• Non ci sono risultati.

Functionalization of gold surfaces with copoly(DMA-NAS-MAPS) by dip coating: Surface characterization and hybridization tests

N/A
N/A
Protected

Academic year: 2021

Condividi "Functionalization of gold surfaces with copoly(DMA-NAS-MAPS) by dip coating: Surface characterization and hybridization tests"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m /l o c a t e / s n b

Functionalization

of

gold

surfaces

with

copoly(DMA-NAS-MAPS)

by

dip

coating:

Surface

characterization

and

hybridization

tests

D.

Petti

a,∗

,

A.

Torti

a

,

F.

Damin

b

,

L.

Sola

b

,

M.

Rusnati

c

,

E.

Albisetti

a

,

A.

Bugatti

c

,

R.

Bertacco

a

,

M.

Chiari

b

aLNESS-DipartimentodiFisicadelPolitecnicodiMilano,ViaAnzani42,22100Como,Italy bIstitutodiChimicadelRiconoscimentoMolecolare,CNR,ViaMarioBianco9,20131Milan,Italy

cDepartmentofMolecularandTranslationalMedicine,UniversityofBrescia,VialeEuropa11,25123Brescia,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received5June2013

Receivedinrevisedform9August2013 Accepted25August2013

Available online 4 September 2013 Keywords:

Goldfunctionalization Copoly(DMA-NAS-MAPS) Chemiluminescence Surfaceplasmonresonance Atomicforcemicroscopy X-rayphotoemissionspectroscopy

a

b

s

t

r

a

c

t

Inthiswork,anewmethodtofunctionalizeagoldsurfacebydipcoatingwithafunctionalcopolymer ispresented.Thecoatingprocedureissimple,robustandcanbeaccomplishedinlessthanonehour. Atomicforcemicroscopy(AFM)scratchtestsrevealthepresenceofahomogeneouspolymercoating withathicknessof2.5nm.X-rayphotoemissionspectroscopyspectrafromC1s,N1sandO1slevels presentthetypicalfingerprintsofthepolymericoverlayer,i.e.thecharacteristicpeaksfromCNC Oand NC Ogroups.

Surfaceplasmonresonance(SPR)bindingassayswereusedtocheckthecoatingfunctionalproperties. ImmobilizationofheparintoSPRgoldsurfacesfunctionalizedwithcopoly(DMA-NAS-MAPS)-followed bybindinganalysiswiththewellknownheparinbindingproteinfibroblastgrowthfactor2yieldbinding kineticparameterscomparabletothoseobtainedwithcommerciallyavailablecarboxymethyl dextran-functionalizedsensorchips,thusconfirmingthegreatpotentialoftheproposedtechnique.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the last ten years, we assisted to a great development ofmicroarray analysistechniquesfor proteomicsandgenomics [1]. In this scenario a key-point is the chemical functionaliza-tionofdifferentsubstrates(glass,silicon,gold)[2]foraneffective andselectiveimmobilizationofbio-macromoleculessuchasDNA, oligonucleotidesandproteins.

Inparticular,thereisastronginterestindevelopingmethods forgoldsurfacefunctionalization,asthismetaliswidelyusedin biosensing.Insurfaceplasmonresonance(SPR),athinlayerofgold onahighrefractiveindexglasssurfaceabsorbslaserlight, produc-ingelectronwaves(surfaceplasmons) onthegoldsurface.This occursonlyata specificangleandwavelengthofincident light which arehighly dependentonthesurface properties. For this reason,thebindingofatargetligandtoa receptorimmobilized onthegoldsurfaceproduces ameasurablesignalrelatedtothe concentrationofthetarget[3].

Inelectrochemicalbiosensors,anenzymaticallycatalyzed reac-tion,involvingthetargetanalyte,producesorabsorbselectronson theactiveelectrodesurfacecausingeitherelectrontransferacross

∗ Correspondingauthor.Tel.:+390313327307;fax:+390313327617. E-mailaddress:daniela.petti@polimi.it(D.Petti).

thedoublelayer(thusproducingacurrent)orcontributingtothe doublelayerpotential(finallyleadingtoavoltage)[4].

Severalfunctionalizationstrategiesforgoldhavebeendescribed [2,5]and referencetherein]includingsurfacemodificationwith silanes[6]andfunctionalpolymers.InSPRtheunquestioned coat-ingchoiceisbasedondextran.Astabledextranlayerisobtained bycovalentbindingofthepolymertoafunctionalsublayerformed onthesurfacebyself-assemblingofathiolbearingmolecule.The characteristicsofthedextrancoatedsurfacehavebeenoptimized andthequalityofthiscoatinghasgreatlycontributedtothesuccess ofSPRtechnology.However,theprocedureforbindingdextranis cumbersomeandrequiresmultistepchemicalreactionswhichmay bedifficulttocontrol.

Inthecaseofthedextrancoatingasinotherbioassays involv-inggold[7],thecoatingformationrequiresspontaneousassembly of chemically reactive alkenethiols leading toformation of so calledself-assembledmonolayers(SAM)[8–10].Byplacingagold substrateintoamillimolarsolutionofanalkanethiolinethanol a varietyof chemically reactivegroups canbe introducedby a reaction between gold and thiols. This reaction is well-known andwidelyadoptedduetothefactthatitisstraightforwardand requirescommerciallyavailablechemicalreagents.Inadditionthe bindingbetweengoldandthiolisverystableowingtoits cova-lentcharacter[11,12].However,theformationofawell-assembled monolayerstronglydependsonthepurityofthealkanethiolbeing 0925-4005/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

D.Pettietal./SensorsandActuatorsB190 (2014) 234–242 235

used.Thepresenceofevenlowlevelsofcontaminantscanresult inadisordered,non-idealmonolayer.Unfortunately,typical impu-ritiesinthiolcompoundsarethiolatedprecursormolecules,not properlyseparatedduringthepurificationprocess[13].

Inthisworkwepresentanalternativeapproachtosurface modi-ficationthatisfast,robustandeasytoperformeveninlaboratories thatdonothaveastrongsurfacechemistrybackground.In par-ticular,weproposeamethodbasedonapolymericthincoating madeofN,N-dimethylacrylamide(DMA)bearingsilanating(MAPS) and chemicallyreactive (NAS) moieties:poly(DMA-NAS-MAPS). Thecopoly(DMA-NAS-MAPS)wasdevelopedforDNAandprotein microarrayassaysonmicroscopeglassslide[14]andonsilicon[15]. Asshowninpreviouspapers[6],thedepositionby“dipandrinse” coatingofathinlayerofthispolymerrepresentsafast,inexpensive androbustmethodtocovalentlybindproteinsandamino-modified DNAprobes.Inaddition,thefilmisstableinaqueousbuffers con-tainingvariousadditives,evenatwaterboilingtemperatureand, duetoitshydrophilicnatureandhighhomogeneity,itminimizes non-specificbiomolecularinteractions.Thelastfeatureishighly desirableforsurfacerecognitionbioassays,forwhichspecificityis difficulttoachieve.Furthermore,theproposedmethod,employing nonsurface-specificmaterialmodifications,canbeeasilyusedalso toformuniformcoatingsonmanydifferentmaterialsotherthen gold,suchasglass,silicondioxide,siliconnitrideandtitanium diox-ide[15],thusbeingappliedtodifferentbiosensingproblemsand techniques.Thisversatilitycanbeparticularlyimportantin appli-cationemployingsensorsthatconsistofmorethanonematerial. Theuseofcopoly(DMA-NAS-MAPS)allowsthederivatizationofall thedifferentregionsofthedeviceinsinglestep.

