• Non ci sono risultati.

Measurement of prompt ψ (2S) to J /ψ yield ratios in Pb-Pb and p - p collisions at sNN =2.76 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of prompt ψ (2S) to J /ψ yield ratios in Pb-Pb and p - p collisions at sNN =2.76 TeV"

Copied!
15
0
0

Testo completo

(1)

Measurement of Prompt ψð2SÞ to J=ψ Yield Ratios in Pb-Pb and p-p

Collisions at

p

ffiffiffiffiffiffiffiffi

s

NN

¼ 2.76 TeV

V. Khachatryan et al.* (CMS Collaboration)

(Received 7 October 2014; published 31 December 2014)

The ratio between the prompt ψð2SÞ and J=ψ yields, reconstructed via their decays into μþμ,

is measured in Pb-Pb and p-p collisions at pffiffiffiffiffiffiffiffisNN¼ 2.76 TeV. The analysis is based on Pb-Pb and

p-p data samples collected by CMS at the Large Hadron Collider, corresponding to integrated luminosities of 150 μb−1 and 5.4 pb−1, respectively. The double ratio of measured yields ðN

ψð2SÞ=NJ=ψÞPb-Pb=

ðNψð2SÞ=NJ=ψÞp-p is computed in three Pb-Pb collision centrality bins and two kinematic ranges: one

at midrapidity, jyj < 1.6, covering the transverse momentum range 6.5 < pT< 30 GeV=c, and the other at

forward rapidity, 1.6 < jyj < 2.4, extending to lower pT values, 3 < pT< 30 GeV=c. The

centrality-integrated double ratio changes from 0.45 % 0.13ðstatÞ % 0.07ðsystÞ in the first range to 1.67 % 0.34ðstatÞ % 0.27ðsystÞ in the second. This difference is most pronounced in the most central collisions. DOI:10.1103/PhysRevLett.113.262301 PACS numbers: 25.75.-q, 25.75.Cj, 25.75.Nq, 25.75.Dw

The goal of the study of ultrarelativistic heavy-ion collisions is to create and characterize the quark-gluon plasma, a medium where quarks and gluons are no longer confined in hadrons [1]. Charmonia should dissociate when the Debye screening radius of this medium, which decreases with increasing quark-gluon plasma temperature, becomes smaller than the binding radius of the charmo-nium state[2]. Since the ψð2SÞ meson is less bound than the J=ψ, it should melt at lower temperatures[3], an idea consistent with charmonium suppression measurements made at the CERN SPS [4,5]. At the CERN LHC, a suppression of J=ψ mesons in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of pffiffiffiffiffiffiffiffisNN¼

2.76 TeV was observed by CMS [6] and ALICE [7,8] via the nuclear modification factor RAA, the ratio of

nucleus-nucleus and p-p charmonium production yields normalized by the number of inelastic nucleon-nucleon collisions. The suppression increases with transverse momentum (pT), exhibiting a strong centrality dependence

at high pT, but almost no dependence when integrated over

pT. Related results at the SPS and BNL RHIC are presented

in Ref. [9]and references therein.

Given the large number [Oð100Þ] of charm quarks produced per central Pb-Pb collision at pffiffiffiffiffiffiffiffisNN¼

2.76 TeV [10], charmonia may also be produced at the hadronization stage, through the combination of initially uncorrelated charm and anticharm quarks [11,12]. This mechanism should contribute mostly at low pT [10].

Charmonium production is also affected by “cold nuclear

matter” effects[10,13,14], such as nuclear modifications of the parton distribution functions. Recently, ALICE[15]and LHCb[16] observed J=ψ suppression in p-Pb collisions, while PHENIX [17] and ALICE [18] reported that the ψð2SÞ is more strongly suppressed than the J=ψ in d-Au and p-Pb collisions, complementing analogous observa-tions made by fixed-target experiments[19].

This Letter presents a measurement of the prompt ψð2SÞ and J=ψ yields (excluding production from decays of b hadrons) in Pb-Pb and p-p collisions at ffiffiffiffiffiffiffiffipsNN ¼ 2.76 TeV,

using event samples collected by CMS with integrated luminosities of 150 μb−1 and 5.4 pb−1, respectively.

Following related studies of the bottomonium family [20–22], the results are reported as a double ratio ðNψð2SÞ=NJ=ψÞPb-Pb=ðNψð2SÞ=NJ=ψÞp-p, so that efficiency

and acceptance corrections cancel to a large extent, reducing the systematic uncertainties. Using a previous measurement of RAAðJ=ψÞ [6], a first measurement of

RAAðψð2SÞÞ is derived.

The central feature of CMS is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon tracker, the crystal electromagnetic calorimeter, and the brass-scintillator hadron calorimeter. The silicon pixel and strip tracker measures charged-particle trajectories in the pseudorapidity range jηj < 2.5. Muons are detected in the interval jηj < 2.4 by gas-ionization detectors made of three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The muon pT is measured

with a resolution between 1% and 2% for a typical muon in this analysis. Two steel/quartz-fibre Cherenkov hadron forward (HF) calorimeters cover the range 2.9 < jηj < 5.2 and are used for event selection and Pb-Pb collision centrality determination. Two beam scintillator counters are used for triggering and beam-halo rejection. A more * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [23].

The measurements reported here are based on Pb-Pb and p-p events triggered by a hardware-based dimuon trigger without an explicit muon-momentum threshold. Inelastic hadronic Pb-Pb collisions are selected using beam scintil-lator counter and HF information, in coincidence with a bunch crossing [23]. Events are further filtered off-line by requiring a reconstructed primary vertex and at least three towers in each HF with an energy deposit of more than 3 GeV per tower. Muons are reconstructed off-line using tracks in the muon detectors (“standalone muons”) that are then matched to tracks in the silicon tracker, using an algorithm optimized for the heavy-ion environment[24,25]. In addition, an iterative track reconstruction algorithm[26] is applied to the Pb-Pb data, limited to cone regions defined by the standalone muons. The p-p reconstruction algorithm includes an iterative tracking step in the full silicon tracker. The final parameters of the muon trajectory are obtained from a global fit of the standalone muon with a track in the silicon tracker. The single muon acceptance and identifi-cation criteria are the same as in Ref. [6]. Opposite-sign muon pairs are fitted with a common vertex constraint and are kept if the fit χ2probability is greater than 1%. Most of

the nonprompt J=ψ and ψð2SÞ mesons, originating from b-hadron decays, are rejected using the pseudoproper decay length lψ ¼ Lxymψ=pT, where Lxy is the transverse

dis-tance between the μþμvertex and the interaction point and

mψ is the J=ψ or ψð2SÞ mass. The lψ selection condition is

tuned with Monte Carlo (MC) simulation studies, separately for the p-p and Pb-Pb collision systems, such that 90% of the prompt J=ψ and ψð2SÞ is kept, typically rejecting 80% of the nonprompt ones. For these studies, unpolarized prompt and nonprompt J=ψ and ψð2SÞ mesons are gen-erated with PYTHIA 6.424 [27]and decayed with EVTGEN

[28], while the final-state bremsstrahlung is simulated with PHOTOS [29]. The signal events are embedded in

underlying heavy-ion events, generated with HYDJET 1.8

[30], at the level of detector hits and with matching vertices. The detector response is simulated with GEANT4 [31]

and the resulting information is processed through the full event reconstruction chain, including trigger emulation. The selection efficiency cancels in the double ratio and the remaining nonprompt contamination is accounted for as a systematic uncertainty.

The analysis is performed in two dimuon kinematic domains: the “midrapidity” domain covers the range jyj < 1.6, where the J=ψ and ψð2SÞ mesons are only reconstructed for pT > 6.5 GeV=c, while the “forward

rapidity” domain covers the range 1.6 < jyj < 2.4, where the acceptance extends down to pT ¼ 3 GeV=c. Dimuons

are restricted to pT < 30 GeV=c in order to have a well

defined kinematic interval. The available Pb-Pb data at forward rapidity could not be fitted reliably when split

into the intervals 3 < pT < 6.5 GeV=c and 6.5 < pT <

30 GeV=c. Therefore, this analysis cannot differentiate between pTand rapidity dependent effects on the measured

double ratios. The Pb-Pb sample is split in three bins of collision centrality, defined using fractions of the inelastic hadronic cross section where 0% denotes the most central collisions: 40%–100%, 20%–40%, and 0%–20%. This fraction is determined from the HF energy distribution [32]. Related variables, such as the number of nucleons participating in the collision (Npart), are evaluated using a

Glauber-model calculation[33]and are only used to display the centrality dependence of the measurements. The average Npartvalues corresponding to the three centrality bins above

are hNparti ¼ 32.8, 158.7, and 308.4, respectively.

Figure 1 shows the dimuon invariant-mass (mμþμ−)

distributions measured in central (0%–20%) Pb-Pb and p-p collisions, for the midrapidity and forward rapidity bins. The results of unbinned maximum likelihood fits are also shown. Each charmonium resonance is described by the sum of a Gaussian function and a Crystal Ball (CB) function[34], with common mean m0, independent widths

σGand σCB, and relative contribution of the Gaussian to the

signal yield fG. In all cases, the fitted J=ψ mean agrees

within 0.3% with the world average[35]. The resolution, after averaging the Gaussian and CB widths, is about 30 MeV=c2 at midrapidity and 50 MeV=c2 at forward

rapidity, both for p-p and Pb-Pb data. The CB radiative tail parameters α and n, common to both charmonia, are fixed to the values obtained in fits to simulated distributions. The m0, σG, and σCB parameters of the ψð2SÞ resonance shape

match the J=ψ parameters, scaled by the ratio of their masses, mψð2SÞ=mJ=ψ[35]. This scaling assumption has been

validated in analyses of larger event samples[21,36]. The same value for fGis used in the definition of the ψð2SÞ and

J=ψ signal shapes. Six parameters are left free in the p-p fit: m0, σG, σCB, fG, the J=ψ yield, and the ψð2SÞ to J=ψ yield

ratio. In the Pb-Pb fits, instead, the double ratio replaces the ψð2SÞ to J=ψ ratio as one of the free parameters. In addition, given their smaller signal-to-background ratio, the Pb-Pb data are fitted fixing the σG=σCBratio to the value obtained

in fits to MC distributions.

