• Non ci sono risultati.

The evaluation of forest crop damages due to climate change. An application of Dempster-Shafer method

N/A
N/A
Protected

Academic year: 2021

Condividi "The evaluation of forest crop damages due to climate change. An application of Dempster-Shafer method"

Copied!
13
0
0

Testo completo

(1)

JournalofForestEconomics17 (2011) 285–297

ContentslistsavailableatScienceDirect

Journal

of

Forest

Economics

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . d e / j f e

The

evaluation

of

forest

crop

damages

due

to

climate

change.

An

application

of

Dempster–Shafer

method

Iacopo

Bernetti, Christian

Ciampi,

Claudio

Fagarazzi,

Sandro

Sacchelli

Dept.ofAgriculturalandForestEconomics,Engineering,SciencesandTechnology,18,PiazzaledelleCascine,I-50144Florence,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19January2010

Accepted28April2011

Keywords:

Dempster–Shafertheoryofevidence

Climatechange Forestry Fuzzysets Spatialanalysis Uncertainty JELclassification: Q19 Q54

a

b

s

t

r

a

c

t

Inordertoassessdamageriskcausedbyclimatechangein for-estareas,Dempster–Shafertheoryofevidenceandfuzzymeasures wereappliedtodevelopaframeworkfortheestimationof eco-nomicforestdamage.Accordingtothedefinitionofrisksupported bytheIntergovernmentalPanelonClimateChange,afunctionof hazardandresiliencelinesofevidencewasdefined.Theresults ofthehazardandresilienceassessmentwereusedtodevelopan economicframeworkbasedonFaustmannstudies.Theevaluation model,implementedthroughaspatialanalysisprocedure,was car-riedoutlinkingFaustmann formulawithhazardandresilience rastermaps.Themodelpermittedtoestimateinmonetaryterms twopossiblecoststobesupported:thefirstoneisexpressedas theexpecteddamagetotheforestcroponthebasisofthecurrent obtainablewoodyassortmentsandthesecondonereferredtothe potentialexpensestopayinordertomitigatetherisk.Finally,the frameworkwastestedonanareaofcentralItaly(Tuscanyregion).

© 2011 Department of Forest Economics, SLU Umeå, Sweden. Published by Elsevier GmbH. All rights reserved.

Introduction

ResearchonthepossibleimpactofclimatechangeonforestsinEuropeandthedevelopment

ofadaptationandmitigationstrategiesstartedintheearly1990s;sincethen,assessmentonclimate

change,itsimpactandconsequencesonnaturalresourcesmanagementhavebeenthefocusof

contin-uousresearchefforts(EFIetal.,2008).Amongtheknowneffectsofclimatechangetherearealteration

∗ Correspondingauthor.

E-mailaddress:sandro.sacchelli@unifi.it(S.Sacchelli).

1104-6899/$–seefrontmatter © 2011 Department of Forest Economics, SLU Umeå, Sweden. Published by Elsevier GmbH. All rights reserved.

(2)

intreesgrowthandproductivity(KauppiandPosch,1988;Loustauetal.,2005),variationsin

for-estareaandcompetitionbetweenspecies(Solomon,1986;Lexeretal.,2002)anddamagevariation

causedbynaturaldisturbances(Flanniganetal.,2000).

Severalmethodologieswereimplementedtoassesshazardandresilienceinforestsector.One

promisingevaluation ofthesetwovariables hasbeenprovided byNitschkeand Innes(2008).In

theirresearchameta-modellinganalysiswasdevelopedtoincorporatethestrengthofmanysmaller

modelsintoaframeworkthatconsidersnaturaldisturbances,floralandfaunalspeciesandspecies

habitats.

Awidereviewonmodellingforestecosystemdisturbancesandonnaturalhazardassessingwere

developedinrecentworksofSeidletal.(2011)andHanewinkeletal.(2010a),respectively.Fromthese

studiesitispossibletodepictseveralexamplesofmethodologiesthatcanbeappliedtodescribeharm

andadaption.Seidletal.(2011)classifythemodelsaccordingtodisturbancestypology(event-based

orregime-based)in:(i)statistical,(ii)staticordynamicprocess-based,(iii)vegetationorlandscape

dynamicsand(iv)plantphysiologymodels.Hanewinkeletal.(2010a)dividemethodstomodelrisk

inexperimental(e.g.mechanisticmodel)andempirical(bothanalyticalandoutputorientedmodels).