Themorphologicalandchemicalpropertiesofthispolymeric coatingongoldsurfaceshavebeenstudiedbymeansofatomicforce microscopy(AFM)andX-rayphotoemissionspectroscopy(XPS). Thesetechniquesrevealthatthepolymerisimmobilizedonthe sur-facewiththeproperchemicalcompositionandexpectedthickness. Furthermorewefoundalimitedimpactonthegoldunderlayer, thusallowingtheuseoftheproposedfunctionalizationmethod fortechniquessuchasSPR.Todemonstratethecompatibilityof thisderivatizationprocesswithstandardbioassays,twodifferent experimentshavebeencarriedout:aDNA hybridization exper-imentwithchemiluminescence and surfaceplasmon resonance (SPR)toassaythebindingoffibroblastgrowthfactor(FGF2)in solu-tiontoimmobilizedheparin.Independentlyfromthetransducer employed,resultscomparabletothoseobtainedwithcommercially availablecarboxymethyldextran-functionalizedsensorchipswere obtained.Thisindicatesthepotentialofthecoatingtechniqueto implementrobustprotocolsofbiomoleculesimmobilizationonto goldcoatedsurfacesforbiosensingapplications.

2. Materialsandmethods

2.1. Chemicals

Tris(hydroxymethyl)aminomethane (TRIS), ethanolamine, saline-sodium citrate (SSC), ammonium sulfate, sodium dodecyl sulfate (SDS), phosphate buffer solution (PBS), N,Ndimethylacrylamide(DMA)and[3-(methacryloyl-oxy)propyl] trimethoxysilane(MAPS)werepurchasedfromSigma(St.Louis, MO). N,Nacryloyloxysuccinimide (NAS) was from Polysciences (Warrington, PA).Oligonucleotides weresynthesized by MWG-Biotech AG(Ebevsberg, Germany). Streptavidin labeledby HRP (HorseRadishPeroxidase)fromJacksonImmunoresearch.Heparin (13.6kDa) was obtained from Laboratori Derivati Organici Spa (Milan,Italy).SuperSignalELISAFemtomaximumSensitivitykit from ThermoScientific. Human recombinant fibroblast growth factor2(FGF2)wasexpressedinEscherichiacoliandpurifiedas describedin[16].

2.2. Goldsurfacepreparationandderivatization

Forinitialtests,goldfilmsonSiwerepreparedin-house.Silicon waferswerecoatedwith3nmCr(topromotegoldadhesion)and 50nmAu,bymeansofelectronbeamevaporation. Copoly(DMA-NAS-MAPS), whose chemical structure is shown in Fig. 1, was synthesized and characterizedas described in a previous work [17,14].ThegoldsurfacewastreatedfortenminutesinanOxygen PlasmaGenerator(HarrickPlasmaCleaner)andthenimmersedfor 30mininacopoly(DMA-NAS-MAPS)solution(1%,w/vinawater solutionofammoniumsulfateata20%saturationlevel).Thesilicon slideswerethenextensivelywashedwithwateranddriedunder vacuumat80◦Cfor15min.

2.3. AFMmeasurements

AFMmeasurementswereperformedwithaVEECOInnovaAFM. The morphological characterization wascarried out in tapping modewith512samples/line, frequency of0.8Hz and 4–10␮m scan range.Thethicknessof thepolymericlayerwasevaluated byAFM-tipscratchtest[18].Thistechniqueconsistsin scratch-ingthecoatingwiththeAFMtipwhilethenormalforceappliedis settoavaluehighenoughtopenetratethelayerbutlowenoughto avoidsignificanttiporsubstratedamaging.Thescratchwasmade incontactmodeonwardandinliftmodebackward(startheight 0.3␮m,liftheight0.3␮m)with30continuousscancycles,256 sam-ples/line,62.75Hz,1␮mscanrange.Afterscratching,theareawas imagedintappingmodewiththesametipusedforscratching.In thiswaytheareaofinterestiseasilyidentifiedwithintheactive scanareaoftheAFM.

2.4. XPSexperiments

XPSexperimentswereperformedinamultichamber ultrahigh-vacuum (UHV) system described in detail elsewhere [19]. PhotoelectronswereexcitedbyAlK␣(h␯=1486.67eV)orMgK␣ (h␯=1253.6eV)radiation,andanalyzedbya150mm hemispher-icalanalyzer(SPECSPhoibos150).Theangularacceptancesetfor thisworkwasabout±6◦,andthespatialresolutionwas1.4mm.

Twomodesofoperationhavebeenemployed:(M1)passenergyof 50eVandAlK␣line(totalenergyresolutionof1.643eV)to eval-uatethestoichiometryofthepolymer;(M2)passenergyof10eV andMgK␣line(totalenergyresolutionof0.841eV)inorderto studythelineshapeofthecharacteristicpeaks.Theenergyscale ofthespectrahasbeencalibratedbymeasuringaTafoilingood electricalcontactwiththesample.

2.5. Chemiluminescencetest

A 23-mer,5-amine-modified oligonucleotidesynthesizedby MWG-BiotechAG(Ebevsberg,Germany),100␮Mstocksolution, 5-NH2-(CH2)6-GCCCACCTATAAGGTAAAAGTGA,wasdissolved in150mMsodiumphosphatebufferatpH8.5.A10␮Msolutionof thisoligonucleotidewasprintedoncoatedslidestoforma15×15 arrayusingapiezoelectricspotter(SciFLEXARRAYERS5;Scienion). Spotting wasdoneat 20◦C in anatmosphere of 50% humidity. Theoligonucleotides werecoupledtothesurfacesbyovernight incubation inanuncovered storagebox, laidin asealed cham-ber,saturatedwithsodiumchloride(40g/100mLH2O),atroom

temperature.Afterincubation,allresidualreactivegroupsofthe coating polymer wereblockedby dipping theprinted slides in 50mMethanolamine/0.1MTrispH9.0at50◦Cfor15min.After discardingtheblockingsolution,theslideswererinsedtwotimes with water and shaken for 15min in 4× SSC/0.1% SDS buffer, pre-warmedat50◦C,andbrieflyrinsedwithwater.An oligonu-cleotide,complementarytotheonespottedonthesurface,ata

(3)

Fig.1.structureofthecopoly(DMA-NAS-MAPS)boundtothegoldsurface.Thecopolypresentsthreefunctionalgroups:thepolymerbackboneinteractingwiththesurface, thependingsilanehydrolysablemonomersthatstabilizingthefilmandthechemicallyactivemonomersallowingthecovalentbindingofbiomolecules.