The background is described by Chebyshev polyno-mials, of order (0≤ N ≤ 3) determined for each analysis bin with log-likelihood ratio tests. The background shape is mostly determined by the kinematic distributions of the muons produced in meson decays, which are expected to change with collision centrality[6,37,38]. Once the back-ground functions are selected, the p-p and three Pb-Pb centrality samples are fitted simultaneously. Since the signal shape does not depend on the collision centrality [6], the three Pb-Pb centrality bins are fitted with common signal shape parameters, which are independent of the p-p values; the four background shapes are independent. The simultaneous fit directly provides the three double ratios (one per centrality class) for each rapidity interval.

(3)

The systematic uncertainties from the fitting method are studied by varying the signal and background shapes as well as the fitted invariant-mass range. As an alternative signal shape, the sum of two CB functions with common mean and tail parameters is used, leaving all parameters free in the fit except for the mass scaling between the J=ψ and ψð2SÞ means and widths. The uncertainty on the background is evaluated by considering three fit variations: (i) use as background shape an exponential function with a Chebyshev polynomial of order 1≤ N ≤ 3 (determined with a log-likelihood ratio test) as an argument; (ii) extend the fitted mass region to 1.8 < mμþμ− < 5 GeV=c2; (iii) fit

the J=ψ and ψð2SÞ regions (below 3.5 GeV=c2and above

3.3 GeV=c2, respectively) with independent background

functions. The maximum deviation from the nominal fit is added in quadrature with the signal shape uncertainty to obtain the fit systematic uncertainty in the double ratio,

which varies between 8% at midrapidity and 28% at forward rapidity. The dominant contribution to this uncer-tainty changes from bin to bin because of the strongly varying signal-to-background ratio. A cross-check made on the centrality-integrated sample shows that counting the signal yields above a polynomial exclusively fitted to the sidebands gives a result consistent with the nominal values. Assuming no change in their polarizations, the J=ψ and ψð2SÞ acceptances are independent of the collision system and cancel in the double ratio. Residual effects from imperfect double-ratio cancellations of the muon reconstruction and trigger efficiency corrections have been evaluated with MC simulation studies. The MC double ratio of the signal efficiencies is compatible with unity. The MC statistical uncertainties, 1% at midrapidity and 5% at forward rapidity, are assigned as the systematic uncertain-ties on the assumption that the efficiency corrections

) 2 (GeV/c -µ + µ m 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ) 2 Events / (0.027 GeV/c 0 200 400 600 800 1000 1200 1400 = 2.76 TeV NN s CMS PbPb (a) -1 b µ = 150 int L |y| < 1.6 < 30 GeV/c T 6.5 < p Cent. 0%-20% Data Total fit Background ) 2 (GeV/c -µ + µ m 3.5 3.6 3.7 3.8 3.9 ) 2 Events / (0.027 GeV/c 50 60 70 80 90 100 110 120 130 140 150 ) 2 (GeV/c -µ + µ m 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ) 2 Events / (0.027 GeV/c 0 1000 2000 3000 4000 5000 6000 = 2.76 TeV s CMS pp (b) -1 = 5.4 pb int L |y| < 1.6 < 30 GeV/c T 6.5 < p Data Total fit Background ) 2 (GeV/c -µ + µ m 3.5 3.6 3.7 3.8 3.9 ) 2 Events / (0.027 GeV/c 0 50 100 150 200 250 ) 2 (GeV/c -µ + µ m 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ) 2 Events / (0.027 GeV/c 400 600 800 1000 1200 1400 1600 = 2.76 TeV NN s CMS PbPb (c) -1 b µ = 150 int L 1.6 < |y| < 2.4 < 30 GeV/c T 3 < p Cent. 0%-20% Data Total fit Background ) 2 (GeV/c -µ + µ m 3.5 3.6 3.7 3.8 3.9 ) 2 Events / (0.027 GeV/c 300 350 400 450 500 550 600 ) 2 (GeV/c -µ + µ m 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 ) 2 Events / (0.027 GeV/c 0 500 1000 1500 2000 2500 3000 3500 4000 4500 = 2.76 TeV s CMS pp (d) -1 = 5.4 pb int L 1.6 < |y| < 2.4 < 30 GeV/c T 3 < p Data Total fit Background ) 2 (GeV/c -µ + µ m 3.5 3.6 3.7 3.8 3.9 ) 2 Events / (0.027 GeV/c 0 50 100 150 200 250

FIG. 1 (color online). Dimuon invariant-mass distributions measured in central Pb-Pb (left) and p-p (right) collisions, for jyj < 1.6 and 6.5 < pT< 30 GeV=c (top) as well as 1.6 < jyj < 2.4 and 3 < pT< 30 GeV=c (bottom). The results of unbinned maximum

(4)

cancel. Differences between the MC and data distributions [6]have a negligible impact on the efficiency double ratio. The same charmonium pT and rapidity distributions have

been used in the generation of p-p and Pb-Pb events. The efficiency double ratio varies by less than 1% when changing the kinematic distributions in Pb-Pb events within a reasonable range, evaluated using RAAmeasurements as a

function of pT and rapidity [6].

The prompt charmonia are simulated unpolarized, a scenario in good agreement with p-p measurements [39–41]. Alternative scenarios have been considered, where the polarizations change significantly from the J=ψ to the ψð2SÞ and/or from p-p to Pb-Pb collisions. The impact is completely negligible on the double ratio of the measure-ment efficiencies, while the double ratio of the acceptances can change by ≈20%. As in previous analyses [20–22], such possible physics effects are not considered as sys-tematic uncertainties.

In p-p collisions, around 20%–25% of the charmonium yields are due to b-hadron decays [36]; no evidence for different values has been seen in Pb-Pb collisions [6]. Considering a b-hadron rejection inefficiency of about 20%, the prompt J=ψ and ψð2SÞ yields include a residual contamination from b-hadron decays of up to 5%. These b-hadron contaminations are conservatively assumed to be independent in the four yields entering the double ratio.

Adding in quadrature the uncertainties mentioned above leads to total systematic uncertainties of 13%–30%, values smaller than the corresponding statistical uncertainties.

The double ratio of measured yields ðNψð2SÞ=NJ=ψÞPb-Pb=

ðNψð2SÞ=NJ=ψÞp-p is shown in Fig. 2 as a function of

centrality, for both kinematic bins. The quadratic sum of the p-p statistical and systematic uncertainties (≈6%) is common to all centralities. The centrality-integrated results are also displayed, in the right panel of Fig.2. In the most peripheral Pb-Pb collisions, no significant ψð2SÞ signal has been observed in the midrapidity bin and an upper limit of 0.47 at 95% confidence level (C.L.) is set on the double ratio, using the Feldman-Cousins method [42].

In the midrapidity bin, restricted to pT > 6.5 GeV=c,

the double ratio is below unity in all centrality bins, with a centrality-integrated value of 0.45 % 0.13ðstatÞ % 0.07ðsystÞ, including the global p-p uncertainties. In the forward rapidity bin, which extends down to pT ¼

3 GeV=c, the centrality-integrated double ratio increases to 1.67 % 0.34ðstatÞ % 0.27ðsystÞ. While the forward-rapidity double ratio is consistent with unity in peri-pheral Pb-Pb collisions, it becomes 2.31 % 0.53ðstatÞ % 0.37ðsystÞ % 0.15ðppÞ in the 20% most central collisions, indicating that the ψð2SÞ to J=ψ yield ratio is enhanced in central Pb-Pb collisions with respect to p-p collisions (the hypothesis of being compatible with unity has a p value of only 0.011).

Nuclear modification factors for prompt ψð2SÞ pro-duction, RAAðψð2SÞÞ, can be derived by multiplying the

centrality-integrated double ratios by the corresponding prompt J=ψ RAA, which can be found in Ref. [6]. The

resulting centrality-integrated RAA values for ψð2SÞ are

0.13% 0.04ðstatÞ % 0.02ðsystÞ % 0.01ðp-pÞ at midrapidity and 0.67 % 0.16ðstatÞ % 0.11ðsystÞ % 0.07ðp-pÞ at forward rapidity. While the ψð2SÞ=ðJ=ψÞ ratio at low pT (forward

rapidity) is enhanced in central Pb-Pb collisions, as compared to p-p collisions, the yield of ψð2SÞ itself in Pb-Pb collisions is still suppressed in comparison to the yield in p-p collisions scaled by the number of inelastic nucleon-nucleon collisions.

In summary, the CMS measurements reported in this Letter show two interesting observations. First, ψð2SÞ production is suppressed in Pb-Pb collisions with respect to p-p collisions, in both kinematic regions investigated. Second, in comparison to J=ψ production and in the most central Pb-Pb collisions, ψð2SÞ production is suppressed in the range jyj < 1.6 and 6.5 < pT < 30 GeV=c, as

expected in the sequential melting scenario and matching the corresponding bottomonia pattern [21], while it is enhanced in the range 1.6 < jyj < 2.4 and 3 < pT <

30 GeV=c. Such behavior implies the presence of physics processes that either cause the pT dependence of

RAAðψð2SÞÞ to be weaker than for the RAAðJ=ψÞ or cause

the RAAðψð2SÞÞ to start decreasing at higher pT.

