• Non ci sono risultati.

Neutron spectroscopy of 26Mg states: Constraining the stellar neutron source 22Ne(α,n) 25Mg

N/A
N/A
Protected

Academic year: 2021

Condividi "Neutron spectroscopy of 26Mg states: Constraining the stellar neutron source 22Ne(α,n) 25Mg"

Copied!
7
0
0

Testo completo

(1)

2017

Publication Year

2020-08-27T11:33:20Z

Acceptance in OA@INAF

Neutron spectroscopy of 26Mg states: Constraining the stellar neutron source

þÿ22Ne(±,n) 25Mg

Title

Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; et al.

Authors

10.1016/j.physletb.2017.02.025

DOI

http://hdl.handle.net/20.500.12386/26872

Handle

PHYSICS LETTERS. SECTION B

Journal

768

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Neutron

spectroscopy

of

26

Mg

states:

Constraining

the

stellar

neutron

source

22

Ne(

α

,

n)

25

Mg

C. Massimi

a

,

b

,

,

S. Altstadt

c

,

J. Andrzejewski

d

,

L. Audouin

e

,

M. Barbagallo

f

,

V. Bécares

g

,

F. Beˇcváˇr

h

,

F. Belloni

i

,

E. Berthoumieux

i

,

J. Billowes

j

,

S. Bisterzo

k

,

l

,

D. Bosnar

m

,

M. Brugger

n

,

M. Calviani

n

,

F. Calviño

o

,

D. Cano-Ott

g

,

C. Carrapiço

p

,

D.M. Castelluccio

a

,

F. Cerutti

n

,

E. Chiaveri

i

,

L. Cosentino

r

,

M. Chin

n

,

G. Clai

a

,

q

,

N. Colonna

f

,

G. Cortés

o

,

M.A. Cortés-Giraldo

s

,

S. Cristallo

t

,

M. Diakaki

u

,

C. Domingo-Pardo

v

,

I. Duran

w

,

R. Dressler

x

,

C. Eleftheriadis

y

,

A. Ferrari

n

,

P. Finocchiaro

r

,

K. Fraval

i

,

S. Ganesan

z

,

A.R. García

g

,

G. Giubrone

v

,

I.F. Gonçalves

p

,

E. González-Romero

g

,

E. Griesmayer

aa

,

C. Guerrero

n

,

F. Gunsing

i

,

A. Hernández-Prieto

n

,

o

,

D.G. Jenkins

ab

,

E. Jericha

aa

,

Y. Kadi

n

,

F. Käppeler

ac

,

D. Karadimos

u

,

N. Kivel

x

,

P. Koehler

ad

,

M. Kokkoris

u

,

S. Kopecky

ae

,

M. Krtiˇcka

h

,

J. Kroll

h

,

C. Lampoudis

i

,

C. Langer

c

,

E. Leal-Cidoncha

w

,

C. Lederer

af

,

H. Leeb

aa

,

L.S. Leong

e

,

S. Lo Meo

a

,

q

,

R. Losito

n

,

A. Mallick

z

,

A. Manousos

y

,

J. Marganiec

d

,

T. Martínez

g

,

P.F. Mastinu

ag

,

M. Mastromarco

f

,

E. Mendoza

g

,

A. Mengoni

q

,

P.M. Milazzo

ah

,

F. Mingrone

a

,

b

,

M. Mirea

ai

,

W. Mondelaers

ae

,

A. Musumarra

r

,

C. Paradela

w

,

A. Pavlik

af

,

J. Perkowski

d

,

M. Pignatari

aj

,

L. Piersanti

t

,

A. Plompen

ae

,

J. Praena

s

,

J.M. Quesada

s

,

T. Rauscher

ak

,

al

,

R. Reifarth

c

,

A. Riego

o

,

M.S. Robles

w

,

C. Rubbia

n

,

M. Sabaté-Gilarte

s

,

R. Sarmento

p

,

A. Saxena

z

,

P. Schillebeeckx

ae

,

S. Schmidt

c

,

D. Schumann

x

,

G. Tagliente

f

,

J.L. Tain

v

,

D. Tarrío

w

,

L. Tassan-Got

e

,

A. Tsinganis

n

,

S. Valenta

h

,

G. Vannini

a

,

b

,

I. Van Rijs

ak

,

V. Variale

f

,

P. Vaz

p

,

A. Ventura

a

,

M.J. Vermeulen

ab

,

V. Vlachoudis

n

,

R. Vlastou

u

,

A. Wallner

am

,

T. Ware

j

,

M. Weigand

c

,

C. Weiß

aa

,

R. Wynants

ae

,

T. Wright

j

,

P. Žugec

m

aIstitutoNazionalediFisicaNucleare,Bologna,Italy

bDipartimentodiFisicaeAstronomia,UniversitàdiBologna,Italy cJohann-Wolfgang-GoetheUniversität,Frankfurt,Germany dUniwersytetŁódzki,Lodz,Poland