Despitetheintensiveresearcheffortsintheabovetopics,inclimatechangescenariotheprecise

evaluationofeconomiclosseswithhighterritorialdetailisadifficulttask.Specifically,themainaspects

tobetakenintoaccountare:(1)theimpactassessmentvarieswidelydependingonthesimulation

modelapplied,theclimatescenarioinvestigatedandthegeographicandecologicalcharacteristicsof

thecrop;(2)thereisconsiderableuncertaintyconcerningtheinteractionsbetweenvulnerabilityand

adaptationabilityofforestecosystems.

Themainobjectiveofthisstudyistogiveapreliminaryassessmentoninnovativekindofeconomic

analysisinclimatechangeforestsector,inparticular: (i)toevaluatetheriskofvulnerabilityand

theprobabilityofresilienceoftheforeststhroughprobabilisticandsubjectiveestimationand(ii)to

estimatethefinancialconsequencesofclimatechangebywayofthecalculationofboththehazard

damageandthevalueofriskmitigationinforeststands.Theappliedprocedureimplementedland

expectationvalue(LEV)calculatedbyFaustmannapproachandDempster–Shafertheoryofevidence

(DS).

Asamatteroffactseveralauthors(e.g.Buongiorno,2001)demonstratedthattheFaustmann

for-mulaisabletoincorporatebiologicalandeconomicrisks.Themethodologychosentocarriedoutthe

research(DStheoryofevidence)permitstoovercomethelimitsofBayesianapproachinanuncertain

frameworkasfortheclimatechangeone.

DStheorywasalreadyusedinenvironmentalsectorindifferenttopics.Severalstudiesdefineland

coverestimationandlandcovermonitoringtechniquescarriedoutthroughtheuseofDStheory(see

e.g.Cayuelaetal.,2006;Comberetal.,2004).Thistheorywasalsointroducedinclimatechange

uncertaintyevaluation(RajeandMujumdar,2010;LouandCaselton,1997).Indifferentresearches

DStechniquewasappliedinforestsector;someexamplesconcern:(i)waystomeasuresustainability

offorestmanagementandtooperationaliseitintermsofutilitymaximisationinlandusestrategies

(Varmaetal.,2000);(ii)definitionofuncertaintyinforestmanagementandsilviculturaldecision (Ducey,2001)and(iii)provisionofpracticaltoolinordertoestimatestandregenerationmaps(Mora

etal.,2010).Actually,accordingtoauthorsknowledge,DStheoryofevidencehasneverbeenusedfor

economicevaluationofforestunderclimatechangeconditions.

Methodologicalframework

TheadoptedmethodologicalframeworkissummarizedinFig.1.Accordingtointernational

litera-tureriskhazardtoclimatechangeandresilienceofforestcropswasdefined.Then,basedonexperts’

knowledge,thefactors(criteria)defininghazardandresiliencewereanalysed,evaluatedthrougha

fuzzymethodologyandlinkedtoaGeographicInformationSystem(GIS).TheuseofDempster–Shafer

(DS)approachpermittedtoaggregateallcriteriainthreeindicatorsofsubjectiveprobabilitiesdefined,

accordingtoDStheory,as:beliefofhazard,beliefofresilienceanduncertainty.

Finallyexpectedlosscausedbyclimatechangewasestimatedbylinkingsubjectiveprobabilityand

(3)

I.Bernettietal./JournalofForestEconomics17 (2011) 285–297 287

Fig.1.Flowchartonmethodologicalframework.