Alternatively, these processes would have to have the opposite dependence with increasing rapidity. Larger event samples are needed to evaluate in more detail how these observations depend separately on the pT and rapidity of

the charmonium states. part N 0 50 100 150 200 250 300 350 400 pp ]ψ J/ /N (2S) ψ / [ N PbPb ]ψ J/ /N (2S) ψ [ N 0 0.5 1 1.5 2 2.5 3 CMS PbPb & pp sNN = 2.76 TeV < 30 GeV/c, 1.6 < |y| < 2.4 T 3 < p < 30 GeV/c, |y| < 1.6 T 6.5 < p 95% CL 0%-100% Cent.

FIG. 2 (color online). Double ratio of measured yields ðNψð2SÞ=NJ=ψÞPb-Pb=ðNψð2SÞ=NJ=ψÞp-pas a function of centrality,

for the midrapidity (blue squares) and forward rapidity (red circles, slightly shifted) analysis bins. The centrality-integrated results are displayed in the right panel. Statistical (systematic) uncertainties are shown as bars (boxes). The boxes at unity indicate the (global) p-p uncertainties.

(5)

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); U.S. DOE and NSF (U.S.).

[1] F. Karsch and E. Laermann, in Quark-Gluon Plasma III, edited by R. C. Hwa and X.-N. Wang (World Scientific Publishing Co., Singapore, 2004), pp. 1–59.

[2] T. Matsui and H. Satz,Phys. Lett. B 178, 416 (1986). [3] F. Karsch, D. Kharzeev, and H. Satz,Phys. Lett. B 637, 75

(2006).

[4] C. Baglin et al. (NA38 Collaboration),Phys. Lett. B 345, 617 (1995).

[5] B. Alessandro et al. (NA50 Collaboration),Eur. Phys. J. C 49, 559 (2007).

[6] CMS Collaboration,J. High Energy Phys. 05 (2012) 063. [7] ALICE Collaboration,Phys. Rev. Lett. 109, 072301 (2012). [8] ALICE Collaboration,Phys. Lett. B 734, 314 (2014).

[9] N. Brambilla et al.,Eur. Phys. J. C 71, 1534 (2011). [10] X. Zhao and R. Rapp,Nucl. Phys. A859, 114 (2011). [11] R. L. Thews, M. Schroedter, and J. Rafelski,Phys. Rev. C

63, 054905 (2001).

[12] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel,Nucl. Phys. A789, 334 (2007).

[13] R. Vogt,Phys. Rev. C 81, 044903 (2010). [14] F. Arleo,Nucl. Phys. A910–911, 223 (2013).

[15] ALICE Collaboration,J. High Energy Phys. 02 (2014) 073. [16] LHCb Collaboration,J. High Energy Phys. 02 (2014) 072. [17] A. Adare et al. (PHENIX Collaboration),Phys. Rev. Lett.

111, 202301 (2013).

[18] ALICE Collaboration,arXiv:1405.3796.

[19] C. Lourenço, R. Vogt, and H. K. Wöhri, J. High Energy Phys. 02 (2009) 014.

[20] CMS Collaboration, Phys. Rev. Lett. 107, 052302 (2011).

[21] CMS Collaboration,Phys. Rev. Lett. 109, 222301 (2012). [22] CMS Collaboration,J. High Energy Phys. 04 (2014) 103. [23] CMS Collaboration,JINST 3, S08004 (2008).

[24] CMS Collaboration,J. Phys. G 34, 2307 (2007).

[25] C. Roland,Nucl. Instrum. Methods Phys. Res., Sect. A 566, 123 (2006).

[26] CMS Collaboration,JINST 9, P10009 (2014).

[27] T. Sjöstrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[28] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[29] E. Barberio and Z. Wąs,Comput. Phys. Commun. 79, 291 (1994).

[30] I. P. Lokhtin and A. M. Snigirev, Eur. Phys. J. C 45, 211 (2006).

[31] S. Agostinelli et al. (GEANT4 Collaboration),Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[32] CMS Collaboration,J. High Energy Phys. 08 (2011) 141. [33] CMS Collaboration,Phys. Rev. C 84, 024906 (2011). [34] M. J. Oreglia, Ph.D. thesis, Stanford University [SLAC

Report SLAC-R-236, 1980].

[35] K. A. Olive et al. (Particle Data Group),Chin. Phys. C 38, 090001 (2014).

[36] CMS Collaboration,J. High Energy Phys. 02 (2012) 011. [37] CMS Collaboration,Eur. Phys. J. C 72, 1945 (2012). [38] ALICE Collaboration,J. High Energy Phys. 09 (2012) 112. [39] ALICE Collaboration, Phys. Rev. Lett. 108, 082001

(2012).

[40] CMS Collaboration,Phys. Lett. B 727, 381 (2013). [41] LHCb Collaboration,Eur. Phys. J. C 73, 2631 (2013). [42] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873

(1998).

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,b M. Friedl,2R. Frühwirth,2,bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knünz,2

M. Krammer,2,bI. Krätschmer,2D. Liko,2I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,bV. Mossolov,3 N. Shumeiko,3

(6)

S. Luyckx,4 S. Ochesanu,4 B. Roland,4 R. Rougny,4 M. Van De Klundert,4 H. Van Haevermaet,4 P. Van Mechelen,4

N. Van Remortel,4A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 N. Daci,5 N. Heracleous,5J. Keaveney,5 S. Lowette,5 M. Maes,5 A. Olbrechts,5 Q. Python,5 D. Strom,5 S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5

G. P. Van Onsem,5 I. Villella,5 C. Caillol,6B. Clerbaux,6 G. De Lentdecker,6 D. Dobur,6 L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6A. Léonard,6A. Mohammadi,6L. Perniè,6,cT. Reis,6T. Seva,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6 J. Wang,6V. Adler,7K. Beernaert,7L. Benucci,7A. Cimmino,7S. Costantini,7S. Crucy,7S. Dildick,7A. Fagot,7G. Garcia,7 J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7 E. Yazgan,7N. Zaganidis,7S. Basegmez,8C. Beluffi,8,dG. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8G. G. Da Silveira,8 C. Delaere,8T. du Pree,8 D. Favart,8 L. Forthomme,8 A. Giammanco,8,e J. Hollar,8 P. Jez,8 M. Komm,8 V. Lemaitre,8

C. Nuttens,8 D. Pagano,8 L. Perrini,8 A. Pin,8 K. Piotrzkowski,8A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8 M. Vidal Marono,8 J. M. Vizan Garcia,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9 G. H. Hammad,9 W. L. Aldá Júnior,10 G. A. Alves,10L. Brito,10M. Correa Martins Junior,10T. Dos Reis Martins,10C. Mora Herrera,10M. E. Pol,10W. Carvalho,11 J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11

H. Malbouisson,11 D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11 A. Santoro,11 A. Sznajder,11E. J. Tonelli Manganote,11,g A. Vilela Pereira,11C. A. Bernardes,12bS. Dogra,12a T. R. Fernandez Perez Tomei,12a E. M. Gregores,12bP. G. Mercadante,12b S. F. Novaes,12aSandra S. Padula,12a

A. Aleksandrov,13V. Genchev,13,c P. Iaydjiev,13A. Marinov,13S. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13 V. Tcholakov,13M. Vutova,13A. Dimitrov,14I. Glushkov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14

P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15S. Liang,15R. Plestina,15,hJ. Tao,15 X. Wang,15Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16 W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16

D. Wang,16L. Zhang,16W. Zou,16C. Avila,17L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17 B. Gomez Moreno,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20

J. Luetic,20D. Mekterovic,20L. Sudic,20A. Attikis,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Bodlak,22 M. Finger,22M. Finger Jr.,22,iY. Assran,23,jA. Ellithi Kamel,23,kM. A. Mahmoud,23,l

A. Radi,23,m,nM. Kadastik,24M. Murumaa,24M. Raidal,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26 V. Karimäki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26 T. Mäenpää,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27M. Besancon,28 F. Couderc,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28S. Ganjour,28A. Givernaud,28 P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28 J. Rander,28A. Rosowsky,28M. Titov,28 S. Baffioni,29F. Beaudette,29 P. Busson,29C. Charlot,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29N. Filipovic,29

A. Florent,29R. Granier de Cassagnac,29L. Mastrolorenzo,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29 C. Ochando,29P. Paganini,29S. Regnard,29R. Salerno,29J. B. Sauvan,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29

J.-L. Agram,30,oJ. Andrea,30A. Aubin,30D. Bloch,30J.-M. Brom,30E. C. Chabert,30 C. Collard,30E. Conte,30,o J.-C. Fontaine,30,oD. Gelé,30U. Goerlach,30C. Goetzmann,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32

N. Beaupere,32G. Boudoul,32,cE. Bouvier,32S. Brochet,32 C. A. Carrillo Montoya,32J. Chasserat,32R. Chierici,32 D. Contardo,32,c P. Depasse,32 H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32 B. Ille,32T. Kurca,32

M. Lethuillier,32L. Mirabito,32S. Perries,32J. D. Ruiz Alvarez,32 D. Sabes,32L. Sgandurra,32V. Sordini,32

M. Vander Donckt,32P. Verdier,32 S. Viret,32H. Xiao,32Z. Tsamalaidze,33,iC. Autermann,34S. Beranek,34 M. Bontenackels,34M. Edelhoff,34L. Feld,34 O. Hindrichs,34K. Klein,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34

J. Sammet,34S. Schael,34H. Weber,34B. Wittmer,34 V. Zhukov,34,f M. Ata,35E. Dietz-Laursonn,35 D. Duchardt,35 M. Erdmann,35R. Fischer,35A. Güth,35 T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35