1.0␮Mconcentration(2.5␮L/cm2 ofcoverslip) wasdissolvedin

thehybridizationbuffer(2×SSC,0.1%SDSand0.2mg/mLBSA)and immediatelyappliedtomicroarrays.Thecomplementary oligonu-cleotidehasthesequence5-TCACTTTTACCTTATAGGTGGGC-3 andislabeledwithbiotinin5position.Thesurfaces,placedina hybridizationchamber,weretransferredtoahumidified incuba-toratatemperatureof65◦Cfor2h.Afterhybridization,theslides werefirstwashedwith4×SSCatroomtemperaturetoremove thecoverslipandthenwith2×SSC/0.1%SDSathybridization tem-peraturefor5min.Thisoperationwasrepeatedtwotimesandwas followedbytwowashingstepswith0.2×SSCand0.1×SSCfor1min atroomtemperature.StreptavidinlabeledbyHRP(HorseRadish Peroxidase)fromJacksonImmunoresearchattheconcentrationof 1␮g/mLinPBSbufferwasappliedtothegoldsurfacefor60min. Aftera shortrinse inPBS andwater, theslides weredried and chemiluminescencewasdeveloped usingtheSuperSignalELISA FemtoMaximumSensitivitykitfromThermoScientificaccording tothemanufacturerinstructions.Thechemiluminescencesignal wasregisteredat0.2sexposuretimeusingahomemadesetup equippedwithaQImagingCCDCamera.

2.6. Surfaceplasmonresonance(SPR)

For SPR experiment, a naked gold sensorchip (Xantech Bioanalytics, Dusseldorf, Germany) was functionalized with copoly(DMA-NAS-MAPS) as follows: the gold chip was treated withoxygenplasmainaPlasmaCleaner,HarrickPlasma(Ithaca, NY,USA)tocleanthesurface.Immediatelyaftertheoxygenplasma treatment,thesensorchipwasdippedinanaqueoussolutionof poly(DMA-NAS-MAPS)inammoniumsulphateat20%ofsaturation levelfor30min,andthenitwasrinsedwithDIwater,driedwith nitrogenflow andcured undervacuumat80◦C for15min.The polymerwasfunctionalizedwithstreptavidinbyspotting1mg/mL solutionofproteindissolvedinPBSusingapiezoelectricspotter

(SciFLEXARRAYER S5; Scienion). The merged spots, printed at 20◦C in an atmosphere of 50% humidity,created a continuous protein film.To promote theprotein attachment,thechip was incubatedovernightinanuncoveredstoragebox,laidinasealed chamber,saturated withsodiumchloride(40g/100mLH2O), at

roomtemperature.Thefunctionalizedsensorchipwaspositioned inaBIAcoreXinstrument(GE-Healthcare,Milwaukee,WI)andthe surfacewasconditionedwith3consecutive1-mininjectionsof1M NaClin50mMNaOHbeforeheparinimmobilization.Biotinylated heparin [100ng/mL in 10mM HEPES buffer pH 7.4 containing 150mMNaCl,3mMEDTA,0.005%surfactantP20(HBS-EP)]was injectedontothecopoly(DMA-NAS-MAPS)functionalized sensor-chipfor4minataflowrateof5␮L/min.Increasingconcentrations ofFGF2inHBS-EPwereinjectedovertheheparinfor4minata flowrateof30␮l/min(toallowtheirassociationwithimmobilized heparin) and then washed until dissociation was observed. A sensorchip coated with streptavidin was used to evaluate the non-specificbindingand for blanksubtraction.Aftereveryrun, thesensorchipwasregeneratedbyinjectionof2MNaCl.Kinetic parameterswerecalculatedbyusingthenonlinearfittingsoftware packageBIAevaluationusingasinglesitemodel.

3. Resultsanddiscussion

3.1. Polymericcoatingcharacterization

A copolymer of dimethylacrylamide, N-hydroxysuccinimide and[3-(methacryloyl-oxy)propyl]trimethoxysilanehasbeenused toform,bydipandrinsecoating,athinfilmonthegoldsurface. ThecopolymerstructureisshowninFig.1,whererelative molec-ularweightsandmolecularweightdistributionsofthecopolymer weredeterminedbygelpermeationchromatography(GPC)in pre-viousworks[20].Ithasthreefunctionalportions:(i)segmentsthat mightinteractwiththesurfacebyweek,noncovalentbonds,van

(4)

D.Pettietal./SensorsandActuatorsB190 (2014) 234–242 237

Fig.2. AFMimageona5␮m×5␮mareaofthefreegold(panela)andpolymer coated(panelb)surface.TheroughnessRMSis0.4and0.6nm.

derWaalsorhydrophobicforces(polymerbackbone-DMA)favored bygoldhydrophobicity,(ii)pendingsilanehydrolysablemonomers thatstabilizesthefilmbypromotingcondensationbetween differ-entchains(MAPS),and(iii)chemicallyactivemonomersthatreact withaminespresentintheproteinlaterchainsallowingthe cova-lentbindingofbiomoleculestothegoldsurface(NAS).Thispolymer formsafilmonanumberofmaterialsofdifferentchemical com-positionsuchasglass[14],siliconoxide[15]andorganicpolymers [21,22].However,thespecificmechanismbywhichthepolymer formsathinlayeronthegoldsurfaceisnotfullyunderstood.

TheAFMimagestakenfromthegoldandpolymermodified sur-facearepresentedinFig.2(panelsaandb,respectively),forthe caseofAu/Cr/Sisamples.Therootmeansquare(RMS)roughnessof thegoldsurfaceisabout0.36nmonanareaof5␮m×5␮m,while thepolymercoatedsurfacepresentsaRMSroughnessof0.60nm. Theminorroughness increase suggestsa uniformand continu-ouspolymericcoatingmimickingthegoldmorphology.InFig.3a a representativenano-scratchimageof thelayerandin Fig.3b somedepthprofiles(takenalongthewhitelines)areshown.Inthe scratchedarea(1␮m×1␮m)aroughnessof0.48nmRMSis recov-ered.ThecomparisonoftheAFMphasecontrast(datanotshown) onthescratchedareaandontheoverlayer,revealsthatthetwo zonesaremadeofdifferentmaterials.Thisprovesthatthescratch hasfullyremovedthepolymericcoating.Fromdepthprofilesof Fig.3b,wecanthenevaluatealayerthicknessd=2.5±0.3nm, con-sistentwiththethicknessevaluatedbyscratchtestsperformed onaSiO2 surfacecoatedwiththesamepolymer[15].An

impor-tantcharacteristicofthispolymericcoatingisitsabilitytoswell inaqueoussolutions.Theswelling,alsopresentinotherpolymers, dependsonthepropertiesofthepolymerofinterestsuchasits molecularweight,aswellastheenvironmentalconditionssuchas temperature,orpH[20].

Fig.3. Panela:4.5␮m×4.5␮mAFMimage ofthesample after scratch;the scratchedareais1␮m2.Panelb:depthprofilesfromthelinesofpanela.The

estimatedpolymerthicknessis2.5±0.3nm,respectively.