Climatechange,vulnerabilityandadaptationcapability

Resilienceisdefinedastheabilityofaforesttoreacttoexternalenvironmentalchanges,

maintain-ingacertaindegreeofecologicalstability,bothintermofspeciescompositionandmaintenanceofthe

structure.Hazardrepresentsthedegreeofriskofdestructionand/ordamageofanarea.Inthisresearch

thepresentvalueofvariablesthatpotentiallyhaveagreaterinfluenceonthehazarddegreewasrelated

withthepossibilityofaclimatechange,accordingto:(i)averagespeedofwind,(ii)yearly

cumula-tiveprecipitationsand(iii)yearlyaveragetemperatures.Futurevalueoftheseclimaticvariablesare

basedonA2scenariooftheHadleyCentreMetOfficeClimateModelling3(Hadcm3)developedby

IntergovernmentalPanelonClimateChangeandre-elaboratedforTuscanyregion(Moriondoetal.,

2010).

Accordingtothenationalandinternationalliterature(Carraroetal.,2007;EFIetal.,2008)the

followingindicatorsarechosenfortheevaluation:

• Resilience

◦Managementinterventionsontheforestcrops(expressedasapercentageofforestsurfacewith

managementinterventions);

(4)

◦ Presenceofprotectedareas;

◦Ecologicaldiversity;

◦Landscapediversity.

• Hazard

◦ Wind,asnumberofyearlyextremeevents;

◦ Aridity(basedonDeMartonneindex);

◦ Slope; ◦ Aspect;

◦ Changeinphytoclimaticzone(basedonPavariclassification).

Theoryofevidence

Researchfornewmethodologiesdealingwithsubjectiveprobabilitiesandwiththeresulting

uncer-tainty(mainlyasanalternativeorarevisiontoBayesianapproach)wasintensifiedoverthelast50

years.Inforesteconomicandpolicysector,a varietyofnewapproachesforthis topichave been

proposed(e.g.HildebrandtandKnoke,2011;GadaudandRambonilaza,2010).Animportantissue

intheclimatechangeassessmentcanberepresentedbythedifficultyuncertaintyevaluation;ina

decisionproblem-solvingframework,uncertaintycouldbeaccessibleandusefultodecision-makers.

AsexpressedbyPattandDessai(2005)“theliteratureinbehavioureconomicsprovidesmanyexamples

ofhowpeoplemakedecisionsunderconditionsofuncertaintyrelyingoninappropriateheuristics,

lead-ingtoinconsistentandcounterproductivechoices”.Thereforeanin-depthanalysisabletorelaterisk

managementevaluationanduncertaintyisanecessarypolicytool.

Themethodologicalframeworkappliedinthispaperfortheclimatechangeconsequences

esti-mationderivesfromthesefollowingmethodologies:(i)fuzzysettheory,inwhichtheuncertaintyis

associatedwithvague(typicallylinguistic)variables(appliedtoclimaticresearchinScherm,2000);

(ii)Dempster–Shafertheoryofevidence(DS),thataimsatgoingbeyondthelimitsofaprobabilistic

formulation(Bayesianapproach)(LouandCaselton,1997).

TheBayesianformulationrepresentsthestartingpointoftheplausibilitynotiontreatmentinDS

theory:thetwoapproachessharetheideathattheplausiblereasoningisatypeofuncertainreasoning

becauseitiscarriedoutbyusingsourcesthatgiveinformationcharacterizedbyadegreeofreliability

butnotofcertainty.UnliketheBayesianprobabilities,DStheorydoesnotneedcompleteinformation

inthespaceoftheevents;thus,thistheoryallowstheuseoftwodifferentvaluesinordertoexpress

thecredenceinaspecificproposition,orthecredenceinitsnegation.

Inthisstudytwopropositions(calledlinesofevidence)weredefined:hypothesish=vulnerabilityof

thegeographiclocalizationandhypothesiss=resilienceofthelocalization.The“non-singular”

hypoth-esis[h,s]representsthevalueoflocalizationsthatareatthesametimevulnerableandresilient.The

conceptofDSprobabilitypdiffersfromtheconceptofBayesianprobabilitybecausefortwo

hypothe-sesA1 andA2 intheDStheorywewillhavep(h)+p(s)+p(h,s)=1and thusp(h)+p(s)<1,whilein