P. Kreuzer,35M. Merschmeyer,35A. Meyer,35P. Millet,35M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35 S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35M. Weber,35V. Cherepanov,36Y. Erdogan,36G. Flügge,36

H. Geenen,36M. Geisler,36 W. Haj Ahmad,36A. Heister,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36 J. Lingemann,36,cA. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36I. Asin,37N. Bartosik,37J. Behr,37

W. Behrenhoff,37U. Behrens,37A. J. Bell,37M. Bergholz,37,pA. Bethani,37K. Borras,37 A. Burgmeier,37A. Cakir,37 L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37T. Dorland,37G. Eckerlin,37

D. Eckstein,37T. Eichhorn,37 G. Flucke,37J. Garay Garcia,37A. Geiser,37P. Gunnellini,37J. Hauk,37 M. Hempel,37 D. Horton,37H. Jung,37A. Kalogeropoulos,37M. Kasemann,37P. Katsas,37J. Kieseler,37 C. Kleinwort,37 D. Krücker,37

(7)

W. Lange,37 J. Leonard,37K. Lipka,37A. Lobanov,37W. Lohmann,37,pB. Lutz,37R. Mankel,37 I. Marfin,37

I.-A. Melzer-Pellmann,37A. B. Meyer,37G. Mittag,37 J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37A. Nayak,37 O. Novgorodova,37F. Nowak,37E. Ntomari,37H. Perrey,37D. Pitzl,37R. Placakyte,37A. Raspereza,37

P. M. Ribeiro Cipriano,37E. Ron,37 M. Ö. Sahin,37J. Salfeld-Nebgen,37P. Saxena,37 R. Schmidt,37,p

T. Schoerner-Sadenius,37M. Schröder,37C. Seitz,37S. Spannagel,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37 M. Aldaya Martin,38V. Blobel,38M. Centis Vignali,38A. R. Draeger,38J. Erfle,38E. Garutti,38K. Goebel,38M. Görner,38

J. Haller,38M. Hoffmann,38R. S. Höing,38H. Kirschenmann,38R. Klanner,38R. Kogler,38 J. Lange,38T. Lapsien,38 T. Lenz,38I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38J. Poehlsen,38T. Poehlsen,38 D. Rathjens,38C. Sander,38

H. Schettler,38P. Schleper,38E. Schlieckau,38 A. Schmidt,38M. Seidel,38 V. Sola,38H. Stadie,38G. Steinbrück,38 D. Troendle,38E. Usai,38L. Vanelderen,38C. Barth,39 C. Baus,39J. Berger,39C. Böser,39E. Butz,39T. Chwalek,39 W. De Boer,39A. Descroix,39A. Dierlamm,39 M. Feindt,39F. Frensch,39M. Giffels,39F. Hartmann,39,c T. Hauth,39,c U. Husemann,39I. Katkov,39,fA. Kornmayer,39,c E. Kuznetsova,39P. Lobelle Pardo,39M. U. Mozer,39Th. Müller,39 A. Nürnberg,39 G. Quast,39K. Rabbertz,39F. Ratnikov,39S. Röcker,39H. J. Simonis,39 F. M. Stober,39R. Ulrich,39

J. Wagner-Kuhr,39 S. Wayand,39T. Weiler,39R. Wolf,39G. Anagnostou,40G. Daskalakis,40T. Geralis,40 V. A. Giakoumopoulou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40A. Psallidas,40I. Topsis-Giotis,40

A. Agapitos,41S. Kesisoglou,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41X. Aslanoglou,42I. Evangelou,42

G. Flouris,42C. Foudas,42P. Kokkas,42N. Manthos,42I. Papadopoulos,42E. Paradas,42G. Bencze,43C. Hajdu,43P. Hidas,43 D. Horvath,43,qF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,rA. J. Zsigmond,43N. Beni,44S. Czellar,44J. Karancsi,44,s

J. Molnar,44J. Palinkas,44Z. Szillasi,44P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. K. Swain,46S. B. Beri,47V. Bhatnagar,47 R. Gupta,47U. Bhawandeep,47 A. K. Kalsi,47M. Kaur,47 M. Mittal,47N. Nishu,47J. B. Singh,47 Ashok Kumar,48

Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48 V. Sharma,48S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49S. Dutta,49B. Gomber,49Sa. Jain,49Sh. Jain,49R. Khurana,49

A. Modak,49S. Mukherjee,49D. Roy,49S. Sarkar,49M. Sharan,49A. Abdulsalam,50D. Dutta,50S. Kailas,50V. Kumar,50 A. K. Mohanty,50,c L. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51 S. Banerjee,51S. Bhowmik,51,tR. M. Chatterjee,51

R. K. Dewanjee,51S. Dugad,51S. Ganguly,51S. Ghosh,51M. Guchait,51A. Gurtu,51,uG. Kole,51S. Kumar,51M. Maity,51,t G. Majumder,51K. Mazumdar,51G. B. Mohanty,51 B. Parida,51K. Sudhakar,51N. Wickramage,51,vH. Bakhshiansohi,52

H. Behnamian,52S. M. Etesami,52,w A. Fahim,52,xR. Goldouzian,52A. Jafari,52M. Khakzad,52

M. Mohammadi Najafabadi,52M. Naseri,52S. Paktinat Mehdiabadi,52F. Rezaei Hosseinabadi,52 B. Safarzadeh,52,y M. Zeinali,52M. Felcini,53M. Grunewald,53M. Abbrescia,54a,54bL. Barbone,54a,54bC. Calabria,54a,54bS. S. Chhibra,54a,54b

A. Colaleo,54a D. Creanza,54a,54cN. De Filippis,54a,54c M. De Palma,54a,54b L. Fiore,54aG. Iaselli,54a,54cG. Maggi,54a,54c M. Maggi,54a S. My,54a,54c S. Nuzzo,54a,54bA. Pompili,54a,54b G. Pugliese,54a,54c R. Radogna,54a,54b,c G. Selvaggi,54a,54b

L. Silvestris,54a,c G. Singh,54a,54bR. Venditti,54a,54bP. Verwilligen,54a G. Zito,54a G. Abbiendi,55a A. C. Benvenuti,55a D. Bonacorsi,55a,55bS. Braibant-Giacomelli,55a,55bL. Brigliadori,55a,55b R. Campanini,55a,55bP. Capiluppi,55a,55b A. Castro,55a,55bF. R. Cavallo,55aG. Codispoti,55a,55bM. Cuffiani,55a,55bG. M. Dallavalle,55aF. Fabbri,55aA. Fanfani,55a,55b

D. Fasanella,55a,55b P. Giacomelli,55a C. Grandi,55a L. Guiducci,55a,55bS. Marcellini,55a G. Masetti,55a,c A. Montanari,55a F. L. Navarria,55a,55bA. Perrotta,55aF. Primavera,55a,55bA. M. Rossi,55a,55bT. Rovelli,55a,55bG. P. Siroli,55a,55bN. Tosi,55a,55b R. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56aM. Chiorboli,56a,56bS. Costa,56a,56bF. Giordano,56a,cR. Potenza,56a,56b

A. Tricomi,56a,56b C. Tuve,56a,56bG. Barbagli,57a V. Ciulli,57a,57b C. Civinini,57a R. D’Alessandro,57a,57b E. Focardi,57a,57b E. Gallo,57aS. Gonzi,57a,57bV. Gori,57a,57b,cP. Lenzi,57a,57bM. Meschini,57aS. Paoletti,57aG. Sguazzoni,57aA. Tropiano,57a,57b

L. Benussi,58S. Bianco,58F. Fabbri,58D. Piccolo,58F. Ferro,59a M. Lo Vetere,59a,59b E. Robutti,59a S. Tosi,59a,59b M. E. Dinardo,60a,60bS. Fiorendi,60a,60b,cS. Gennai,60a,c R. Gerosa,60a,60b,cA. Ghezzi,60a,60bP. Govoni,60a,60b

M. T. Lucchini,60a,60b,c S. Malvezzi,60a R. A. Manzoni,60a,60b A. Martelli,60a,60b B. Marzocchi,60a,60bD. Menasce,60a L. Moroni,60aM. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aT. Tabarelli de Fatis,60a,60bS. Buontempo,61a

N. Cavallo,61a,61cS. Di Guida,61a,61d,c F. Fabozzi,61a,61c A. O. M. Iorio,61a,61b L. Lista,61a S. Meola,61a,61d,c M. Merola,61a P. Paolucci,61a,c M. Bellato,62a M. Biasotto,62a,z D. Bisello,62a,62bA. Branca,62a,62bR. Carlin,62a,62bP. Checchia,62a

M. Dall’Osso,62a,62bT. Dorigo,62aF. Fanzago,62aM. Galanti,62a,62bF. Gasparini,62a,62bU. Gasparini,62a,62bA. Gozzelino,62a K. Kanishchev,62a,62c S. Lacaprara,62a M. Margoni,62a,62bA. T. Meneguzzo,62a,62bJ. Pazzini,62a,62b N. Pozzobon,62a,62b

P. Ronchese,62a,62b F. Simonetto,62a,62b E. Torassa,62a M. Tosi,62a,62bA. Triossi,62a S. Ventura,62aA. Zucchetta,62a,62b G. Zumerle,62a,62b M. Gabusi,63a,63bS. P. Ratti,63a,63bC. Riccardi,63a,63b P. Salvini,63a P. Vitulo,63a,63b M. Biasini,64a,64b

(8)

G. M. Bilei,64aD. Ciangottini,64a,64bL. Fanò,64a,64bP. Lariccia,64a,64bG. Mantovani,64a,64bM. Menichelli,64aF. Romeo,64a,64b