The chemical characterization of the polymeric coating has beencarriedoutbyXPS.Widescanstakenoncoatedsamplesshow thecharacteristicpeaksoffourchemicalelements:goldfromthe substrateandcarbon,oxygen,nitrogencomingfromthepolymer. InTable1,theintensityratiosO1s/C1s,andN1s/C1sareshown, afternormalizationtothecrosssection,analyzertransmissionand probingdepth. Tothisscope, wenormalizedthepeak intensity tothefunction f()=*(1−exp(−d/)),where is theelectron escape depth[23]. The surface was analyzed at two collection anglesfromthesamplenormal:0◦and60◦,thelastoneproviding higher surface sensitivitydue to thefinite escape depthof the emittedphotoelectrons.

Table1

RelativeintensitiesofN1s,O1sandC1speakstakenat0◦,60collectionangleand

relativenominalatomicratios(fromthepolymercomposition). Collection angle(◦) N1s/C1s intensityratio O1s/C1s intensityratio XPS 0 0.17±0.02 0.16±0.02 60 0.14±0.02 0.15±0.02 copoly(DMA-NAS-MAPS) composition – 0.19 0.20

(5)

Fig.4.XPSspectrumofC1stakenat0◦(panela)and60(panelb)collectionangle;

thedeconvolutionofthepeaksrevealsthepresenceofthespecificgroupofthe polymer:NC OandCNC O.

Thenitrogenandoxygencontent,evaluatedfromtheintensity

ofthecharacteristicpeaks,are,respectively,17%and16%ofthat

ofthecarbon.Inthesurfacesensitiveconfiguration(60◦collection

angle)thesignalcomingfromN1sdecreasesto14%ofthatofC1s.

Notethatthisdecreaseisclosetothelimitoftheuncertaintyofthe

XPSmeasurement(about10%oftheratiosbetweenconcentrations

ofdifferentelements),butcouldbecompatiblewiththepresence

ofsomeadditionaladventitiouscarbon(e.g.physisorbedCO2)at

thesurface.Theseresultsrevealaslightlyhighercarbon

concen-trationwithrespecttooxygenandnitrogen,whencomparedto

theexpectedatomicratioforthecopolyreportedinTable1(19%

and20%,respectively),whichmaybedueagaintosurfacecarbon contamination.Thiscontaminationarisesmainlytotheextended exposureof thesample toatmospheric environment beforethe measurements.Aroughestimationoftheamountofadventitious carboncanbeobtainedbycomparingthemeasuredandnominal N/CandO/CratiosofTable1:avalueofcontaminantofabout6%of thetotalelementalcompositionisestimated,consistentwithdata obtainedonsimilarfunctionalization[24].

ThedeconvolutionoftheC1speakshowninFig.4allows dis-entanglingthecontributionsfromthedifferentcoordinationsofC atomsinthepolymer.ThefittinghasbeenperformedwithaVoigt line-shapeforeachcomponent,withafixedFWHMof1.56eV.This isconsistentwiththeFWHMoftheC1speakfromadventitious car-bon,previouslymeasuredinthesameexperimentalconditionson othersamples[25].

Fig.5.XPSspectrumofN1s(panela),O1s(panelb)andAu4f(panelc)at60◦

collectionangle;whilethefirsttwospectrashowthefeaturescomingfrom NC O groups,theAu4fpeaklineshapepresentsthetypicalmetalliccharacterofafree gold.

Panel(a)(0◦collectionangle)andpanel(b)(60◦collectionangle) ofFig.4showcommonfeatures.Themainpeak(A1)islocatedat

285.6eVandrepresentsabout63%oftheentireC1ssignal.Asitcan beascribedbothtoadventitiouscarbon(carbonpartiallybounded toO and N [25]) and C C bonds,it cannot beunambiguously

(6)

D.Pettietal./SensorsandActuatorsB190 (2014) 234–242 239

Fig.6.Schemeofthebioassaysurface.

connectedto thepolymercoating. Twoothercontributions are visible in both panels of Fig.4: A2 (286.7eV), which is due to

thepresenceofC OandC N C Ochemicalbonds[26]andA3

(288.4eV)comingfromCO2,NC Oandmethoxy(O CH3)groups.

[26–28]TheexperimentalweightofA2andA3are22%and15%of

thewholeC1speak,respectively,butalsointhiscasetheycanbe onlypartiallyattributedtoCatomswithinthepolymer,duetosome possibleCOand CO2 contaminations contributingtoA2 and A3.

Thesevaluesmustbecomparedwiththepolymerchemical struc-ture,fromwhichtherelativeweightofthedifferentcarbonbonds canbeevaluated.InanominalpolymercoatingC Cbonds (con-tributingtoA1)represent50.5%oftheentirecarbonbonds,C N

andC Obonds(A2)31.5%,whileNC O,O C=O,O CH3 groups

(indicatedasOMeinthepolymerchemicalstructureofFig.1)18.3%. Thediscrepancybetweentheexpectedratiosformthechemical formula and theexperimentalonesis consistentwiththe oxy-genandnitrogendeficiencyfoundinthecompositionanalysisof Table1.Adventitiouscarboncontaminationcanclearlyaccountfor theseresultsandpreventsfromapreciseestimationofthecoating compositionviaquantitativeXPSanalysis.

Finallynotethat,at0◦collectionangle(bottompanelofFig.4), anadditionalfeature(A4)at290eVisneededtofittheC1speak.

Duetotheincreasedprobingdepthatnormalemission,thisfeature canbeattributedtosomecontaminantsfarawayfromthesurface, mostprobablycarbonatesonthebaregoldsurfacewhichcanform duringthecoatinginwetenvironment.

Spectraat60◦collectionangleofN1sandO1s,arepresentedin Fig.5.AlsointhiscasethepeakshavebeendecomposedusingVoigt functionswithfixedFWHMof1.62eVand1.53eV,respectively, [25,26].

TheN1sspectrumpresentstwocharacteristiccontributions:the mainoneat400.7eV(B1),correspondingtoC N CandN C O

bondsfromthepolymer[26]andaminoroneat399.1eV(B2),

cor-respondingtoC Nboundsfromadventitiouscarbon[29].B2isonly

5%oftheentirepeakandcanbeattributedtocontaminationfrom adventitiouscarbon,asalready seenfromC1sspectra deconvo-lution.Regardingoxygen,threefeaturesgiverisetotheO1speak,

butheretheattributionisnotstraightforward.Whilethefeatureat 531.7eV(C1)isdueonlytoNC Ogroups[26],theprominent

con-tributionat533.3eV(C2)canarisefromtheoverlapofthesignals

fromH2O(533.3eV),O CH3 (533.2eV)[28]and C O(533.6eV)

groups[30].Theminorfeatureat534.9eV(C3)mightinsteadbe

duetophysisorbedCO2.Allthesefeatures intheO1speakare

consistentwiththepresenceofthepolymericgroupsfoundfrom thedeconvolutionofN1sandC1speaks,butaquantitative analy-sishereispreventedfromthesuperpositionofthecharacteristic signals.