eInstitutdePhysiqueNucléaire,CNRS-IN2P3,Univ.Paris-SudetParis-Saclay,91406OrsayCedex,France fIstitutoNazionalediFisicaNucleare,Bari,Italy

gCentrodeInvestigacionesEnergeticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain hCharlesUniversity,Prague,Czechia

iCommissariatàl’ÉnergieAtomique(CEA)Saclay- Irfu,Gif-sur-Yvette,France jUniversityofManchester,OxfordRoad,Manchester,UK

kINAF- OsservatorioastrofisicodiTorino,Torino,Italy

lJINA(JointInstituteofNuclearAstrophysics),UniversityofNotreDame,IN46556,USA mDepartmentofPhysics,FacultyofScience,UniversityofZagreb,Croatia

nEuropeanOrganizationforNuclearResearch(CERN),Geneva,Switzerland oUniversitatPolitecnicadeCatalunya,Barcelona,Spain

pInstitutoTecnológicoeNuclear,InstitutoSuperiorTécnico,UniversidadeTécnicadeLisboa,Lisboa,Portugal qAgenzianazionaleperlenuovetecnologie,l’energiaelosviluppoeconomicosostenibile(ENEA),Bologna,Italy rIstitutoNazionalediFisicaNucleare,LaboratoriNazionalidelSud,Italy

sUniversidaddeSevilla,Spain

tINAF- OsservatorioAstronomicodiCollurania,Teramo,Italy uNationalTechnicalUniversityofAthens(NTUA),Greece

*

Correspondingauthor.

E-mailaddress:cristian.massimi@bo.infn.it(C. Massimi). http://dx.doi.org/10.1016/j.physletb.2017.02.025

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

2 C. Massimi et al. / Physics Letters B 768 (2017) 1–6

vInstitutodeFísicaCorpuscular,CSIC-UniversidaddeValencia,Spain wUniversidadedeSantiagodeCompostela,Spain

xPaulScherrerInstitut,VilligenPSI,Switzerland yAristotleUniversityofThessaloniki,Thessaloniki,Greece zBhabhaAtomicResearchCentre(BARC),Mumbai,India aaAtominstitut,TechnischeUniversitätWien,Austria abUniversityofYork,Heslington,York,UK

acKarlsruheInstituteofTechnology,CampusNord,InstitutfürKernphysik,Karlsruhe,Germany adDepartmentofPhysics,UniversityofOslo,N-0316Oslo,Norway

aeEuropeanCommissionJRC,InstituteforReferenceMaterialsandMeasurements,Retieseweg111,B-2440Geel,Belgium afUniversityofVienna,FacultyofPhysics,Austria

agIstitutoNazionalediFisicaNucleare,LaboratoriNazionalidiLegnaro,Italy ahIstitutoNazionalediFisicaNucleare,Trieste,Italy

aiHoriaHulubeiNationalInstituteofPhysicsandNuclearEngineering- IFINHH,Bucharest- Magurele,Romania ajE.A.MilneCentreforAstrophysics,Dept.ofPhysics&Mathematics,UniversityofHull,UnitedKingdom akDepartmentofPhysics- UniversityofBasel,Basel,Switzerland

alCentreforAstrophysicsResearch,UniversityofHertfordshire,HatfieldAL10 9AB,UnitedKingdom

amDepartmentofNuclearPhysics,ResearchSchoolofPhysicsandEngineering,TheAustralianNationalUniversity,Canberra,Australia

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received7July2016

Receivedinrevisedform9February2017 Accepted12February2017

Availableonline16February2017 Editor:V.Metag

Keywords: s Process

α+22Ne

Neutronspectroscopy

This workreports onaccurate, high-resolutionmeasurements ofthe 25Mg(n,

γ

)26Mg and 25Mg(n,tot)

cross sections inthe neutronenergyrangefromthermal to about300 keV, leading toasignificantly improved25Mg(n,

γ

)26Mgparametrization.Therelevantresonancesforn+25Mgwerecharacterizedfrom

a combined R-matrix analysis ofthe experimental data. Thisresulted in anunambiguous spin/parity assignmentofthecorrespondingexcitedstatesin26Mg.Withthisinformationexperimentalupperlimits ofthereactionratesfor22Ne(

α

,n)25Mgand 22Ne(

α

,

γ

)26Mgwereestablished,potentiallyleadingtoa

significantlyhigher(

α

,n)/(

α

,

γ

)ratio thanpreviouslyevaluated.Theimpact oftheseresultshas been studiedforstellarmodelsinthemassrange2to25M.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The stellar nucleosynthesis of elements heavier than iron oc-cursvia neutron capturereactionsandsubsequent

β

decays.The so-calledslowneutroncaptureprocessors process[1]takesplace inlowandintermediate massstarsduring theirAsymptoticGiant Branch (AGB) phase. An additional s-process contribution comes in thehelium-burning coreandsubsequent carbon-burning shell phasesofmassivestars.The22Ne(

α

,

n)25Mgreactionconstitutesa majorneutronsourceforthes process.InAGBstars,thissourceis activatedduring aseries ofconvectiveHe-shell burningepisodes, so-called thermal pulses, with temperatures as high as 400 MK (more than30 keVthermalenergy).Although itcontributesonly about 5% to the total neutron budget, this scenario determines thefinal abundance pattern. Hence, itis decisivefor deriving in-formation on neutron density, temperature, and pressure in the He-burninglayers of AGBstars [1].In massivestars, where ther-malenergiesof25and90keVarereachedduringtheHe-coreand C-shellburningphases,theneutronbudgetisbyfardominatedby the22Ne(

α

,

n)25Mgreaction.