A. Saha,64a A. Santocchia,64a,64bA. Spiezia,64a,64b,c K. Androsov,65a,aa P. Azzurri,65a G. Bagliesi,65aJ. Bernardini,65a T. Boccali,65a G. Broccolo,65a,65c R. Castaldi,65a M. A. Ciocci,65a,aa R. Dell’Orso,65aS. Donato,65a,65c F. Fiori,65a,65c

L. Foà,65a,65cA. Giassi,65a M. T. Grippo,65a,aaF. Ligabue,65a,65c T. Lomtadze,65a L. Martini,65a,65bA. Messineo,65a,65b C. S. Moon,65a,bb F. Palla,65a,c A. Rizzi,65a,65bA. Savoy-Navarro,65a,ccA. T. Serban,65a P. Spagnolo,65a P. Squillacioti,65a,aa

R. Tenchini,65aG. Tonelli,65a,65bA. Venturi,65a P. G. Verdini,65a C. Vernieri,65a,65c,c L. Barone,66a,66bF. Cavallari,66a G. D’imperio,66a,66b D. Del Re,66a,66bM. Diemoz,66a M. Grassi,66a,66b C. Jorda,66a E. Longo,66a,66bF. Margaroli,66a,66b P. Meridiani,66aF. Micheli,66a,66b,cS. Nourbakhsh,66a,66bG. Organtini,66a,66bR. Paramatti,66aS. Rahatlou,66a,66bC. Rovelli,66a

F. Santanastasio,66a,66bL. Soffi,66a,66b,cP. Traczyk,66a,66b N. Amapane,67a,67b R. Arcidiacono,67a,67c S. Argiro,67a,67b,c M. Arneodo,67a,67c R. Bellan,67a,67b C. Biino,67a N. Cartiglia,67a S. Casasso,67a,67b,c M. Costa,67a,67bA. Degano,67a,67b

N. Demaria,67aL. Finco,67a,67bC. Mariotti,67a S. Maselli,67a E. Migliore,67a,67b V. Monaco,67a,67bM. Musich,67a M. M. Obertino,67a,67c,c G. Ortona,67a,67bL. Pacher,67a,67bN. Pastrone,67a M. Pelliccioni,67aG. L. Pinna Angioni,67a,67b

A. Potenza,67a,67bA. Romero,67a,67b M. Ruspa,67a,67c R. Sacchi,67a,67bA. Solano,67a,67bA. Staiano,67a U. Tamponi,67a S. Belforte,68aV. Candelise,68a,68b M. Casarsa,68a F. Cossutti,68a G. Della Ricca,68a,68b B. Gobbo,68a C. La Licata,68a,68b M. Marone,68a,68bD. Montanino,68a,68b A. Schizzi,68a,68b,c T. Umer,68a,68b A. Zanetti,68a S. Chang,69A. Kropivnitskaya,69

S. K. Nam,69D. H. Kim,70G. N. Kim,70M. S. Kim,70 D. J. Kong,70S. Lee,70Y. D. Oh,70 H. Park,70A. Sakharov,70

D. C. Son,70T. J. Kim,71J. Y. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73B. Lee,73 K. S. Lee,73S. K. Park,73 Y. Roh,73 M. Choi,74J. H. Kim,74I. C. Park,74 S. Park,74G. Ryu,74M. S. Ryu,74Y. Choi,75

Y. K. Choi,75J. Goh,75D. Kim,75 E. Kwon,75J. Lee,75H. Seo,75I. Yu,75A. Juodagalvis,76 J. R. Komaragiri,77 M. A. B. Md Ali,77H. Castilla-Valdez,78E. De La Cruz-Burelo,78I. Heredia-de La Cruz,78,dd R. Lopez-Fernandez,78

A. Sanchez-Hernandez,78S. Carrillo Moreno,79F. Vazquez Valencia,79I. Pedraza,80H. A. Salazar Ibarguen,80 E. Casimiro Linares,81A. Morelos Pineda,81D. Krofcheck,82P. H. Butler,83 S. Reucroft,83A. Ahmad,84M. Ahmad,84

Q. Hassan,84H. R. Hoorani,84 S. Khalid,84W. A. Khan,84T. Khurshid,84M. A. Shah,84M. Shoaib,84H. Bialkowska,85 M. Bluj,85B. Boimska,85T. Frueboes,85M. Górski,85M. Kazana,85K. Nawrocki,85K. Romanowska-Rybinska,85

M. Szleper,85P. Zalewski,85G. Brona,86K. Bunkowski,86M. Cwiok,86W. Dominik,86K. Doroba,86A. Kalinowski,86 M. Konecki,86J. Krolikowski,86M. Misiura,86M. Olszewski,86W. Wolszczak,86P. Bargassa,87C. Beirão Da Cruz E Silva,87

P. Faccioli,87P. G. Ferreira Parracho,87M. Gallinaro,87F. Nguyen,87J. Rodrigues Antunes,87J. Seixas,87 J. Varela,87 P. Vischia,87S. Afanasiev,88I. Golutvin,88V. Karjavin,88V. Konoplyanikov,88 V. Korenkov,88G. Kozlov,88 A. Lanev,88 A. Malakhov,88V. Matveev,88,eeV. V. Mitsyn,88P. Moisenz,88V. Palichik,88V. Perelygin,88S. Shmatov,88N. Skatchkov,88 V. Smirnov,88 E. Tikhonenko,88A. Zarubin,88V. Golovtsov,89 Y. Ivanov,89V. Kim,89,ff P. Levchenko,89V. Murzin,89 V. Oreshkin,89I. Smirnov,89V. Sulimov,89L. Uvarov,89S. Vavilov,89A. Vorobyev,89An. Vorobyev,89Yu. Andreev,90 A. Dermenev,90S. Gninenko,90N. Golubev,90M. Kirsanov,90N. Krasnikov,90A. Pashenkov,90D. Tlisov,90A. Toropin,90 V. Epshteyn,91V. Gavrilov,91N. Lychkovskaya,91V. Popov,91G. Safronov,91S. Semenov,91A. Spiridonov,91V. Stolin,91 E. Vlasov,91 A. Zhokin,91 V. Andreev,92M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92G. Mesyats,92 S. V. Rusakov,92A. Vinogradov,92A. Belyaev,93E. Boos,93A. Ershov,93A. Gribushin,93A. Kaminskiy,93,ggO. Kodolova,93 V. Korotkikh,93I. Lokhtin,93S. Obraztsov,93S. Petrushanko,93V. Savrin,93A. Snigirev,93I. Vardanyan,93I. Azhgirey,94 I. Bayshev,94S. Bitioukov,94V. Kachanov,94 A. Kalinin,94D. Konstantinov,94V. Krychkine,94V. Petrov,94R. Ryutin,94

A. Sobol,94L. Tourtchanovitch,94S. Troshin,94N. Tyurin,94A. Uzunian,94A. Volkov,94P. Adzic,95,hh M. Ekmedzic,95 J. Milosevic,95V. Rekovic,95J. Alcaraz Maestre,96 C. Battilana,96 E. Calvo,96M. Cerrada,96M. Chamizo Llatas,96

N. Colino,96B. De La Cruz,96A. Delgado Peris,96D. Domínguez Vázquez,96 A. Escalante Del Valle,96 C. Fernandez Bedoya,96J. P. Fernández Ramos,96 J. Flix,96M. C. Fouz,96P. Garcia-Abia,96O. Gonzalez Lopez,96

S. Goy Lopez,96J. M. Hernandez,96M. I. Josa,96 G. Merino,96E. Navarro De Martino,96A. Pérez-Calero Yzquierdo,96 J. Puerta Pelayo,96A. Quintario Olmeda,96I. Redondo,96L. Romero,96M. S. Soares,96C. Albajar,97J. F. de Trocóniz,97

M. Missiroli,97D. Moran,97H. Brun,98J. Cuevas,98J. Fernandez Menendez,98S. Folgueras,98I. Gonzalez Caballero,98 L. Lloret Iglesias,98J. A. Brochero Cifuentes,99I. J. Cabrillo,99A. Calderon,99J. Duarte Campderros,99M. Fernandez,99

G. Gomez,99 A. Graziano,99A. Lopez Virto,99 J. Marco,99R. Marco,99C. Martinez Rivero,99F. Matorras,99 F. J. Munoz Sanchez,99J. Piedra Gomez,99T. Rodrigo,99A. Y. Rodríguez-Marrero,99A. Ruiz-Jimeno,99L. Scodellaro,99 I. Vila,99R. Vilar Cortabitarte,99D. Abbaneo,100E. Auffray,100G. Auzinger,100M. Bachtis,100P. Baillon,100A. H. Ball,100 D. Barney,100A. Benaglia,100J. Bendavid,100L. Benhabib,100J. F. Benitez,100C. Bernet,100,h G. Bianchi,100P. Bloch,100

(9)

A. Bocci,100 A. Bonato,100O. Bondu,100C. Botta,100H. Breuker,100 T. Camporesi,100 G. Cerminara,100

S. Colafranceschi,100,iiM. D’Alfonso,100D. d’Enterria,100 A. Dabrowski,100A. David,100F. De Guio,100A. De Roeck,100 S. De Visscher,100M. Dobson,100M. Dordevic,100N. Dupont-Sagorin,100A. Elliott-Peisert,100J. Eugster,100G. Franzoni,100