Bayesp(h)+p(s)=1.Theremainingp(h,s)representsthecontributiontouncertainty.Theevaluation

ofthehypothesisisbasedontheconceptofBasicProbabilityAssignment(BPA).TheBPArepresents

thecontributionthatacertainfactor(ai)givesasasupportforaspecifichypothesis(forinstancethe

vulnerabilityofastand).TheassessmentofBPAisbasedonthecombinationoffuzzyfunctionson

environmentalandsocio-economicvariablesandlinguisticevaluatorswhichwereusedinthemodel

(expressedasadegreeofbelief).Theevaluatorsweregivenbyexpertsasoralterms(Bentabetetal.,

2000);modelformulationwasexplainedinthefollowingformula:

BPA(ai,x)=linguistic(ai)·ai(xai) (1)

withlinguistic(ai)assessmentthroughafuzzylinguisticevaluatorofthecontributeinforestcrops

damage–inclimatechangescenario–ofvariableaiandai(xai)assessmentthroughamembership

functionoftheenvironmentaleffectofthevariableaionthelocalizationx.

Theaggregationforthehypotheses“hazardtoclimatechange”and“resiliencetoclimatechange”,

(5)

I.Bernettietal./JournalofForestEconomics17 (2011) 285–297 289

(orthogonalsum–Shafer,1976).FortwobasicprobabilityassessmentBPA(ai,x)andBPA(aj,x)(for

examplei=ecologicaldiversityandj=landscapediversity)theorthogonalsumis:

BPA(ai,aj)=

BPA(ai,x)·(1−BPA(aj,x))

1−BPA(ai,x)·BPA(aj,x)

(2)

Allfactorsareprogressivelyaggregatedinpairstocalculatethemassprobabilityofhazardm(h)

andthemassprobabilityofresiliencem(s).Theaggregationofthetwohypothesisfallsinthecaseof

linesofevidencemarkedbyconflictandthusitiscarriedoutbynormalizingthesumofthejointly

probabilitiesnotinconflict:

Bel(h)= m(h)·(1−m(s))

1−m(h)·m(s)

Bel(s)= m(s)·(1−m(h))

1−m(h)·m(s)

U(h,s)=Bel(s)−(1−Bel(h))= (1−m(h))·(1−m(s))

1−m(h)·m(s)

(3)

Bel(h)andBel(s)arebeliefofhazardandbeliefofresiliencemeasures;U(h,s)beliefintervalrepresents

theuncertaintydegreeoflocation,derivingbothfromoccurrenceofhighhazardandhighresilience

inthesamearea.

Evaluationoftheeconomicdamage

OnceDempster–Shafermethodologywasappliedtothetwolinesofevidenceandtheresultswere

aggregated,thequantificationoftheeconomicdamagethatclimatechangecancauseuptotheyear

2036wascalculated.

ThebasicelementforthatdefinitionistheapplicationoftheFaustmannformula,whichinits

foundationisdefinedasfollows:

F= Sf−R+



St·(1+r)f−t (1+r)f−1 −R+ a−e r (4)

withSfnetstumpagevalueoffinalcut,Rregenerationcost,Ststumpagevalueofthinninginterventions,

rdiscountrate,frotation,tageofthethinningoftheforestcrop,aannualrevenuesandeannual

expenses.TheFaustmannformulaisastand-leveleconomicmodelthatwasoriginallyconceivedfor

pureeven-agedstands.Forthecurrentcase,landexpectationvalue(LEV)isusedasaproxyforthe

assessmentoftheperceivedutilitybytheownerfortheuseoftheforestrycrops.Thisformulawas

implementedthroughaGISprocedureofspatialanalysis(Bernettietal.,2009a).

Theproposedmethodusestheconceptofsubjectiveexpectedutilityvariationinordertotryto

quantifyinmonetarytermstheexpecteddamageduetoclimatechange.Thetheoryofsubjective

expectedutility(Savage,1954)combinesanutilityfunctionandasubjectiveprobabilitydistribution.