The 22Ne(

α

,

n)25Mg cross section in the temperature regime ofthe s process isaffectedby unknown resonancecontributions. Alsothecompeting22Ne(

α

,

γ

)26Mgreaction,whosecrosssection isalso insufficientlyknown,addsto thepersistentuncertainty of the neutron budget and the associated neutron densities during stellarnucleosynthesis.The (

α

,

γ

) reactioncontributesto the de-structionof22Neduring theentireheliumburningphasebecause ofitspositive Q -value of10.615MeV, alreadybeforethe thresh-old for neutron production via 22Ne(

α

,

n)25Mg ( Q

= −

478 keV) is reached. In this context, the 25Mg(n

,

γ

)26Mg reaction plays a non-negligibleroleaswell,becausethehighs abundanceof25Mg makesitasignificantneutronpoisonforthes process.Sofar,this reactionrateistoouncertainforaquantitative assessmentofthe poisoningeffect[2].

Experimentaldataforthe22Ne(

α

,

n)25Mgcrosssectionare es-sentially limited to

α

energies above about 800 keV. At lower energiesthemostrecentdirectmeasurements[3–5]providedonly an upperlimit ofabout10−11 barn,corresponding tothe experi-mental sensitivity.The lowest resonanceobserved in direct mea-surementsisatELab

α

=

832

±

2 keV (e.g. Ref.[4]).

2. Indirectapproach

Since a direct approach is exceedingly difficult, indirect and transfer reactionswere considered asan alternativewayfor con-straining the reaction rate at low energies. For instance, the

α

-transfer reaction 22Ne(6Li, d)26Mg has been studied [5–7] to search for levels in 26Mg also below the neutron threshold at 11.093 MeV.Thesestudiesare particularlyrelevantforestimating the 22Ne(

α

,

γ

)26Mgrate, wherelevels belowandabove the neu-tron thresholdareinvolved.Direct22Ne(

α

,

γ

)26Mgmeasurements have onlybeencarried outabove 0.8MeV. Inview ofthe scarce experimental information, evaluations had, therefore, to rely on theoretical estimates. Accordingly, the uncertainties of the stellar 22Ne(

α

,

n)25Mg and 22Ne(

α

,

γ

) rates are still dominated by un-known propertiesofstatesinthecompoundnucleus26Mgabove the

α

thresholdat10.615MeV.

As indicated in Fig. 1, these states can be studied via neu-tron resonance spectroscopy ofn

+

25Mg. In particular, a simulta-neousresonanceshape analysisoftotalandcapturecrosssection data can be used to determine the resonance energies, ER, spin

parities, J π ,as well as the capture andneutron widths



γ and



n [8].Informationfromprevious 25Mg(n

,

γ

)26Mgmeasurements

suffers from considerable uncertainties due to sample problems and countingstatistics. Moreover, theavailable transmission data havebeenobtainedwithnaturalMgsamples,aseriouslimitation in view of the dominant abundance of 24Mg in natural

(4)

magne-Fig. 1. Levelscheme(nottoscale)of26Mgwith theentrance channels22Ne+α

andn+25Mgandtheexitchannel26Mg+γ.Excitedstatesin26Mgwith natural

parity(0+,1−,2+,. . .)andenergiesbelowELab

α =850 keV (inred)canbe stud-iedvianeutronresonancespectroscopyofn+25Mgasindicatedbytheschematic 25Mg(n,γ)26Mgcrosssection.(Coloronline.)

sium.Thecorrespondingdifferencesbetweenpresentandprevious transmissionresultsarediscussedinRef.[9].