Inordertoevaluatetheimpactofthepolymercoatingonthe goldsurface,wepresentinFig.5ctheAu4fpeakscollectedat60◦in ordertomaximizethesurfacesensitivity.Thecontinuousline rep-resentsafitperformedusingthelineshapemeasuredontheclean goldsurface,beforedipcoating,inthesameexperimental condi-tions.Theresultsseemtosuggestthatthegoldsurfaceisunchanged upondipcoating,withoutdetectabletracesofoxidization. How-ever,previousstudieshavedemonstratedthattheAusurfacecan beoxidizedbyoxygenplasmatreatments[31],thereforewecannot excludethat,atleastasmallportionofthemethoxysilaneonthe polymermightcondensatewithoxidizedgoldatomsstrengthening thebindingbetweenthepolymerandthesurfacewhich primar-ilyisduetononcovalentinteractions suchasvanderWaalsor hydrophobicforces.

Inconclusion,boththeAFMscratchtestandtheXPSanalysis revealthatacontinuouspolymerisimmobilizedonthesurface. InparticularXPSshowsthepresenceofthecharacteristic chemi-calgroupsfromcopoly(DMA-NAS-MAPS)ontopofagoldsurface preservingitschemicalintegrityuponcoating.

3.2. Hybridizationexperiments

A hybridizationtest wascarried outtoprovethat the func-tionalpolymerbindaminomodifiedoligonucleotideswithgreat efficiency and low background noise. A simple DNA hybridiza-tion experiment was performed to prove that the coating has introducedchemicalreactivegroupsonthegoldsurface.Ascheme

(7)

Table2

Theassociationrate(kon)anddissociationrate(koff)arereportedandthedissociationconstant(Kd)wasderivedfromthekoff/konratio.TheresultsonCarboxymethyldextran

arerepresentativeoftwoindependentexperimentswithsimilarresults.

Functionalization FGF2/heparininteractionkineticparameters: References

kon(s−1M−1) koff(s−1) Kd(nM)

Copoly(DMA-NAS-MAPS) 8.22×104 1.54×10−3 18.0 Presentwork

Carboxymethyldextran 9.0×103 3.8×10−4 42.5 [37]

8.14×103 3.2×10−4 38.0 [38]

ofatypicalarrayexperimentisshowninFig.6.Replicatesofan oligonucleotideligand are spotted onthe polymer coated gold usingapiezoelectricspotter.Afterwashingandblockingthe sur-faceunreactedsites,thearrayisprobedwithasamplecontaining a complementary target oligonucleotide labeled with biotin. A detectionstep withstreptavidinlabeledwithhorse radish per-oxidase(HRP)isthenperformed.Thehybridizationreactionwas revealedbychemiluminescenceusinganenzyme,HRP,that catal-ysestheconversionoftheenhancedchemiluminescentsubstrate intoasensitizedreagentinthevicinityofthemoleculeof inter-est,whichonfurtheroxidationbyhydrogenperoxide,produces atriplet(excited)carbonyl,whichemitslightwhenitdecaysto thesingletcarbonyl.Enhancedchemiluminescenceallows detec-tionofminutequantitiesofabiomolecule.Thestrongsignaltonoise ratiooftheoligonucleotidespotsprovesthatthesurfacebind cova-lentlyamino-modifiedDNAmolecules(Fig.7).Chemiluminescence waschosentopreventfluorescencequenchingthatwould have occurredlabelingtheDNAwithafluorophore[32].Inthisapproach, luminol,oneofthemostwidelyusedchemiluminescentreagents, isoxidizedbyperoxideanditresultsincreationofanexcitedstate productcalled3-aminophthalate.Thisproductdecaystoalower energystatebyreleasingphotonsoflight.Thedistancefromthe surfaceisenoughtopreventquenching.

Finally,toprovethepracticalexploitabilityof copoly(DMA-NAS-MAPS),aSPRassaywassetup.Streptavidinwasimmobilizedtoa copoly(DMA-NAS-MAPS)-functionalizedgoldsensorchipandused tocapturebiotinylatedheparin.Then,heparinimmobilizedtothe goldsurfacewasevaluatedforitscapacitytobindFGF2,oneofthe mostimportantangiogenicgrowthfactorslargelystudiedforits heparin-bindingcapacity[33,34].Injectionof100ng/mLof hep-arinonto a copoly(DMA-NAS-MAPS)/streptavidin-functionalized sensorchip allows the immobilization of 233 resonance units (RU) equal to 17.1fmol/mm2 of heparin. Relevant to note, in

previousexperiments,theinjectionofheparinontostreptavidin

Fig.7. Chemiluminescencesignalsofoligonucleotidespotsafterhybridizationwith complementaryoligonucleotidelabeledwithbiotinfollowedbyincubationwith streptavidinlabeledwithHorseRadishPeroxidase.

Fig.8.SPRanalysisofFGF2/heparininteraction.(A)Sensorgramsshowingthe bind-ingofFGF2(300nM)toacopoly(DMA-NAS-MAPS)-functionalizedgoldlayercoated withstreptavidinalone(hatchedline)orwithstreptavidinandbiotinylated-heparin (straightline).(B)Blank-subtractedsensorgramoverlayshowingthebindingof increasingconcentrationsofFGF2(300,150,75,36,18e9nMfromtoptobottom)to acopoly(DMA-NAS-MAPS)-functionalizedgoldlayercoatedwithstreptavidinand biotinylated-heparin.Inboththepanelstheresponse(inRU)wasrecordedasa functionofbiographiestime.

immobilized toa carboxymethyl dextran-functionalized sensor-chipleadtotheimmobilizationofcomparableamountsofheparin (from5.8to9.5fmol/mm2)[35,36].We thenstudiedthe

capac-ityofcopoly(DMA-NAS-MAPS)/streptavidin-immobilizedheparin tobindFGF2.AsshowninFig.8A,whenimmobilizedtoasurfacevia copoly(DMA-NAS-MAPS)/streptavidin,heparinretainsitscapacity tobindFGF2inaspecificway,asdemonstratedbytheabsenceof interactionwithimmobilizedstreptavidin.Increasing concentra-tionsofFGF2wereinjectedovertheheparinsurfacetoevaluate thekineticparameters ofFGF2/heparininteraction.Asreported inTable2,verysimilarvaluesofdissociation(koff)and

associa-tion(kon)ratesandofdissociationconstant(Kd)canbeobtained

fromthe analysesperformed onto copoly(DMA-NAS-MAPS)-or carboxymethyldextran-functionalizedgoldlayers.

4. Conclusions

Inthispaper,anewmethodforfunctionalizingagoldsurface withcopoly(DMA-NAS-MAPS)ispresented.Thepolymerissimply

(8)

D.Pettietal./SensorsandActuatorsB190 (2014) 234–242 241

deposited by dip coating after an oxygen plasma treatment, followedbywashinginwateranddryingundervacuum.

AFMscratchtestsrevealthepresenceofauniformpolymeric coating with a thickness of 2.5nm. The XPS spectra from C1s N1sandO1slevelspresentthetypicalfingerprintsofthe poly-meric overlayer, i.e. the features arising from NC O and OMe groups.ThechemicalcompositionfoundbyXPSrevealsaslight deficiency ofnitrogen and oxygenwithrespectto carbon.This canbedue toa limited carboncontaminationofthepolymeric coming in wet and atmospheric environment. The analysis of the surface chemical properties of the gold substrate by XPS indicatesnomodificationsinducedbythecoatingprocess.The lim-itedimpactontheAupropertiesseenbyXPSis confirmedalso byfunctional testsperformedonthepolymercoated gold sub-strates.