BasedonthemapsofthehazardandofthevulnerabilitydegreeoftheTuscanyforestitispossible

toapplytheFaustmannformularesultsinordertoquantifyinmonetarytermstwopossibleexpected

utilityvariations:thefirstoneexpressedastheexpecteddamagetotheforestcrop(onthebasisofthe

currenttimberassortmentsobtained–Eq.(5))andthesecondonereferredtotheexpectedexpenses,

tobesupportedinordertotrytoprotectforestfromdamages(Eq.(6)).

EUV (damage)=F·Bel(h) (5)

EUV (adaptation)=



ea r +



Pt·(1+r)f−t (1+r)f−1



·(1−Bel(s)) (6)

withEUV(damage)expectedutilityvariationcausedbytheriskofcropdamage,Fcapitalizationvalue

offorestcropsfromFaustmannformula,EUV(adaptation)utilityvariationcausedbytheadaptation

cost,eacostfortheannualadaptationactions(viabilitymaintenance,firesurveillance,monitoringof

(6)

toavoidoverstockedstandssusceptibletoincreasedmortalityfromdrought,insects,diseaseand

wildfire)(AndersonandChmura,2009).

Therationalstrategyoftheforestowneristhemaximizationofhisutilityandthustheminimization

ofitsvariation(inourcasealwaysnegative).Thenthestrategicbehaviour(orstrategiccost)derives

fromtheminimizationofthetwopreviousexpectedutilityvariations:

strategic behaviour=min{EUV(damage), EUV (adaptation)} (7)

Studyareaanddata

Themodeldevelopedforthequantificationoftheeconomicdamageduetoclimatechangerefers

toforestcropsoftheTuscanyregion,localizedincentralItaly.Inthisregion,forestsurfacereaches

about1,150,000ha,withastrongvariabilitybothintermsofspeciescompositionand

geomorpho-logicalconditions.Themainimportantforestformationsaretheonescharacterizedbyprevalenceof

deciduousbroadleaved(79%),followedbyevergreenbroadleaved(13%)andconifers(8%).Themain

silviculturalsystemiscoppice(RegioneToscana,2008).

Theevaluationmodelwasimplementedthroughaspatialanalysisprocedureappliedtoraster

mapswitharesolutionof75m×75m.Thegeoreferreddatausedintheworkwerelinkedtothe

characteristicsoftheregionalforestsasforboththemanagerialaspectsdirectlyinfluencedbythe

humanactivityandthevariablesnotdependingondirectinterventions,suchasclimaticchangesand

morphologicalpeculiarities.

Thefirstpartofthestudyconsideredthenormalizationandtheweightsevaluationofthevariables

set(criteria)foreachlineofevidence.

ThesecriteriawerechosenthroughafuzzyDelphiprocedure(Cheng,1999),whichwascarried

outwiththecontributionofeightexpertsoftheforestsector,inordertodefineseveralparameters

oftheanalysismodel,bymeansofaniterativequestionnaire.Thesurveyconsideredmanagersofthe

ConsortiumofMountainousAreas,oftheStateForestryCorpsandofforestacademicstaff.

Thequestionnairemadepossibletoobtainneededparametersforthecreationofthevaluesof

environmentaleffects(fuzzymaps)ai(ai)andoftheimportanceofvariableaiinclimatechange

sce-nario(degreeofcredence)linguistic(xai);thesevalueswerenecessarytocalculatethebasicprobability

assignments(Eq.(1)).

Theexperts’opinionsweredescribedbyparametersandlinguistictermswhichcanbeexpressed

intrapezoidal(ortriangular)fuzzynumbers.Thepossibilityofcomparingdifferentindicatorsamong

eachother(suchasthepresenceofmanagedareasandthelandscapediversity)necessarilyrequires

anormalization(re-classificationofthefactorsinarangebetween0and1,thatisminimumand

maximumprobabilitythatthefactorcontributestotheevent,respectively).Table1showsthefuzzy

functionparametersusedinnormalizationofhazardandresilienceindicators.