W. Funk,100D. Gigi,100K. Gill,100D. Giordano,100M. Girone,100F. Glege,100R. Guida,100S. Gundacker,100M. Guthoff,100 J. Hammer,100M. Hansen,100 P. Harris,100J. Hegeman,100 V. Innocente,100 P. Janot,100K. Kousouris,100K. Krajczar,100 P. Lecoq,100C. Lourenço,100N. Magini,100L. Malgeri,100 M. Mannelli,100 J. Marrouche,100 L. Masetti,100 F. Meijers,100 S. Mersi,100E. Meschi,100F. Moortgat,100S. Morovic,100M. Mulders,100P. Musella,100L. Orsini,100L. Pape,100E. Perez,100 L. Perrozzi,100A. Petrilli,100G. Petrucciani,100A. Pfeiffer,100M. Pierini,100M. Pimiä,100D. Piparo,100M. Plagge,100

A. Racz,100 G. Rolandi,100,jj M. Rovere,100H. Sakulin,100C. Schäfer,100C. Schwick,100A. Sharma,100 P. Siegrist,100 P. Silva,100M. Simon,100 P. Sphicas,100,kkD. Spiga,100J. Steggemann,100 B. Stieger,100M. Stoye,100 Y. Takahashi,100 D. Treille,100A. Tsirou,100G. I. Veres,100,rJ. R. Vlimant,100N. Wardle,100H. K. Wöhri,100H. Wollny,100W. D. Zeuner,100

W. Bertl,101 K. Deiters,101 W. Erdmann,101R. Horisberger,101 Q. Ingram,101 H. C. Kaestli,101D. Kotlinski,101 U. Langenegger,101 D. Renker,101T. Rohe,101 F. Bachmair,102 L. Bäni,102 L. Bianchini,102 P. Bortignon,102 M. A. Buchmann,102B. Casal,102N. Chanon,102A. Deisher,102G. Dissertori,102M. Dittmar,102M. Donegà,102M. Dünser,102

P. Eller,102C. Grab,102 D. Hits,102 W. Lustermann,102B. Mangano,102 A. C. Marini,102 P. Martinez Ruiz del Arbol,102 D. Meister,102 N. Mohr,102 C. Nägeli,102,ll F. Nessi-Tedaldi,102 F. Pandolfi,102F. Pauss,102M. Peruzzi,102M. Quittnat,102

L. Rebane,102 M. Rossini,102A. Starodumov,102,mm M. Takahashi,102K. Theofilatos,102 R. Wallny,102 H. A. Weber,102 C. Amsler,103,nnM. F. Canelli,103V. Chiochia,103A. De Cosa,103A. Hinzmann,103T. Hreus,103B. Kilminster,103C. Lange,103

B. Millan Mejias,103J. Ngadiuba,103P. Robmann,103F. J. Ronga,103S. Taroni,103M. Verzetti,103Y. Yang,103M. Cardaci,104 K. H. Chen,104C. Ferro,104 C. M. Kuo,104W. Lin,104 Y. J. Lu,104 R. Volpe,104S. S. Yu,104 P. Chang,105 Y. H. Chang,105

Y. W. Chang,105Y. Chao,105 K. F. Chen,105P. H. Chen,105 C. Dietz,105 U. Grundler,105W.-S. Hou,105K. Y. Kao,105 Y. J. Lei,105 Y. F. Liu,105R.-S. Lu,105D. Majumder,105E. Petrakou,105 Y. M. Tzeng,105R. Wilken,105B. Asavapibhop,106

N. Srimanobhas,106N. Suwonjandee,106A. Adiguzel,107M. N. Bakirci,107,ooS. Cerci,107,ppC. Dozen,107I. Dumanoglu,107 E. Eskut,107S. Girgis,107G. Gokbulut,107E. Gurpinar,107I. Hos,107E. E. Kangal,107A. Kayis Topaksu,107G. Onengut,107,qq

K. Ozdemir,107S. Ozturk,107,ooA. Polatoz,107K. Sogut,107,rrD. Sunar Cerci,107,ppB. Tali,107,ppH. Topakli,107,ooM. Vergili,107 I. V. Akin,108 B. Bilin,108S. Bilmis,108H. Gamsizkan,108G. Karapinar,108,ssK. Ocalan,108S. Sekmen,108 U. E. Surat,108 M. Yalvac,108M. Zeyrek,108 E. Gülmez,109B. Isildak,109,tt M. Kaya,109,uu O. Kaya,109,vv H. Bahtiyar,110,ww E. Barlas,110 K. Cankocak,110F. I. Vardarlı,110M. Yücel,110L. Levchuk,111P. Sorokin,111J. J. Brooke,112E. Clement,112D. Cussans,112

H. Flacher,112R. Frazier,112 J. Goldstein,112M. Grimes,112 G. P. Heath,112H. F. Heath,112 J. Jacob,112L. Kreczko,112 C. Lucas,112Z. Meng,112D. M. Newbold,112,xxS. Paramesvaran,112A. Poll,112S. Senkin,112V. J. Smith,112T. Williams,112

A. Belyaev,113,yy C. Brew,113 R. M. Brown,113D. J. A. Cockerill,113 J. A. Coughlan,113 K. Harder,113 S. Harper,113 E. Olaiya,113D. Petyt,113C. H. Shepherd-Themistocleous,113A. Thea,113 I. R. Tomalin,113 W. J. Womersley,113 S. D. Worm,113M. Baber,114R. Bainbridge,114O. Buchmuller,114D. Burton,114D. Colling,114N. Cripps,114M. Cutajar,114 P. Dauncey,114G. Davies,114M. Della Negra,114 P. Dunne,114W. Ferguson,114J. Fulcher,114D. Futyan,114 A. Gilbert,114

G. Hall,114 G. Iles,114 M. Jarvis,114 G. Karapostoli,114 M. Kenzie,114R. Lane,114R. Lucas,114,xx L. Lyons,114 A.-M. Magnan,114S. Malik,114B. Mathias,114J. Nash,114A. Nikitenko,114,mm J. Pela,114 M. Pesaresi,114K. Petridis,114 D. M. Raymond,114S. Rogerson,114A. Rose,114C. Seez,114P. Sharp,114,aA. Tapper,114M. Vazquez Acosta,114T. Virdee,114

J. E. Cole,115P. R. Hobson,115A. Khan,115P. Kyberd,115 D. Leggat,115D. Leslie,115W. Martin,115 I. D. Reid,115 P. Symonds,115 L. Teodorescu,115M. Turner,115 J. Dittmann,116 K. Hatakeyama,116A. Kasmi,116H. Liu,116

T. Scarborough,116O. Charaf,117S. I. Cooper,117C. Henderson,117P. Rumerio,117A. Avetisyan,118T. Bose,118C. Fantasia,118 P. Lawson,118C. Richardson,118 J. Rohlf,118D. Sperka,118J. St. John,118L. Sulak,118J. Alimena,119 E. Berry,119

S. Bhattacharya,119G. Christopher,119D. Cutts,119 Z. Demiragli,119 N. Dhingra,119 A. Ferapontov,119A. Garabedian,119 U. Heintz,119 G. Kukartsev,119 E. Laird,119G. Landsberg,119M. Luk,119M. Narain,119M. Segala,119T. Sinthuprasith,119

T. Speer,119J. Swanson,119R. Breedon,120G. Breto,120M. Calderon De La Barca Sanchez,120S. Chauhan,120M. Chertok,120 J. Conway,120R. Conway,120 P. T. Cox,120R. Erbacher,120M. Gardner,120W. Ko,120R. Lander,120 T. Miceli,120

M. Mulhearn,120 D. Pellett,120J. Pilot,120 F. Ricci-Tam,120M. Searle,120 S. Shalhout,120 J. Smith,120 M. Squires,120 D. Stolp,120 M. Tripathi,120 S. Wilbur,120R. Yohay,120 R. Cousins,121P. Everaerts,121C. Farrell,121 J. Hauser,121 M. Ignatenko,121G. Rakness,121E. Takasugi,121V. Valuev,121M. Weber,121J. Babb,122K. Burt,122R. Clare,122J. Ellison,122

(10)

O. R. Long,122A. Luthra,122M. Malberti,122H. Nguyen,122M. Olmedo Negrete,122A. Shrinivas,122S. Sumowidagdo,122

S. Wimpenny,122W. Andrews,123 J. G. Branson,123G. B. Cerati,123S. Cittolin,123R. T. D’Agnolo,123 D. Evans,123 A. Holzner,123 R. Kelley,123 D. Klein,123 M. Lebourgeois,123J. Letts,123 I. Macneill,123D. Olivito,123 S. Padhi,123

C. Palmer,123M. Pieri,123 M. Sani,123V. Sharma,123 S. Simon,123E. Sudano,123 M. Tadel,123 Y. Tu,123A. Vartak,123 C. Welke,123F. Würthwein,123A. Yagil,123J. Yoo,123D. Barge,124J. Bradmiller-Feld,124C. Campagnari,124T. Danielson,124 A. Dishaw,124K. Flowers,124M. Franco Sevilla,124P. Geffert,124C. George,124F. Golf,124L. Gouskos,124J. Incandela,124 C. Justus,124N. Mccoll,124J. Richman,124D. Stuart,124W. To,124C. West,124A. Apresyan,125A. Bornheim,125J. Bunn,125

Y. Chen,125 E. Di Marco,125 J. Duarte,125 A. Mott,125H. B. Newman,125 C. Pena,125 C. Rogan,125 M. Spiropulu,125 V. Timciuc,125R. Wilkinson,125 S. Xie,125 R. Y. Zhu,125 V. Azzolini,126 A. Calamba,126 B. Carlson,126 T. Ferguson,126