3. Measurementsofn

+

25Mg

This work on n

+

25Mg combined two neutron time-of-flight measurements, using the CERN-n_TOF facility [10] for the (n

,

γ

) channelandtheGELINAacceleratoratIRMM/Geel[11]forthetotal crosssection. Toavoid thelimitations ofprevious attempts, both measurements were carried out with highly enriched, metallic samples(97.87%25Mg).Then_TOFfacility,whichprovidesawhite neutron spectrum from thermal energy to about 1-GeV neutron energy,was chosenbecauseitisparticularlywellsuitedfor accu-ratehigh-resolutionneutronmeasurementsduetoitsoutstanding instantaneousneutronflux (about106 neutronsper bunchatthe experimental area) andthe very long flight-path of 185 m. The experimentalsetupwas basedontwo deuteratedbenzene(C6D6) scintillation detectors (cylindrical cells withan active volume of about1 liter),placedoneither sideoftheneutron beam,9.0cm upstream of the sample. These detectors are characterized by a verysmall neutronsensitivity. The chosen geometrical configura-tionminimized thebackground dueto scatteredin-beam

γ

rays andreduced systematic effects due to the anisotropy in the an-gulardistribution fromprimary

γ

-rays following p-waveneutron resonances.Thetotalnumberofneutronsimpingingonthevarious samplesusedinthemeasurementwasdeterminedbymeansofa low-mass,6Li-based, neutron detector[12],while theenergy de-pendenceoftheneutronfluxderivedfromadedicatedstudy[13]. Thewell-establishedtotal energydetectionprinciple in combina-tionwith thepulseheight weighting technique [14] was applied tomakethe detectionefficiencyforacaptureeventdirectly pro-portionaltothetotal

γ

-rayenergyavailable inthecaptureevent. Moreoverthesaturatedresonancetechnique[14]wasusedto nor-malize the capture data. The measurement covered the energy rangefromthermalenergytoabout300keVwitharesolutionof 0.05%to0.3%intherelevantenergyrangebetween1and300keV. The total cross section of n

+

25Mg was measured witha 6 Li-glassdetectoratthe50mstationoftheGELINAfacilityfor ener-giesuptoabout300keV.AcombinationofLi-carbonateplusresin, PbandCu-collimatorswas usedtoreducetheneutronbeamtoa diameter of less than 35 mm at the sample position. The sam-ple was placed in an automatic sample changer ata distanceof 23.78m fromtheneutronsource. Closetothe sample positiona

10B anti-overlapfilterwasplacedtoabsorbslowneutrons froma previousburst.Inordertohaveawell-characterizedmeasurement condition,permanentNaandCoblackresonancefilters[14]were used to continuously monitor the background at 2.85 keV and 132 eV.Additional blackresonancefilterswereusedindedicated runs. Thanks to the small dimensions of the neutron-producing target and the excellent time characteristic (1-ns pulse width), GELINAisparticularlysuitedforhigh-resolutiontransmission mea-surementsinthekeVregion.

Essential improvements with respect to the previous capture measurement atn_TOF [2]arethe quality ofthehighly enriched 25Mg sample andasubstantially reducedbackground ofin-beam

γ

rays[10].Thetotalcrosssectionmeasurementbenefitsalso sig-nificantlyfromthehighly enrichedsample.Inbothmeasurements theexperimentalbackgroundwasdeterminedindedicatedruns.

The data reduction forthe determination of thecross section startingfromdetectorscountingratewasperformedfollowingthe procedures described in[14].The captureyield (representing the fractionoftheneutronbeamundergoingcaptureevents)obtained atn_TOF and thetransmission (representing thefraction of neu-tron beam that traverses the sample without interaction) from GELINA arepresented inFig. 2 andcomparedwiththe resultsof a simultaneous R-matrix analysisof both data sets. More in de-tail,theexperimentalcaptureyieldY ,deducedfromtheresponse ofthecapturedetectionsystemandtheflux-monitorisrelatedto the total andcapturecross-sections,

σ

tot and

σ

γ respectively, by

thefollowingexpression[14]:

Y

(

En

)

= (

1

enCσtot(En)

)

σ

γ

(

En

)

σtot

(

En

)

+

YM S

(

En

),

(1)

while the transmission T , which was experimentally obtained fromthe ratioof Li-glass spectraresulting froma sample-in and a sample-out measurement, is related to the total cross-section by[14]:

T

(

En

)

=

enTσtot(En)

,

(2)

wherenC

= (

3

.

012

±

0

.

009

)

×

10−2 atoms/bdenotestheareal

den-sityofthecapturesampleandnT

= (

5

.

02

±

0

.

04

)

×

10−2 atoms/b

theoneofthetransmissionsample, En thelaboratoryneutron

en-ergy,andYM S thecontributionofmultipleinteractioninthe

sam-ple.Thislatterterm,togetherwithotherexperimentaleffectssuch asself-shielding,Dopplerbroadeningandresponseofthe time-of-flightspectrometer,areproperlytakenintoaccountintheR-Matrix codes SAMMY[15] andREFIT[16] usedinthe presentcombined analysis.

4. Improved25Mg(n

,

γ

)26Mgcrosssection

Resonance energies, ER, partial widths,



γ and



n, and the

spinsand parities, J π weredetermined by a combined R-matrix analysisin the energyregion En

<

300 keV, corresponding to an

incident

α

-particleenergyfromthresholdat

=

570 keV to ap-proximately 850keV,wheredirect(

α

,

n)measurementsare diffi-cultandaccuratecrosssectiondataaremissing.