Thefuzzylinguisticoperatorsarestrictlyrelatedtothefuzzylogicfunctions(ChenandHwang,

1992).Theserepresentamethodologywhichallowstogettoanumericquantificationofqualitative

opinionsgivenbytheexpertsofthesectorforparticulardecisionalprocesses,throughanevaluation

doneonspecificfunctionalshapes.Thus,withafuzzylinguisticoperatorwecanturntheverbal

evaluation(i.e.highinfluenceofavariableonthelineofevidence“hazard”)intoanumber,maintaining

theintrinsicuncertaintyoftheexpertestimation.ChenandHwangidentified8scalesoflinguistic

terms.Theconversionscaleadoptedforeachevaluation(Fig.2)waschosenbyexpertsintheprocess.

Theevaluationoftheothervariableswasthenimplementedthroughalinguistictermsetsderived

fromScale2oftheChenandHwangasitisshowedinTables2and3.Thelinguistictermswere

convertedintocrispvalues(high:0.808;medium:0.5;low:0.192)usingafuzzyrankingmethod.

TheBasicProbabilityAssignment(BPA)mapswereobtainedthroughtheproductofeachfuzzy

mapandtherelativedegreeofcredence.Thislastdegreederivesfromthenumericquantification

ascribedtoeachvariablethroughafuzzylinguisticevaluatorfollowingthescale4ofChenandHwang

(linguisticvalues:low:0.115,medium-low:0.3,medium:0.5,medium-high:0.7,high:0.885).The

degreeofcredenceofeachvariablewasdefinedinTable4.

Tomaketheconsensusoftheexpertsconsistent,itwasutilizedfuzzyDelphimethodtoadjust

(7)

I. Bernetti et al. / Journal of Forest Economics 17 (2011) 285– 297 291 Table1

Definitionofthemembershipfunctionsoffuzzymaps.

Lineofevidence Criteria Mapdata Fuzzymembership Controlpoint

a b c d

Resilience

Management PercentageofMunicipalityforest surfacewithmanagement interventions

Linearincreasing 30 70

Accessibility Accessibilitytotheforestareasforthe managingintervention,expressedin termsof“cumulative”differencein heightsfromtheforestviability(m)

Lineardecreasing 0 100

Ecologicaldiversity Varietydensityindex Linearincreasing 0 Maximumvalueinarea

Landscapediversity Edgedensityindex Linearincreasing 0 Maximumvalueinarea

Hazard

Wind No.ofyearlyextremeevents Linearincreasing 0 Maximumvalueinarea

Aridity DeMartonneindex Lineardecreasing 15 30

Slope % Linearincreasing 0 100

(8)

Fig.2.Scale2and4ofChenandHwang.

Table2

Evaluationofthevariable“forestsinnaturalprotectedareas”.

Typologyofprotectedareaincludingforestcrops Definitionoflinguisticevaluator

NationalPark High

RegionalPark,NationalReserve Medium

ProvincialPark,RegionalorProvincialReserve Low

experts’opinions,weconsideredthemeanoffuzzyratingsai(ai)andthemodalvalueofdegreeof

credencelinguistic(xai)(ChenandLin,1995;ChengandLin,2002).Theadoptedprocedurediffersfor

trapezoidalfuzzynumbers(ChengandLin,2002)andlinguisticsoperator,inparticularthisphasewas

carriedoutasfollows:

(a)Aggregationoffuzzynumbers.Step1:expertsprovideaparametersforeachfuzzymembership

function.Step2:foreachexpert,firsttheaverageofresultsofstep1andthen,thedifferences,

arefoundandsentbacktotheexpertsforre-examination.Step3:eachexpertpresentsarevised

Table3

Evaluationofthevariable“changeofphytoclimaticzone”.

CorineLandCover–CLCIV◦levelcodeanddescription

(forestswithprevalenceof...)

Definitionoflinguisticevaluator Fromcastanetum tolauretum Fromfagetum tocastanetum Frompicetum tofagetum 3111:evergreenoaksandotherevergreenbroadleaves Low Low Notpresent

3112:deciduousoaks Medium Low Notpresent

3113:autochthonousbroadleaves High High Notpresent

3114:chestnut High Medium Low

3115:Europeanbeech High High Medium

3116:hydrophilicspecies High High Notpresent

3117:exoticbroadleaves(locusttree) High Medium Notpresent

3121:Mediterraneanpinesandcypresses Low Low Notpresent

3122:mountainpines Medium Low Notpresent

3123:Norwayspruceand/orsilverfir High High Medium

3125:exoticconifers Medium Medium Notpresent

313:mixedforest Low Low Low

(9)

I.Bernettietal./JournalofForestEconomics17 (2011) 285–297 293

Table4

Degreeofcredenceofhazardandresiliencecriteria.

