Sivers asymmetries, Phys. Lett. B 717 (2012) 383–389, http://dx.doi. org/10.1016/j.physletb.2012.09.056, arXiv:1205.5122.

[5] C. Adolph, et al., Sivers asymmetry extracted in SIDIS at the hard scale of the Drell–Yan process at COMPASS, arXiv:1609.07374.

[6] S.J. Brodsky, D.S. Hwang, I. Schmidt, Final-state interactions and single-spin asymmetries in semi-inclusive deep inelastic scattering, Phys. Lett. B 530 (2002) 99–107, arXiv:hep-ph/0201296.

[7] S.J. Brodsky, D.S. Hwang, I. Schmidt, Initial-state interactions and single-spin asymmetries in Drell–Yan processes, Nucl. Phys. B 642 (2002) 344–356, http://dx.doi.org/ 10.1016/S0550-3213(02)00617-X, arXiv:hep-ph/0206259.

[8] J.C. Collins, Leading-twist single-transverse-spin asymmetries: Drell–Yan and deep-inelastic scattering, Phys. Lett. B 536 (2002) 43–48, arXiv:hep-ph/0204004.

[9] S.J. Brodsky, D.S. Hwang, Y.V. Kovchegov, I. Schmidt, M.D. Sievert, Single-spin asymmetries in semi-inclusive deep inelastic scattering and Drell–Yan processes, Phys. Rev. D 88 (1) (2013) 014032, http://dx.doi.org/10.1103/PhysRevD.88.014032, arXiv:1304.5237.

[10] M. Anselmino, et al., Sivers effect for Pion and Kaon production in semi-inclusive deep inelastic scattering, Eur. Phys. J. A 39 (2009) 89–100, http://dx.doi.org/10.1140/epja/ i2008-10697-y, arXiv:0805.2677.

[11] A. Bacchetta, M. Radici, Constraining quark angular momentum through semi-inclusive measurements, Phys. Rev. Lett. 107 (2011) 212001, http://dx.doi.org/10.1103/ PhysRevLett.107.212001, arXiv:1107.5755.

[12] M. Anselmino, M. Boglione, S. Melis, A strategy towards the extraction of the Sivers function with TMD evolution, Phys. Rev. D 86 (2012) 014028, http://dx.doi.org/ 10.1103/PhysRevD.86.014028, arXiv:1204.1239.

[13] J.-C. Peng, J.-W. Qiu, Novel phenomenology of parton distributions from the Drell–Yan process, Prog. Part. Nucl. Phys. 76 (2014) 43–75, http://dx.doi.org/10.1016/j.ppnp. 2014.01.005, arXiv:1401.0934.

[14] J. Huang, Z.-B. Kang, I. Vitev, H. Xing, Spin asymmetries for vector boson production in polarized p+p collisions,

Phys. Rev. D 93 (1) (2016) 014036,

http://dx.doi.org/ 10.1103/PhysRevD.93.014036, arXiv:1511.06764.

[15] L. Adamczyk, et al., Measurement of the transverse single-spin asymmetry in p↑+pW±/Z0at RHIC, Phys. Rev. Lett. 116 (13) (2016) 132301, http://dx.doi.org/

10.1103/PhysRevLett.116.132301, arXiv:1511.06003.

[16] M. Anselmino, M. Boglione, U. D’Alesio, F. Murgia, A. Prokudin, Study of the sign change of the Sivers function from STAR Collaboration W/Z production data, arXiv: 1612.06413.

[17] M. Aghasyan, et al., First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell–Yan process, arXiv:1704.00488.

[18] M. Anselmino, V. Barone, A. Drago, N.N. Nikolaev, Accessing transversity via J/production in polarized pp¯↑interactions, Phys. Lett. B 594 (2004) 97–104, arXiv:hep-ph/0403114.

[19] V. Barone, Z. Lu, B.-Q. Ma, The cos 2φasymmetry of Drell–Yan and J/production in unpolarized p¯p scattering,

Eur. Phys. J. C 49 (2007) 967–971,

http://dx.doi.org/ 10.1140/epjc/s10052-006-0174-6, arXiv:hep-ph/0612350.

[20] M. Anselmino, et al., Sivers effect in Drell–Yan processes, Phys. Rev. D 79 (2009) 054010, http://dx.doi.org/10.1103/PhysRevD.79.054010, arXiv:0901.3078.

[21] Z.-B. Kang, J.-W. Qiu, Testing the time-reversal modified universality of the Sivers function, Phys. Rev. Lett. 103 (2009) 172001, http://dx.doi.org/10.1103/PhysRevLett. 103.172001, arXiv:0903.3629.

[22] F. Maltoni, et al., Analysis of charmonium production at fixed-target experiments in the NRQCD approach, Phys. Lett. B 638 (2006) 202–208, http://dx.doi.org/10.1016/ j.physletb.2006.05.010, arXiv:hep-ph/0601203.

[23] Y. Feng, J.-P. Lansberg, J.-X. Wang, Energy dependence of direct-quarkonium production in pp collisions

from fixed-target to LHC energies: complete one-loop analysis,

Eur. Phys. J. C 75 (7) (2015) 313, http://dx.doi.org/10.1140/epjc/s10052-015-3527-1, arXiv:1504.00317.

[24] U. D’Alesio, F. Murgia, C. Pisano, Towards a first estimate of the gluon Sivers function from ANdata in pp collisions at RHIC, J. High Energy Phys. 09 (2015) 119, http://dx.

doi.org/10.1007/JHEP09(2015)119, arXiv:1506.03078.

[25] M. Boglione, J.O. Gonzalez Hernandez, S. Melis, A. Prokudin, A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes, J. High Energy Phys. 02 (2015) 095, http://dx.doi.org/10.1007/JHEP02(2015)095, arXiv:1412.1383.

Riferimenti

Documenti correlati

Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federa- tion of Scientists (WFS), Armenia; Austrian Academy

Il 5-Fluorouracile (5-FU) è il farmaco di scelta nella terapia antitumorale oculare, tuttavia la sua biodisponibilità nell’umore acqueo, che è il sito di

However, adopting a larger scatter in the SMHM relation leads to larger values of SRHR at high stellar masses (m ∗  10 10.5 ), as more galaxies hosted by lower mass haloes

The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation

Da quanto si è sostenuto nella parte seconda di questo lavoro, sembra pos- sibile affermare che interpretare la duplice natura del concetto di habit utiliz- zato da Veblen nella

straint on deformation and brittle-ductile transition of the Main Central Thrust and the South Tibetan Detachment zone from Dhauliganga valley, Garhwal Himalaya, India.

In particular the Sivers TMD PDF, which encodes the correlation between the nucleon transverse spin and quark transverse momentum and appears in the Sivers Transverse Spin

The results given in this letter can also be interpreted such that no false Collins-like asymmetry is intro- duced by the rather complex analysis method used, so that the