Theinformationon J π isparticularlyimportantforidentifying thestatesin26Mgthatcontributetothe22Ne(

α

,

n)25Mgcross sec-tion.Thisselection iscrucialbecause22Nenucleiand

α

particles have both J π

=

0+. Accordingly, (

α

,

n) reactions can only pop-ulate natural-parity states (0+

,

1−

,

2+

,

. . .

) in 26Mg, whereas the

n

+

25Mgreactionproceedsalsovia J π

=

1+

,

2

,

3+

,

. . .

states. The results of the combined R-matrix analysis of both cross sections are summarized in Table 1, including the deduced firm

J π assignments. Forthe natural-parity states, the

α

energies in thelaboratorysystem ELab

(5)

4 C. Massimi et al. / Physics Letters B 768 (2017) 1–6

Fig. 2. Measuredneutroncaptureyieldandtransmissionof25Mg.Experimentaldata

arerepresentedbyredsymbolsandthesimultaneousR-matrixofbothdatasetsis givenbydashedlines.(Coloronline.)

Fig. 3. ResonanceshapeanalysisoftheneutronresonanceatEn=194 keV.Thespin parityassignment =4[17]isexcludedbythepresentdata,whichclearly

in-dicate =3.Onlyuncorrelateduncertainties,attributabletocountingstatistics,

arereported.(Coloronline.)

withdirect

α

+

22Ne measurements. The uncertainties on E

x and

ELab

α are determinedby theuncertaintyinneutronenergy, which

never exceeds 0.1 keV. This is an important result in itself be-causeit allows one to resolve inconsistencies in charged-particle data.

Fig. 3demonstrates thesensitivityof thepresentdatato spin and parity, which clearly exclude the previous J π

=

4− assign-ment[17]fortheneutronresonanceat194keV.Inparticular,the lowest values ofthe chi-squared per numberof degreesof free-dom ofthe fit, were 1.1, 5.6, 7.3 and17 assuming J π

=

3−, 4+, 4−and3+respectively.Inthismannerthe J π valueswere deter-minedforeachresonance.Intwocasesthespin-parityassignment waschangedwithrespecttothepreviousevaluation.Asshownin Ref.[9],thesetwo resonancescould notbe accurately studiedby usingthe transmission data onnatural magnesium (e.g. reported in[17])sincetheexperimentalsignaturewasdominatedbystrong resonancesinn

+

24Mg.

Comparedto evaluated resonancedata [18], sixneutron reso-nanceshadtoberemovedintheenergyrangecoveredinTable 1. These weak resonances (



n

0

.

5 eV) were assigned in previous

n

+

25Mgexperiments,butwerenotidentifiedinthiswork.

Table 1

n+25Mgresonanceparametersandcorrespondingexcitationenergiesofthe26Mg

compoundnucleus.ThequoteduncertaintieswereobtainedbytheR-Matrixfit.

En Ex ELabα n

(keV) (keV) (keV) (h)¯ (eV) (eV)

19.92(1) 11112 589 2+ 1.37(6) 2095(5) 62.73(1) 11154 1+ 4.4(5) 7(2) 72.82(1) 11163 649 2+ 2.8(2) 5310(50) 79.23(1) 11169 656 3−a 3.3(2) 1940(20) 81.11(1) 11171 5(1) 1–30 100.33(2) 11190 3+ 1.3(2) 5230(30) 155.83(2) 11243 2− 4.7(5) 5950(50) 187.95(2) 11274 779 2+ 2.2(2) 410(10) 194.01(2) 11280 786 3−a 0.3(1) 1810(20) 199.84(2) 11285 2− 4.8(4) 1030(30) 203.88(4) 11289 0.9(3) 3–20 210.23(3) 11295 2− 6.6(6) 7370(60) 243.98(2) 11328 (843) 2.2(3) 171(6) 260.84(8) 11344 1.0(2) 300–3900 261.20(2) 11344 >3 3.0(3) 6000–9000

a Paritychangewithrespecttopreviousevaluations.

Below the lowest directly observed resonance in the

22Ne(

α

,

n)25Mg reaction cross-section at ELab

α

830 keV (En

235 keV), five natural-parity states have been identified corre-sponding to energies ELabα

=

589, 649, 656, 779 and 786 keV. The doublets at 649/656 and 779/786 keV were resolved owing to the good energy resolution in the neutron channel, which is significantlybetterthanincharged-particleexperiments.The low-est observed22Ne(

α

,

n)25Mgresonanceat ELab

α

=

832

±

2 keV[4]

was not observed in the presentneutron data at En

=

234 keV,

while a resonancewith a width compatible to the one reported in [4] (



=

250

±

170 eV) is located at En

=

243

.

98 keV, i.e.

ELab

α

=

843 keV. One possible explanation is that the two

res-onances correspond to the same state, in which case the en-ergies are inconsistent with each other. Another possibility is that they correspond to two different levels: in this case the width of the

(

α

,

n

)

resonance at 832 keV is lower than quoted in [4], being below the sensitivity of the presentmeasurements (



20 eV),whiletheobservedneutronlevelisnotanatural par-itystate.