Lineofevidence Variable Degreeofcredence

Resilience

Management Medium-low

Accessibility Medium

Protectedareas Medium-low

Ecologicaldiversity Medium

Landscapediversity Medium

Hazard

Wind Medium-high

Aridity Medium-high

Changeofphytoclimaticzone High

Slope Medium

Aspect Medium-low

trapezoidalfuzzynumber.Thisprocess,startingwithstep2,isrepeateduntilthesuccessivemean

becomesreasonablyclose.

(b)Aggregationoflinguisticsterms.Step1:sameasprevious.Instep2themethodpresentedinChen

(1998)isusedtodealwithfuzzyopinionaggregationforhomo/heterogeneousgroupsofexpert,

inparticular:(i)calculationofthedegreeofagreement(ordegreeofsimilarity)oftheopinions

betweeneachpairofexperts;amethodintroducedbyChenandLin(1995)isusedformeasuring

thedegreeofsimilaritybetweentrapezoidalfuzzynumbers.(ii)Constructionoftheagreement

matrix.(iii)Calculationoftheexpertaveragevalueofagreementbytheuseofagreementmatrix.

(iv)Calculationoftheconsensusdegreecoefficient.(v)Allparametersaresentbacktoexpertfor

re-examination.Step3:eachexpertprovidesrevisedevaluationuntilconsensusdegreebecomes

acceptable.

Resultsanddiscussion

Fig.3showsthemapsandthebox-whiskerdiagramsforthebeliefofhazard,beliefofresilience

anduncertaintyinterval.Thebox-whiskerplotsinFig.3showthemean(blacklineinsidethe

box-whiskers),thefirstandthirdquartileandfinally,theupperandlowerlimitsreached.

Ingeneraltheriskofhazardisrelativelylimited,withanaverageprobabilityequaltoabout0.4.Half

oftheTuscanyforestspresentanhazardriskbetween0.35and0.49.Therearealsosomelocalizations

witharelativehigherrisk,withanupperwhiskerequalto0.71.Thevaluesregardingresilientforests

toclimatechangearehoweverrelativelylow,withameanvalueof0.38andfirstandthirdquartile

equalto0.29and0.44,respectively.Inthiscasealsotheupperlimitdoesnotseemhigh(0.66).The

uncertaintyintervalshowsanaveragevalueof0.21(firstandthirdquartileof0.18and0.24,upper

limit0.32),thusafewTuscanyforestsseemtohavebothhighhazardandhighresilienceevaluation

(10)

Fig.4.Expecteddamage,adaptationcostandstrategiccost(D /ha).

inthesamearea.Onthegeographicpointofview,theforestlocalizationsshowingthehigherdegree

ofhazardandthelowerresiliencearesituatedinthemountainousareaoftheApennines

(northwest-southeastsideoftheregion),whiletheMediterraneanforestsseemtoshow,asawhole,alowerrisk.

TheseresultsmatchwiththeItalianandinternationalliteratureontheissue(EFIetal.,2008;Carraro

etal.,2007).

Fig.4highlightsthemapsthatrepresenttheexpecteddamage,themitigationcostandthestrategic

cost.

Resultsanalysis,showsthatgenerallytheadaptationcostishigherthantheexpecteddamages.The

averagevalueoftheexpecteddamageisabout332D/ha,withthefirstandthirdquartileequalto158

and524D/ha.Theadaptationcost,instead,showsameanof950D/ha(firstandthirdquartile719and

1,215D/ha,respectively).Forthisreason,thestrategiccostcomestobe,inthemajorityoftheforest

localizations,equaltotheexpecteddamage(mean326,firstandthirdquartile155and510D/ha).