Y. Iiyama,126 M. Paulini,126J. Russ,126 H. Vogel,126 I. Vorobiev,126J. P. Cumalat,127W. T. Ford,127A. Gaz,127 E. Luiggi Lopez,127U. Nauenberg,127 J. G. Smith,127 K. Stenson,127 K. A. Ulmer,127S. R. Wagner,127 J. Alexander,128 A. Chatterjee,128J. Chu,128S. Dittmer,128N. Eggert,128N. Mirman,128G. Nicolas Kaufman,128J. R. Patterson,128A. Ryd,128 E. Salvati,128L. Skinnari,128W. Sun,128W. D. Teo,128J. Thom,128J. Thompson,128J. Tucker,128Y. Weng,128L. Winstrom,128

P. Wittich,128 D. Winn,129S. Abdullin,130M. Albrow,130J. Anderson,130 G. Apollinari,130 L. A. T. Bauerdick,130 A. Beretvas,130J. Berryhill,130P. C. Bhat,130K. Burkett,130 J. N. Butler,130H. W. K. Cheung,130F. Chlebana,130 S. Cihangir,130V. D. Elvira,130I. Fisk,130J. Freeman,130Y. Gao,130 E. Gottschalk,130L. Gray,130 D. Green,130

S. Grünendahl,130O. Gutsche,130J. Hanlon,130D. Hare,130R. M. Harris,130J. Hirschauer,130 B. Hooberman,130 S. Jindariani,130M. Johnson,130U. Joshi,130K. Kaadze,130B. Klima,130B. Kreis,130S. Kwan,130J. Linacre,130D. Lincoln,130

R. Lipton,130T. Liu,130J. Lykken,130K. Maeshima,130J. M. Marraffino,130V. I. Martinez Outschoorn,130S. Maruyama,130 D. Mason,130 P. McBride,130K. Mishra,130S. Mrenna,130Y. Musienko,130,eeS. Nahn,130C. Newman-Holmes,130

V. O’Dell,130 O. Prokofyev,130E. Sexton-Kennedy,130S. Sharma,130A. Soha,130 W. J. Spalding,130L. Spiegel,130 L. Taylor,130S. Tkaczyk,130N. V. Tran,130L. Uplegger,130E. W. Vaandering,130R. Vidal,130A. Whitbeck,130J. Whitmore,130

F. Yang,130D. Acosta,131P. Avery,131D. Bourilkov,131M. Carver,131T. Cheng,131D. Curry,131S. Das,131M. De Gruttola,131 G. P. Di Giovanni,131R. D. Field,131M. Fisher,131I. K. Furic,131J. Hugon,131J. Konigsberg,131A. Korytov,131T. Kypreos,131

J. F. Low,131 K. Matchev,131P. Milenovic,131,zz G. Mitselmakher,131 L. Muniz,131 A. Rinkevicius,131L. Shchutska,131 M. Snowball,131J. Yelton,131 M. Zakaria,131 S. Hewamanage,132 S. Linn,132P. Markowitz,132 G. Martinez,132 J. L. Rodriguez,132T. Adams,133A. Askew,133J. Bochenek,133B. Diamond,133J. Haas,133S. Hagopian,133V. Hagopian,133

K. F. Johnson,133 H. Prosper,133 V. Veeraraghavan,133 M. Weinberg,133 M. M. Baarmand,134M. Hohlmann,134 H. Kalakhety,134 F. Yumiceva,134 M. R. Adams,135L. Apanasevich,135 V. E. Bazterra,135 D. Berry,135R. R. Betts,135 I. Bucinskaite,135 R. Cavanaugh,135 O. Evdokimov,135 L. Gauthier,135C. E. Gerber,135 D. J. Hofman,135 S. Khalatyan,135 P. Kurt,135D. H. Moon,135C. O’Brien,135C. Silkworth,135P. Turner,135N. Varelas,135E. A. Albayrak,136,wwB. Bilki,136,aaa W. Clarida,136K. Dilsiz,136F. Duru,136 M. Haytmyradov,136J.-P. Merlo,136H. Mermerkaya,136,bbbA. Mestvirishvili,136 A. Moeller,136 J. Nachtman,136 H. Ogul,136Y. Onel,136F. Ozok,136,ww A. Penzo,136 R. Rahmat,136 S. Sen,136 P. Tan,136 E. Tiras,136 J. Wetzel,136T. Yetkin,136,cccK. Yi,136 B. A. Barnett,137B. Blumenfeld,137 S. Bolognesi,137 D. Fehling,137 A. V. Gritsan,137 P. Maksimovic,137 C. Martin,137M. Swartz,137 P. Baringer,138 A. Bean,138 G. Benelli,138 C. Bruner,138

J. Gray,138 R. P. Kenny III,138M. Malek,138 M. Murray,138D. Noonan,138 S. Sanders,138 J. Sekaric,138R. Stringer,138 Q. Wang,138J. S. Wood,138 A. F. Barfuss,139I. Chakaberia,139A. Ivanov,139S. Khalil,139M. Makouski,139Y. Maravin,139

L. K. Saini,139S. Shrestha,139N. Skhirtladze,139I. Svintradze,139J. Gronberg,140D. Lange,140F. Rebassoo,140D. Wright,140 A. Baden,141A. Belloni,141 B. Calvert,141S. C. Eno,141J. A. Gomez,141N. J. Hadley,141 R. G. Kellogg,141T. Kolberg,141

Y. Lu,141M. Marionneau,141A. C. Mignerey,141K. Pedro,141A. Skuja,141M. B. Tonjes,141S. C. Tonwar,141A. Apyan,142 R. Barbieri,142 G. Bauer,142W. Busza,142I. A. Cali,142M. Chan,142 L. Di Matteo,142V. Dutta,142 G. Gomez Ceballos,142

M. Goncharov,142D. Gulhan,142M. Klute,142Y. S. Lai,142Y.-J. Lee,142A. Levin,142P. D. Luckey,142T. Ma,142C. Paus,142 D. Ralph,142C. Roland,142G. Roland,142G. S. F. Stephans,142F. Stöckli,142K. Sumorok,142D. Velicanu,142J. Veverka,142

B. Wyslouch,142M. Yang,142M. Zanetti,142 V. Zhukova,142B. Dahmes,143 A. Gude,143 S. C. Kao,143 K. Klapoetke,143 Y. Kubota,143J. Mans,143 N. Pastika,143 R. Rusack,143A. Singovsky,143 N. Tambe,143J. Turkewitz,143J. G. Acosta,144

S. Oliveros,144 E. Avdeeva,145 K. Bloom,145 S. Bose,145D. R. Claes,145 A. Dominguez,145 R. Gonzalez Suarez,145 J. Keller,145 D. Knowlton,145I. Kravchenko,145J. Lazo-Flores,145 S. Malik,145 F. Meier,145 G. R. Snow,145 J. Dolen,146

A. Godshalk,146I. Iashvili,146 A. Kharchilava,146A. Kumar,146S. Rappoccio,146G. Alverson,147E. Barberis,147 D. Baumgartel,147M. Chasco,147J. Haley,147A. Massironi,147D. M. Morse,147D. Nash,147T. Orimoto,147D. Trocino,147

(11)

R.-J. Wang,147 D. Wood,147J. Zhang,147K. A. Hahn,148 A. Kubik,148 N. Mucia,148 N. Odell,148B. Pollack,148

A. Pozdnyakov,148M. Schmitt,148S. Stoynev,148K. Sung,148M. Velasco,148S. Won,148A. Brinkerhoff,149K. M. Chan,149 A. Drozdetskiy,149M. Hildreth,149C. Jessop,149D. J. Karmgard,149N. Kellams,149K. Lannon,149W. Luo,149S. Lynch,149

N. Marinelli,149T. Pearson,149 M. Planer,149 R. Ruchti,149N. Valls,149 M. Wayne,149 M. Wolf,149A. Woodard,149

L. Antonelli,150 J. Brinson,150B. Bylsma,150L. S. Durkin,150S. Flowers,150 C. Hill,150R. Hughes,150K. Kotov,150 T. Y. Ling,150D. Puigh,150M. Rodenburg,150G. Smith,150B. L. Winer,150H. Wolfe,150 H. W. Wulsin,150 O. Driga,151 P. Elmer,151P. Hebda,151A. Hunt,151S. A. Koay,151P. Lujan,151D. Marlow,151T. Medvedeva,151M. Mooney,151J. Olsen,151

P. Piroué,151X. Quan,151 H. Saka,151 D. Stickland,151,c C. Tully,151 J. S. Werner,151S. C. Zenz,151A. Zuranski,151 E. Brownson,152 H. Mendez,152 J. E. Ramirez Vargas,152 V. E. Barnes,153 D. Benedetti,153G. Bolla,153D. Bortoletto,153

M. De Mattia,153Z. Hu,153 M. K. Jha,153M. Jones,153 K. Jung,153 M. Kress,153 N. Leonardo,153 D. Lopes Pegna,153

V. Maroussov,153 P. Merkel,153D. H. Miller,153N. Neumeister,153B. C. Radburn-Smith,153X. Shi,153I. Shipsey,153 D. Silvers,153A. Svyatkovskiy,153F. Wang,153W. Xie,153L. Xu,153H. D. Yoo,153J. Zablocki,153Y. Zheng,153N. Parashar,154

J. Stupak,154A. Adair,155B. Akgun,155K. M. Ecklund,155 F. J. M. Geurts,155W. Li,155B. Michlin,155B. P. Padley,155 R. Redjimi,155 J. Roberts,155 J. Zabel,155B. Betchart,156A. Bodek,156R. Covarelli,156 P. de Barbaro,156 R. Demina,156

Y. Eshaq,156T. Ferbel,156 A. Garcia-Bellido,156P. Goldenzweig,156J. Han,156A. Harel,156 A. Khukhunaishvili,156 G. Petrillo,156 D. Vishnevskiy,156 R. Ciesielski,157 L. Demortier,157K. Goulianos,157G. Lungu,157C. Mesropian,157 S. Arora,158A. Barker,158J. P. Chou,158C. Contreras-Campana,158E. Contreras-Campana,158D. Duggan,158D. Ferencek,158 Y. Gershtein,158R. Gray,158E. Halkiadakis,158D. Hidas,158S. Kaplan,158A. Lath,158S. Panwalkar,158M. Park,158R. Patel,158