The 25Mg(n

,

γ

)26Mg cross section was also significantly im-proved by an R-matrix analysis of the combined data sets for 25Mg(n

,

γ

)and(n

,

tot),resultinginratheraccurateMaxwellian av-eraged cross section (MACS) for thermal energies between kT

=

5 and 100 keV.Thoughhigherresonancesupto900keVwere con-sideredaswell, theMACS valuesare dominatedby contributions from theresonances in Table 1. Thepresent resultsandthe cur-rentlyrecommendedvaluesintheKADoNiS[22] compilationand in Ref.[2] arecompared inTable 2.While thenewMACS values are compatiblewiththeprevious measurement[2]exceptforthe lowest and highest temperature, the uncertainties were reduced byalmostafactorofthreeonaverage.Theseuncertaintiesarethe sumofuncorrelatedorstatisticaluncertaintiesandsystematic un-certainties.

5. Impactonreactionratecalculations

As mentioned above, the reaction channels for

α

+

22Ne and

n

+

25Mgopenatexcitationenergies E

x

=

10

.

615 and11.093MeV

inthecompoundnucleus26Mg.Apartfromthelevelsbetween

α

-andn-channel, thepresent studyprovides accessto the relevant states in the energy region between the 22Ne(

α

,

n)25Mg thresh-old and the lowest resonance reached in direct

α

+

22Ne experi-ments. Therefore the new resonance information has been used forcalculating theupperlimit ofthereactionrates,based purely on experimentally-available information for 22Ne(

α

,

n)25Mg and

(6)

Table 2

25Mg(n,γ)Maxwellian-averagedcrosssections(inmb),comparedwithapreviousworkandrecommendedvalues.Experimentalvaluesincludethecontributionsfromdirect

radiativecapture[2].

kT (keV) 5 10 15 20 25 30 40 50 60 80 100

KADoNiS 4.8 5.0 5.5 6.0 6.2 6.4(4) 6.2 5.7 5.3 4.4 3.6

Ref.[2] 3.5(4) 5.1(6) 4.9(6) 4.6(4) 4.4(6) 4.1(6) 3.5(6) 2.9(5) 2.5(4) 1.9(3) 1.4(2)

this work 2.8(2) 4.4(2) 4.3(2) 4.2(2) 4.0(2) 3.9(2) 3.6(2) 3.4(2) 3.0(2) 2.5(3) 2.2(3)

22Ne(

α

,

γ

)26Mg. In particular, they were defined using: (i) data froman

α

-transferreaction fortheresonancebelow theneutron threshold[7],(ii) data from thiswork, and (iii)data fromdirect measurementsabove ELabα

=

800 keV[4].Thecalculation,basedon thesimplenarrow-resonanceformalism[23],requiresasinputthe resonanceenergies and the so-calledkernels (also referred to as resonancestrength),knorkγ , kn

=

g



α



n



,

=

g



α



γ



=

kn



γ



n

;

(3)

where



isthetotalwidthandg

= (

2 J

+

1

)/

[(

2I

+

1

)(

2i

+

1

)

]

the statisticalfactorand J , I and i the spin of theresonance, target and projectile, respectively. Because



α

 

γ

 n

, the kernels

canbereducedtokn

=

g



α .

Apartfrom



α ,allquantitiesweredeterminedinthiswork.For

thepresentanalysisweestimatedtheupperlimitsof



α basedon

the experimental constrainton the 22Ne(

α

,

n)25Mg cross section (

10−11barn,correspondingto



α

10−8 eV).

ThecontributionsofthefiveresonancesbelowELab

α

800 keV

tothe22Ne(

α

,

n)25Mgratedependonthetemperatureofthe spe-cific s-process site. Particularly important is the 30% decrease of the upper limit of the rate compared to Ref. [7] around kT

=

25 keV (0.25to0.3GKinFig. 4),whichaffectstheneutron econ-omyduringtheHeshellburninginlow-massAGBstarsandduring coreHeburninginmassivestars.

The neutron resonance data obtained in this work were also used to determine the upper limit of the 22Ne(

α

,

γ

)26Mg rate. As shown in Fig. 4, these results differ significantly compared to recent evaluations [7,19,20], also in the important tempera-turerangeabove0.3GK.Part ofthesediscrepancies werecaused by amisinterpretation ofprevious neutrondata,in particularfor the doublet at En

=

79 keV. While the impact of the 79-keV

doublet on the 22Ne(

α

,

n)25Mg rate is relatively small (at most 3%), it plays a major role for the (

α

,

γ

) rate. As discussed in Ref. [7],

α

-transfer measurements provide experimental evidence of a natural parity state in 26Mg corresponding to an energy of about En

=

80 keV. Prior to this measurement the resonance at

En

=

79 keV was tentatively assigned to be of unnatural

par-ity whereas the closest resonance at En

=

81 keV was

consid-ered as the one with natural parity. This misinterpretation re-sulted in a biased 22Ne(

α

,

γ

)26Mg reaction rate, since the reso-nancestrength of the (

α

,

γ

) channel scales with the



n

/ 

γ

ra-tio (see Eq. (3)). With the present spin-parity assignment, the contribution to the reaction rate of this level became negligi-ble since the



n

/ 

γ ratio of the resonance at En

=

79 keV is

abouta factor of 2200 larger than the ratio of the resonanceat

En

=

81 keV.