Indeed,weshowedthecapabilityofthecoatinginthe immo-bilizationofbiomoleculesindifferentexperiments.Inparticular, oligonucleotideswereusedasprobesforthecaptureof comple-mentaryoligonucleotidestrandsdetectedbychemiluminescence. Toassess thepossibilityto usecopoly(DMA-NAS-MAPS) in SPR analysis,heparinwasimmobilizedontothepolymer-coatedgold surfacesofanSPRsensorandevaluatedforitscapacity tobind toFGF2,animportantangiogenicfactor.Threeconsiderationscan bedrawnfromtheresultsoftheseexperiments:(i) copoly(DMA-NAS-MAPS)allowstheimmobilizationofheparininamountthat are comparable (if not higher) to those routinely immobilized ontodifferentcommerciallyavailablecarboxymethyldextran sur-faces(i.e.CM5 andF1sensorchips[37,38]);(ii)inouranalyses, copoly(DMA-NAS-MAPS) turned out tobe devoid of significant bindingcapacity,asshownbytheverylowlevelofaspecific bind-ingofFGF2toacopoly(DMA-NAS-MAPS)surfacedevoidofheparin (seeFig.8A);(iii)thespecificbindingofFGF2to copoly(DMA-NAS-MAPS)-immobilizedheparinoccurswithkineticparametersthat arecomparabletothosemeasuredontocommerciallyavailable car-boxymethyldextransurfaces(Table2).Thisisatvariancewiththe highersimplicityandrobustnessoftheprocessweintroducedin thispaper,whichcouldfindapplicationsinmanydifferent bio-chemicalprocedures.

Acknowledgements

ThisworkwaspartiallysupportedbyFondazioneCariplovia the project SpinBioMed (Project No. 2008.2330). M. R and A. B.acknowledgeMinistero dell’Istruzione,dell’Universita’edella Ricerca,IstitutoSuperiorediSanita’(AIDSProject),andFondazione CARIPLO(projectNo.2008.2198)forfinancialsupport.

References

[1]J.D.Hoheisel,Microarraytechnology:beyondtranscriptprofilingandgenotype analysis,Nat.Rev.Gen.7(2006)200–210.

[2]M.C.Pirrung,HowtomakeaDNAchip,Angew.Chem.Int.Ed.41(2002) 1276–1289.

[3]R.L.Rich, D.G.Myszka,Higher-throughput,label-free,real-timemolecular interactionanalysis,Anal.Biochem.361(2007)1–6.

[4]N.J.Ronkainen,H.BrianHalsall,W.R.Heineman,Electrochemicalbiosensors, Chem.Soc.Rev.39(2010)1747–1763.

[5]V. Dugas, A. Elaissari, Y. Chevalier, Book section surface sensitiza-tion techniques and recognition receptors immobilization onbiosensors and microarrays, in:M. Zourob (Ed.), Recognition Receptors in Biosen-sors, XIV, 1st ed., Springer, New York, 2010, pp. 47–134 (849 p.) http://dx.doi.org/10.1007/978-1-4419-0919-02

[6]M.Viganò,R.Suriano,M.Levi,S.Turri,M.Chiari,F.Damin,Glass silaniza-tionwithblocked-isocyanateforfabricationofDNAmicroarrays,Surf.Sci.601 (2007)1365–1370.

[7]V.C.Martins,F.A.Cardoso,J.Germano,S.Cardoso,L.Sousa,M.Piedade,P.P. Freitas,L.P.Fonseca,Femtomolarlimitofdetectionwithamagnetoresistive biochip,Biosens.Bioelectron.24(2009)2690.

[8]A.Ulman,Formationandstructureofself-assembledmonolayers,Chem.Rev. 96(1996)1533–1554.

[9]J.C.Love,L.A.Estroff,J.K.Kriebel,R.G.Nuzzo,G.M.Whitesides,Self-assembled monolayersofthiolatesonmetalsasaformofnanotechnology,Chem.Rev.105 (2005)1103–1170.

[10]A.B.Steel,T.M.Herne,M.J.Tarlov,ElectrochemicalquantitationofDNA immo-bilizedongold,Anal.Chem.70(1998)4670–4677.

[11]D. Shenoy,W. Fu, J. Li,C. Crasto, G. Jones, C.Di Marzio, S.Sridhar, M. Amiji,Surfacefunctionalizationofgoldnanoparticlesusinghetero-bifunctional poly(ethyleneglycol) spacerfor intracellulartrackinganddelivery,Int.J. Nanomed.1(2006)51–57.

[12]T.M.Herne,M.J.Tarlov,CharacterizationofDNAprobesimmobilizedongold surfaces,J.Am.Chem.Soc.119(1997)8916–8920.

[13]C.-Y.Lee,H.E.Canavan,L.J.Gamble,D.G.Castner,Evidenceofimpuritiesin thi-olatedsingle-strandedDNAoligomersandtheireffectonDNAself-assembly ongold,Langmuir21(2005)5134–5141.

[14]G.Pirri,F.Damin,M.Chiari,E.Bontempi,L.E.Depero,Characterizationofa polymericadsorbedcoatingforDNAmicroarrayglassslide,Anal.Chem.76 (2004)1352–1358.

[15]M.Cretich,G.DiCarlo,R.Longhi,C.Gotti,N.Spinella,S.Coffa,C.Galati,L. Renna,M.Chiari,Highsensitivityproteinassaysonmicroarraysiliconslides, Anal.Chem.81(2009)5197–5203.

[16]A.Isacchi, M.Statuto, R. Chiesa, L. Bergonzoni, M. Rusnati, P. Sarmien-tos, G. Ragnotti, M. Presta, A six-amino acid deletion in basic fibro-blastgrowth factordissociates itsmitogenic activity from its plasmino-gen activator-inducing capacity, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 2628–2632.

[17]L.Sola,M.Chiari,Modulationofelectroosmoticflowincapillary electrophore-sisusingfunctionalpolymercoatings,J.Chromatogr.A1270(2012)324–329, http://dx.doi.org/10.1016/j.chroma.2012.10.039.

[18]P.Bergese,E.Bontempi,M.Chiari,P.Colombi,F.Damin,L.E.Depero,G.Oliviero, G.Pirri,M.Zucca,Investigationofabiofunctionalpolymericcoatingdeposited ontosiliconmicrocantilevers,Appl.Surf.Sci.253(2007)4226–4231. [19]R.Bertacco,M.Cantoni,M.Riva,A.Tagliaferri,F.Ciccacci,Epitaxialgrowthand

characterizationoflayeredmagneticnanostructures,Appl.Surf.Sci.252(2005) 1754.