S. Salur,158 S. Schnetzer,158 S. Somalwar,158 R. Stone,158 S. Thomas,158 P. Thomassen,158M. Walker,158K. Rose,159 S. Spanier,159A. York,159 O. Bouhali,160,dddA. Castaneda Hernandez,160R. Eusebi,160 W. Flanagan,160J. Gilmore,160 T. Kamon,160,eeeV. Khotilovich,160V. Krutelyov,160R. Montalvo,160I. Osipenkov,160Y. Pakhotin,160A. Perloff,160J. Roe,160

A. Rose,160A. Safonov,160T. Sakuma,160 I. Suarez,160 A. Tatarinov,160N. Akchurin,161C. Cowden,161J. Damgov,161 C. Dragoiu,161 P. R. Dudero,161 J. Faulkner,161 K. Kovitanggoon,161 S. Kunori,161S. W. Lee,161T. Libeiro,161 I. Volobouev,161 E. Appelt,162A. G. Delannoy,162 S. Greene,162 A. Gurrola,162W. Johns,162C. Maguire,162Y. Mao,162

A. Melo,162M. Sharma,162P. Sheldon,162B. Snook,162S. Tuo,162J. Velkovska,162M. W. Arenton,163S. Boutle,163B. Cox,163 B. Francis,163 J. Goodell,163 R. Hirosky,163A. Ledovskoy,163 H. Li,163 C. Lin,163 C. Neu,163J. Wood,163C. Clarke,164

R. Harr,164 P. E. Karchin,164C. Kottachchi Kankanamge Don,164 P. Lamichhane,164 J. Sturdy,164D. A. Belknap,165 D. Carlsmith,165 M. Cepeda,165S. Dasu,165L. Dodd,165S. Duric,165E. Friis,165 R. Hall-Wilton,165 M. Herndon,165 A. Hervé,165 P. Klabbers,165 A. Lanaro,165C. Lazaridis,165 A. Levine,165 R. Loveless,165A. Mohapatra,165 I. Ojalvo,165

T. Perry,165G. A. Pierro,165G. Polese,165I. Ross,165T. Sarangi,165A. Savin,165 W. H. Smith,165

C. Vuosalo,165and N. Woods165 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, São Paulo, Brazil 12bUniversidade Federal do ABC, São Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

(12)

19University of Split, Faculty of Science, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43Wigner Research Centre for Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India 50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53University College Dublin, Dublin, Ireland 54aINFN Sezione di Bari, Italy

54bUniversità di Bari, Italy 54cPolitecnico di Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversità di Bologna, Bologna, Italy

56INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy 56aINFN Sezione di Catania

56bUniversità di Catania 56cCSFNSM

57aINFN Sezione di Firenze, Italy 57bUniversità di Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59aINFN Sezione di Genova, Italy

59bUniversità di Genova, Italy

60aINFN Sezione di Milano-Bicocca, Milano, Italy 60bUniversità di Milano-Bicocca, Milano, Italy

61aINFN Sezione di Napoli, Napoli, Italy 61bUniversità di Napoli ’Federico II’, Napoli, Italy 61cUniversità della Basilicata (Potenza), Napoli, Italy

61dUniversità G. Marconi (Roma), Napoli, Italy 62aINFN Sezione di Padova

62bUniversità di Padova 62cUniversità di Trento (Trento)

(13)

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversità di Pavia, Pavia, Italy 64aINFN Sezione di Perugia, Perugia, Italy

64bUniversità di Perugia, Perugia, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65bUniversità di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Roma, Roma, Italy 66bUniversità di Roma, Roma, Italy 67aINFN Sezione di Torino, Torino, Italy

67bUniversità di Torino, Torino, Italy

67cUniversità del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversità di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea 71Chonbuk National University, Jeonju, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania

77National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 78Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

79Universidad Iberoamericana, Mexico City, Mexico 80Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 81Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

82University of Auckland, Auckland, New Zealand 83University of Canterbury, Christchurch, New Zealand

84National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 85National Centre for Nuclear Research, Swierk, Poland

86Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 87Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

88Joint Institute for Nuclear Research, Dubna, Russia

89Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 90Institute for Nuclear Research, Moscow, Russia

91Institute for Theoretical and Experimental Physics, Moscow, Russia 92P.N. Lebedev Physical Institute, Moscow, Russia

93Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 94State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 95University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

96Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 97Universidad Autónoma de Madrid, Madrid, Spain

98Universidad de Oviedo, Oviedo, Spain

99Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 100CERN, European Organization for Nuclear Research, Geneva, Switzerland

101Paul Scherrer Institut, Villigen, Switzerland

102Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 103Universität Zürich, Zurich, Switzerland

104National Central University, Chung-Li, Taiwan 105National Taiwan University (NTU), Taipei, Taiwan

106Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand 107Cukurova University, Adana, Turkey

108Middle East Technical University, Physics Department, Ankara, Turkey 109Bogazici University, Istanbul, Turkey

110Istanbul Technical University, Istanbul, Turkey

111National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 112University of Bristol, Bristol, United Kingdom

113Rutherford Appleton Laboratory, Didcot, United Kingdom 114Imperial College, London, United Kingdom

(14)

115Brunel University, Uxbridge, United Kingdom 116Baylor University, Waco, USA 117The University of Alabama, Tuscaloosa, USA

118Boston University, Boston, USA 119Brown University, Providence, USA 120University of California, Davis, Davis, USA

121University of California, Los Angeles, USA 122University of California, Riverside, Riverside, USA 123University of California, San Diego, La Jolla, USA 124University of California, Santa Barbara, Santa Barbara, USA

125California Institute of Technology, Pasadena, USA 126Carnegie Mellon University, Pittsburgh, USA 127University of Colorado at Boulder, Boulder, USA

128Cornell University, Ithaca, USA 129Fairfield University, Fairfield, USA

130Fermi National Accelerator Laboratory, Batavia, USA 131University of Florida, Gainesville, USA 132Florida International University, Miami, USA

133Florida State University, Tallahassee, USA 134Florida Institute of Technology, Melbourne, USA 135University of Illinois at Chicago (UIC), Chicago, USA

136The University of Iowa, Iowa City, USA 137Johns Hopkins University, Baltimore, USA 138The University of Kansas, Lawrence, USA 139Kansas State University, Manhattan, USA

140Lawrence Livermore National Laboratory, Livermore, USA 141University of Maryland, College Park, USA 142Massachusetts Institute of Technology, Cambridge, USA

143University of Minnesota, Minneapolis, USA 144University of Mississippi, Oxford, USA 145University of Nebraska-Lincoln, Lincoln, USA 146State University of New York at Buffalo, Buffalo, USA

147Northeastern University, Boston, USA 148Northwestern University, Evanston, USA 149University of Notre Dame, Notre Dame, USA

150The Ohio State University, Columbus, USA 151Princeton University, Princeton, USA 152University of Puerto Rico, Mayaguez, USA

153Purdue University, West Lafayette, USA 154Purdue University Calumet, Hammond, USA

155Rice University, Houston, USA 156University of Rochester, Rochester, USA 157The Rockefeller University, New York, USA

158Rutgers, The State University of New Jersey, Piscataway, USA 159University of Tennessee, Knoxville, USA

160Texas A&M University, College Station, USA 161Texas Tech University, Lubbock, USA 162Vanderbilt University, Nashville, USA 163University of Virginia, Charlottesville, USA

164Wayne State University, Detroit, USA 165University of Wisconsin, Madison, USA aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland

dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3,

Strasbourg, France

eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia gAlso at Universidade Estadual de Campinas, Campinas, Brazil

Figura

FIG. 1 (color online). Dimuon invariant-mass distributions measured in central Pb-Pb (left) and p-p (right) collisions, for jyj &lt; 1.6 and 6.5 &lt; p T &lt; 30 GeV=c (top) as well as 1.6 &lt; jyj &lt; 2.4 and 3 &lt; p T &lt; 30 GeV=c (bottom)
FIG. 2 (color online). Double ratio of measured yields ðN ψð2SÞ =N J=ψ Þ Pb-Pb =ðN ψð2SÞ =N J=ψ Þ p-p as a function of centrality,

Riferimenti

Documenti correlati

Benché non direttamente allievo, tutta- via legato a Rogers anche tramite «Casa- bella» che più volte lo pubblica, Polesello riconosce quanto il suo pensiero debba al Maestro

Modalità e strumenti per l’inizio del progetto Anastasia Kozlova?. How design can contribute to children’s

Il mio incontro con Crimp, il cui esito propongo in forma di intervista, ha se- gnato la mia ricerca di ricostruzione del dibattito critico avvenuto sulle pagine della

While acknowledging that some exceptions in the convergence process emerged in terms of the mean values of the parameters, the authors emphasized the strong link between

Anche altrove la memoria del Pluto è, per lo più, limitata alla ripresa di singole espressioni: è il caso della già citata epistola 104 al fratello, dove, a proposito di un

In una situazione, come quella attuale, in cui il lavoro di riproduzione (femminile e non) si sovrappone sempre più al lavoro produttivo classicamente inteso, è possibile pensare

A metà degli anni Cinquanta, ancora a Rimini, partecipò all’accesa disputa tra Ba- sinio da Parma e Porcelio Pandone sull’im- portanza della conoscenza della lingua gre- ca per

Without considering the specific sections of the paper which, as everyone knows, quotations and further external references are indicated, like authorities or public services,