In summary, the present resonance analysis of the neutron-inducedcross sectionsof25Mg hasledto decisiveimprovements forthepoorly knownstatesin26Mgwithexcitationenergies be-tween11112and11344 keV.Thisconcernsaccuratelevelenergies, firmspin/parityassignments,andthedeterminationofreliable



γ

and



n values. The conclusive identification of their properties

wereusedtodeterminethecontributions oflevels belowthe

en-Fig. 4. Reactionrateratiooftheupperlimitsforthe22Ne(α

,n)25Mg(toppanel)

fromthisworkcomparedtotheupperlimitsinRefs.[7,20,19].Thesameratiosare presentedforthe22Ne(α,γ)26Mg(bottompanel).Below0.3GKthepresentdata

areindicatinganenhanced(α,n)rate,whereasthe(α,γ)rateisstronglyreduced abovethattemperature.(Coloronline.)

Table 3

Upper limitsof thereaction rates,given incm3/(mole s), determined fromthe

presentmeasurements.

Temperature Upper limits

109K 22Ne(α,n) 22Ne(α,γ) 0.06 2.97×10−44 4.13×10−21 0.08 5.56×10−34 8.45×10−28 0.10 7.56×10−28 3.23×10−24 0.12 8.96×10−24 1 .55×10−21 0.13 3.29×10−22 1 .67×10−20 0.14 7.16×10−21 1.27×10−19 0.15 1.04×10−19 7.35×10−19 0.16 1.07×10−18 3.39×10−18 0.18 5.32×10−17 4.27×10−17 0.19 2.78×10−16 1.23×10−16 0.20 1.25×10−15 3 .21×10−16 0.25 4.99×10−13 1 .43×10−14 0.30 4.52×10−11 5.82×10−13 0.35 1.44×10−09 1.82×10−11 0.40 2.09×10−08 2.66×10−10 0.45 1.74×10−07 2.12×10−09 0.50 1.03×10−06 1.15×10−08 0.60 2.24×10−05 1 .50×10−07 0.70 3.36×10−04 1 .18×10−06 0.80 3.19×10−03 7.38×10−06 0.90 1.95×10−02 3.67×10−05 1.00 8.45×10−02 1.43×10−04

ergy rangecoveredby direct(

α

,

n)measurements. Whilewaiting forthe crucialestimate of



α , which willrequire alarge

experi-mentaleffort,thepresentresultscanleadtoimprovementsinthe calculationofthestellar22Ne

+

α

ratesintheastrophysically rele-vantenergyrangesubstantially.Inparticular,itwasfoundthatthe (

α

,

γ

)channelhadbeenstronglyoverestimatedsofar.Thepresent resultsaresummarizedinTable 3.

(7)

6 C. Massimi et al. / Physics Letters B 768 (2017) 1–6

Fig. 5. Ratiosofthes abundanceofY,La,andPbfromstellars-processmodelsusing thepresentupperlimitsofthe22Ne(α

,n)25MgrateandfromtheFRUITYreference

set[24].

6. Astrophysicalimplicationsandconclusions

Theastrophysicalconsequencesofthepresentresultshavebeen studiedusingtheupperlimitsestablishedinthiswork.Their im-pact on the weak-s process in massive stars was explored for a 25 M[21]star.Thecalculatedabundancesareconsistentwiththe latest evaluations [7,19]. The present uncertainty of the

α

+

22Ne ratecauseslargedifferencesintheweaks-processabundances,up toafactor50intheSrregion.

Noticeable changes are also found in intermediate-mass AGB models(IMS-AGBs,3

<

M

/

M

<

7). Asinthesestarshigher tem-peraturesarereachedduringthermalpulsesthaninlow-massAGB stars,thestrongpreponderanceofthe13C(

α

,

n)16Oneutronsource isprogressivelysubstitutedbythe22Ne(

α

,

n)25Mgreaction.Thisis particularlyevidentatlowmetallicities.