[20](a)A.Yalc¸in,F.Damin,E.Özkumur,G.diCarlo,B.B.Goldberg,M.Chiari,M.S. Ünlü,Directobservationofconformationofapolymericcoatingwith implica-tionsinmicroarrayapplications,Anal.Chem.81(2009)625–630;

(b)R.Suriano,M.Levi,G.Pirri,F.Damin,M.Chiari,S.Turri,Surfacebehavior andmolecularrecognitioninDNAmicroarraysfromN,N-dimethylacrylamide terpolymerswithactivatedestersaslinkinggroups,Macromol.Biosci.6(2006) 719–729.

[21]A.Ohlander,C.Zilio,T.Hammerle,S.Zelenin,G.Klink,M.Chiari,K.Bock,A. Rus-som,Genotypingofsinglenucleotidepolymorphismsbymeltingcurveanalysis usingthinfilmsemi-transparentheatersintegratedinalab-on-foilsystem,Lab Chip13(2013)2075–2082.

[22]M.Cretich,V.Sedini,F. Damin,M.Pelliccia,L.Sola,M.Chiari,Coatingof nitrocelluloseforcolorimetricDNAmicroarrays,Anal.Biochem.397(2010) 84–88.

[23]Thisnormalizationprocedurewouldberigorouslycorrectforafilmwhose thicknessismuchlargerthantheelectronescapedepth,whichisclearlynot thecasehere.Fromtheapproximateformula=0.XYE1/2validforinorganic

compounds[M.P.SeahandW.A.Dench,Quantitativeelectronspectroscopyof surfaces:astandarddatabaseforelectroninelasticmeanfreepathsinsolids, Surf.InterfaceAnal.1(1979)2]forC1s,N1sandO1selectronsweemployed anescapedepthof31 ´˚A,30 ´˚A,28 ´˚A,respectively,whichcorrespondsto=0.9 E1/2.

[24]G. Di Carlo,F. Damin,L. Armelao, C. Maccato, S.Unlu, P.S.Spuhler, M. Chiari,Synthesisandconformationalcharacterizationoffunctionaldi-block copolymerbrushesformicroarraytechnology, Appl.Surf.Sci. 258(2012) 3750–3756.

[25]D. Petti, M. Cantoni, M. Leone, R. Bertacco, E. Rizzi, Activation of Zr-Co-rare earth getter films: an XPS study, Appl. Surf. Sci. 256 (2010) 6291–6296.

[26]I.F.Amaral,P.L.Ggranja,M.A.Barbosa,Chemicalmodificationofchitosanby phosphorylation:anXPS,FT-IRandSEMstudy,J.Biomater.Sci.Polym.Ed.16 (2005)1575–1593.

[27]Ch.Ammon,A.Bayer,G.Held,B.Richter,Th.Schmidt,H.-P.Steinrück, Dis-sociationandoxidationofmethanolonCu(110),Surf.Sci.507–510(2002) 845–850.

[28]Z.Zhang,Q.Fu,H.Zhang,Y.Li,Y.Yao,D.Tan,X.Bao,Enhancedmethanol dissociationonnanostructured2DAloverlayers,J.Phys.Chem.C111(2007) 13524–13530.

[29]B.Lindberg,R.Maripuu,K.Siegbahn,R.Larsson,C.G.Golander,J.C.Eriksson, ESCAstudiesofheparinizedandrelatedsurfaces:1.Modelsurfacesonsteel substrates,J.Colloid.InterfaceSci.95(1983)308.

[30]HandbookofX-rayPhotoelectronSpectroscopy,Parkin-ElmenerCorp.,Eden PraireMinnesota(USA),1992.

[31]H.Ron,I.Rubinstein,Alkanethiolmonolayersonpreoxidizedgold. Encap-sulationofgold oxideunder anorganic monolayer,Langmuir10 (1994) 4566–4573.

[32]G.P.Acuna,M.Bucher,I.H.Stein,C.Steinhauer,A.Kuzyk,P.Holzmeister,R. Schreiber,A.Moroz,F.D.Stefani,T.Liedl,F.C.Simmel,P.Tinnefeld,Distance dependenceofsingle-fluorophorequenchingbygoldnanoparticlesstudieson DNAorigami,ACSNano6(2012)3189–3195.

[33]B.Casu,M.Guerrini,A.Naggi,M.Perez,G.Torri,D.Ribatti,P.Carminati,G. Gian-nini,S.Penco,C.Pisano,etal.,Shortheparinsequencesspacedbyglycol-split

(9)

uronateresiduesareantagonistsoffibroblastgrowthfactor2andangiogenesis inhibitors,Biochemistry41(2002)10519–10528.

[34]B.Casu,M.Guerrini,S.Guglieri,A.Naggi,M.Perez,G.Torri,G.Cassinelli,D. Ribatti,P.Carminati,G.Giannini,etal.,Undersulfatedandglycol-splitheparins endowedwithantiangiogenicactivity,J.Med.Chem.47(2004)838–848. [35]M.Donalisio,M.Rusnati,A.Civra,A.Bugatti,D.Allemand,G.Pirri,A.Giuliani,

S.Landolfo,D.Lembo,Identificationofadendrimericheparansulfate-binding peptidethatinhibitsinfectivityofgenitaltypesofhumanpapillomaviruses, Antimicrob.AgentsChemother.54(2010)4290–4299.

[36]A.Bugatti,P.Chiodelli,J.Rosenbluh,A.Loyter,M.Rusnati,BSAconjugates bearingmultiplecopiesofthebasicdomainofHIV-1Tat:prototypeforthe developmentofmultitargetinhibitorsofextracellularTat,Antivir.Res.87 (2010)30–39.

[37]M.Presta,P.Oreste,G.Zoppetti,M.Belleri,E.Tanghetti,D.Leali,C.Urbinati, A.Bugatti,R.Ronca,S.Nicoli,E.Moroni,H.Stabile,M.Camozzi,G.A. Her-nandez,S.Mitola,P.Dell’Era,M.Rusnati,D.Ribatti,Antiangiogenicactivity ofsemisyntheticbiotechnologicalheparins:low-molecular-weight-sulfated Escherichia coliK5 polysaccharidederivativesasfibroblastgrowthfactor antagonists,Arterioscler.Thromb.Vasc.Biol.25(2005)71–76.

[38]A.Bugatti,C.Giagulli,C.Urbinati,F.Caccuri,P.Chiodelli,P.Oreste,S.Fiorentini, A.Orro,L.Milanesi,P.D’Ursi,A.Caruso,M.Rusnati,Biochemical characteriza-tionofHIV-1matrixproteinp17interactionwithheparin,J.Biol.Chem.288 (2013)1150–1161.

Biographies

DanielaPettireceivedB.S.andM.S.degreesinPhysicsEngineeringfromPolitecnico diMilanoin2004and2006.In2010sheobtainedherPhDinPhysicsfromPolitecnico diMilano,wheresheisactuallyAssistantProfessorinthePhysicsDepartment.She isco-authorofmorethan25researchpapersand2patents.Shestartedheractivity inthefieldofspintronics.Currently,themainresearchactivityisrelatedtothe applicationsofnanomagnetismtobiologyandmedicine.Herinterestsincludethe developmentofmagneticplatformsforbiosensingandforonchipfinemanipulation offunctionalizedmagneticnanoparticlesforin-vitroapplications.

AndreaTortireceivedB.S.,M.S.degreesinPhysicsEngineeringandPhDinPhysics fromPolitecnicodiMilanoin2006,2009and2013,respectively.Atthebeginning of2013hejoinedtheElectronicDepartmentofPolitecnicodiMilanotoworkon theintegrationofbiosensorsandCMOStechnology.Actually,heisTechnicalDevice EngineeratSTMicroelectronics,AgrateBrianza(Italy).Hestartedhisactivityinthe fieldofNanomagnetismandNanomedicine.Currentlyhisresearchinterestsarein thesmartpowerintegrateddevicesfield.

FrancescoDaminwasbornin1971inBustoArsizio(VA,Italy),graduatedin Bio-logicalScience,specialtyMolecularBiology,atUniversitàdegliStudidiMilanoin 1998.HewasrecipientofseveralfellowshipsandresearchcontractsfromICRM, C.N.R.wherehewasappointedResearchScientistin2011.Hisresearchinterests, documentedbymorethan35publicationsonpeer-reviewedjournalsandseveral communicationsatcongresses,dealwiththedevelopmentofsurfacestothe anal-ysesofDNAandproteinswiththemicroarraytechnology.

LauraSolaearnedherM.S.DegreeinChemistryandPharmaceutical Technolo-giesandherPh.D.inDrugChemistryatUniversityofMilanin2008and2012, respectively.Shecurrentlyholdsapost-doctoralappointmentattheInstituteof

ChemistryforMolecularRecognition,CNRwhereshedevelopsnovelpolymeric coatingsforimmobilizingbiomoleculesandtechniquesformolecularrecognition onsupportsmadeofvariousmaterials.Theseareusedinbiomedicalapplications ofbiosensorsandLabonChipanalysis.Lauraspecializesinchemicalsynthesis ofmonomers,polymersandlinearmatricesforDNA,DNAsequencingby cap-illaryelectrophoresisandnovel capillarypolymercoatingsenablingimproved analysis.

MarcoRusnatigainedhis degree attheInstituteof Biochemistry,University ofMilan,Italy,in1985.Heisnowassociatedprofessor,Sectionof Experimen-talOncologyandImmunology,UniversityofBrescia.Hisresearchesfocusedon: 1983–85:purificationandbiochemicalcharacterizationofd-aminoacidoxidase. 1986–1992:purificationofangiogenicfactors,identificationoftheirfunctional domains.1992–present: interaction ofangiogenic factors with receptors and extracellularbinders.1996–present:biologicalactivityofHIV-1Tat,studyofits interactionwithreceptorsandextracellularbinders.2001–present:studyof inter-actionsofviralproteinsbysurfaceplasmonresonance.Heisauthorof110scientific publicationsinpeer-reviewedjournals.

EdoardoAlbisettiobtained B.S.andM.S.degreesinPhysicsEngineeringfrom Politecnico di Milano in 2008 and 2010. Currently, he is a PhD student in the Physics Department of Politecnico di Milano. His research activity mainlyconcerns thedevelopmentofspintronicdevices andtheir application in biology. In this framework, he developed a sensing platform based on magnetoresistivesensors fordetection ofmolecularrecognition events anda system based onmagnetic domain wallconduits for providing localmixing ofsolutionsin microfluidic systems.Magneticdomainwallconduits are also usedforultra-finespatial manipulationofmagnetic nanoparticlesforin-vitro applications.

AntonellaBugattiobtainedherB.S.degreeinBiomedicalLaboratoryTechnician fromUniversityofVerona.Since2006sheisResearchfellowattheUnitof Exper-imentalOncologyandImmunology,UniversityofBrescia.Sheisco-authorof25 scientificpublicationsinpeer-reviewedjournals.Herexpertiseisrelatedtocell andmolecularbiologyassays,protein-proteininteraction(SPRtechnology),in-vitro assays(endothelialcellproliferation,migration,invasionandmorphogenesis).Her researchinterestsareassociatedtothestudyofprotein-proteininteractionby sur-faceplasmonresonance.

RiccardoBertaccogothisdegreeinElectronicEngineeringatPolitecnicodiMilano in1994.HeobtainedapermanentpositionatthePhysicsDepartmentofPolitecnico diMilanoin1999andthePhDinPhysicsin2000.Actually,heisAssociateProfessor atthePhysicsDepartmentofPolitecnicodiMilano,whereheleadsthe NanoBiotech-nologyandSpintronicsgroupoftheLNESScenter.Heisthetechnicalresponsible fortherealizationofanewclean-roomformicroandnanofabricationatPolitecnico diMilano.Heisauthorofabout100papersininternationaljournals,achapterofa bookand6patentapplications.

MarcellaChiarigraduatedinChemistryandPharmaceuticalTechniquesatthe Isti-tutodiChimicaOrganica,FacoltàdiMedicina,UniversitàdiMilanoin1982.She receivedtheDiplomainClinicalBiochemistry,UniversitàdiMilanoin1990.Since 1992shehasbeenSeniorResearcherattheICRM,CNR,wheresheleadsthe labora-tory“DevelopmentofAnalyticalMicrosystems¨.Herresearchactivityisdocumented bymorethan100publicationsandseveralpatents.Shehasbeenacontractorof theECintheframeworkofdifferentprojectsandresponsibleforseveralnational researchprograms.

Figura

Fig. 1. structure of the copoly(DMA-NAS-MAPS) bound to the gold surface. The copoly presents three functional groups: the polymer backbone interacting with the surface, the pending silane hydrolysable monomers that stabilizing the film and the chemically ac
Fig. 2. AFM image on a 5 ␮m × 5 ␮m area of the free gold (panel a) and polymer coated (panel b) surface
Fig. 5. XPS spectrum of N1s (panel a), O1s (panel b) and Au 4f (panel c) at 60 ◦
Fig. 6. Scheme of the bioassay surface.
+2

Riferimenti

Documenti correlati

In questo lavoro si cerca di mettere in relazio- ne i bisogni dell’individuo con le risposte di svi- luppo del territorio nella logica di tradurre in realtà l’apprendimento

Con la misura dei pagamenti agro-ambientali del Piano di Sviluppo Rurale 2007-2013, inserita nell’asse II ―Miglioramento dell’ambiente e dello spazio rurale‖, all’interno

implementing the group problem-solving process, the members merge their effort to solve the task 131.. [ 21 ]. Mainly, four factors can affect the outcomes of the group

The aim of this thesis work was to modify one of most versatile way to obtain nanoparticle imbedded into polymer matrices in order to better control the physical properties

In this short and far from exhaustive article I have tried to show what old maps, especially nineteenth-century maps, can provide in terms of knowledge and how they can be used in

Nel contributo ho inteso evidenziare, pur con finalità non esaustive, uanto la cartografia storica, in particolar modo ottocentesca, possa offrire in termini

Abbreviations of lithostratigraphic units: TIT, Tithonian limestones; GRA, Cime de la Graye Limestone; CLA, Clarissia Formation; GV, Grès Verts (GVa, lower interval; GVb,

Bile acids activated receptors, tissue distribution, and ligands Receptors Tissue Distribution Vascular Expression Natural Bile Acid Ligands Synthetic Bile Acid Derivatives