Using the present upper limits for the 22Ne(

α

,

n) rates, the

s-process yields of AGB stars between 2 and 5 M and an ini-tial iron fraction corresponding to 0.7% of the solar value were calculated for comparison with reference AGB models from the FRUITY data base [24]. The resulting s abundances of Y and La wereselectedforcomparisonwithPb,becauseYandLaare char-acterizing the first and second s-process abundance peak. As il-lustratedinFig. 5 theproductionofY and– especially–ofLa is increasingwithAGB massasaconsequenceofthemoreefficient 22Ne(

α

,

n)25Mg source, whereas the Pb abundance remains basi-callyfrozen.ForafixedamountofPbwe obtain,therefore,larger abundances in the first and, especially, in the second s-process

peak. This pattern in higher-mass stars may help to explain the

surface distributions in s-process enriched globularcluster stars, which exhibit a comparably low Pb abundance [25]. Whether a mixofenhanceds contributionsfromIMS-AGBsattheexpenseof thePbproducingLMS-AGBscouldprovideaplausiblesolutionwill beanalyzedinadedicatedpaper.

Acknowledgements

The isotopeusedinthisresearchwere suppliedby theUnited StatesDepartmentofEnergyOfficeofScienceby theIsotope Pro-gramintheOfficeofNuclearPhysics.

M. PignatariandI. Van RijsthankNuGridforthesupport. References

[1]F.Käppeler,R.Gallino,S.Bisterzo,W.Aoki,Rev.Mod.Phys.83(2011)157. [2]C.Massimi,etal.,Phys.Rev.C85(2012)044615.

[3]H.W.Drotleff,etal.,Astrophys.J.414(1993)735.

[4]M.Jaeger,R.Kunz,A.Mayer,J.W.Hammer,G.Staudt,K.L.Kratz,B.Pfeiffer,Phys. Rev.Lett.87(2001)202501.

[5]U.Giesen,etal.,Nucl.Phys.A561(1993)95. [6]C.Ugalde,etal.,Phys.Rev.C76(2007)025802. [7]R.Talwar,etal.,Phys.Rev.C93(2016)055803.

[8]F.H.Fröhner,EvaluationandAnalysisofNuclearResonanceData,JEFFReport 18,NEA/OECD,2000.

[9]C.Massimi,etal.,EPJWebConf.66(2014)07016. [10]C.Guerrero,etal.,Eur.Phys.J.A49(2013)27. [11]W.Mondelaers,P.Schillebeeckx,Notiziario11(2006)19. [12]S.Marrone,etal.,Nucl.Instrum.MethodsA517(2004)389. [13]M.Barbagallo,etal.,Eur.Phys.J.A49(2013)156. [14]P.Schillebeeckx,etal.,Nucl.DataSheets113(2012)3054.

[15]N.M. Larson, Updated Users Guide for SAMMY: MultilevelRmatrix Fits to Neutron Data Using Bayes Equations, SAMMY, Computer Code, Report No. ORNL/TM-9179/R7,OakRidgeNationalLaboratory,2008.

[16]M.C.Moxon,J.B.Brisland,GEELREFIT,Aleastsquaresfittingprogramfor res-onanceanalysisofneutrontransmissionandcapturedatacomputercode,in: InTec-0630,AEATechnology,October1991.

[17]P.E.Koehler,Phys.Rev.C66(2002)055805.

[18]S.F.Mughabghab,AtlasofNeutronResonances,Elsevier,Amsterdam,2006. [19]R.Longland,C.Iliadis,A.I.Karakas,Phys.Rev.C85(2012)065809.

[20]A.I.Karakas,M.A.Lugaro,M.Wiescher,J.Görres,C.Ugalde,Astrophys.J.643 (2006)471.

[21]R.Hirschi,U.Frischknecht,M.Pignatari,etal.,NuGrid:s processinmassive stars,in:Proc.ofNucleiintheCosmos(NIC X),MackinacIsland,Michigan, USA,2008.

[22] I. Dillmann,R. Plag,F. Käppeler,andT. Rauscher,in:Proceedingofthe work-shop“EFNUDAT Fast Neutrons –ScientificWorkshop on Neutron Measure-ments,Theory&Applications”,April28–30,2009,Geel,Belgium.

[23]C.E.Rolfs,W.S.Rodney,CauldronsintheCosmos,UniversityofChicagoPress, Chicago,1988.

[24]S.Cristallo,O.Straniero,L.Piersanti,D.Gobrecht,Astrophys.J.Suppl.Ser.219 (2015)40.

Riferimenti

Documenti correlati

The late Miocene endemic vertebrate fauna known as the Baccinello V0 assemblage is the oldest vertebrate fauna within the Baccinello-Cinigiano basin succession, being correlated to

In this paragraph, we briefly summarize the key changes, region by region. As for the general political and organizational discontinuities, we found changes in

The present research was designed to investigate the relationship between hypnotic susceptibility and executive attention in the visual domain by studying the effects of

Tuttavia le alte cariche di grappoli (pesi per ceppo) finiscono sempre per banalizzare le produzioni, anche dei vitigni nobili. Si tenga presente che a parità di densità

“Riqualificazione e ristrutturazione della viabilità del centro storico della città di Elbasan.

We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the

The latter case fits the two-thirds power law, which de- scribes the speed/curvature correlation of large class human body movements. This suggests the idea that the same time-