Theseresultspointoutvaluesclosetotheonespresentedinanotherrecentstudycarriedoutby

Hanewinkeletal.(2010b)withasimilarmethodology(LEVreductioncalculatedwiththeFaustmann

formula)forsouthwestGermanyNorwayspruce;theauthorscalculateanaveragereductionsofLEV

equalto521D/hainA2IPCCscenario.

Thestrategiccostrepresentedinformula(7)andinFig.4,isexpressedasacapitalvalue.However,

consideringseveralofthebasicconditionsnecessaryfortheapplicationoftheFaustmannformula(i.e.

alongtimeconstitutedforestryfundandthuscharacterizedbyconstantrevenuesandcosts,aswell

asbyapermanenceinthedestinationandintheproductiveconditions),itispossibletohypothesize

thepresenceofregulatedanduneven-agedforestsinwhichthestrategiccostisreportedaspresent

valueofannuity.ThefrequencydistributionofthisvalueisrepresentedinFig.5.

Fortheentireregionalterritorythestrategiccostamountstoabout12,500,000D/year,

correspond-ingtothe33%ofthegrossproductofthesilviculturalsectorinTuscany(IRPET,2008).Thisreduction

canbecomparedwiththeonecalculatedforothersectorssensitivetoclimaticchanges.Inthe

agricul-turalsectorBernettietal.(2009b)evaluatedreductionsbetween1930and101,718D/haforthewine

sectorand134D/haforthearablelands.Carraroetal.(2007)estimatedthat,innorthernItaly,

reduc-tionofthetouristincomecouldvaryfromaminimumof17.3%toamaximumof21.2%(asafunction

ofthescenarioandoftheconsideredregion).Internationalstudies(e.g.Stern,2007)evaluatedthat

thecostderivedfromtheclimaticchangeisvaryingbetween−4%ofGDP(thatis,netgains)to+15%

ofGDP;mostestimatesarestillcenteredaround1%ofGDP.Thus,theforestsector(togetherwiththe

agriculturalandthetouristones)seemstobemoresensitivewhencomparedtotheeconomicsystem

initscomplexity.

Theseresultsmayallownotonlytoestimatea monetaryquantificationbutalsotodefinethe

localizationofthedamage.Thegeographiclocalizationandquantificationofhazard,resilienceand

uncertainty value, permitsto downscale resultsaccording to optimal administrativeand policy

(11)

I.Bernettietal./JournalofForestEconomics17 (2011) 285–297 295

Fig.5.Annualstrategiccost.

Fig.6. Adaptationcost(leftbars)andexpecteddamage(rightbars)forTuscanyProvinces.

asamatteroffacttheoperativeactionsregardingtheItalianagriculturalpolicyaredelegatedtothe

Provinces(NUTS-3subdivision,accordingtoEurostatclassification)andtheyarethemainlocal

stake-holders,abletoaddressfundsinparticularagro-forestrysectors.Quantificationofadaptationcostand

expecteddamageinTuscanyProvincesisexplainedinFig.6.

Conclusions

TheexaminedDempster–Shaferapproachappearstobeapromisingalternativeforconducting

economicanalysisinnear-ignoranceconditionsandinanenvironmentoflimiteddataandrelevant

uncertaintysuchastheclimatechangeinforestrysector.ThefuzzymeasureandDempster–Shafer

theoriesusedinthisstudyseemtobeefficienttoolsfordataintegrationandenvironmentalimpact

assessment.

InparticulartheapplicationofDStheoryprovedtobeparticularlyusefulfromtheexpertsystems

viewpointasapowerfultoolforuncertaintyanalysis;inadditionitaggregatesallevidentialvariables

inanuniqueframeofdiscernmentthatisanefficientkindofdamageanalysisinclimatechange

riskconditions.Finally,inenvironmentaldecisionmakingsector,itcouldprovideusefulguidancefor

naturalresourceplansbasedonthelevelofprobabledamageindifferentlocations.

Ontheotherhandtheworkcanbeimprovedinsomeaspectsasfollows.Monetarycomputations

inexpectedutilityvariationcausedbytheriskandbytheadaptationcostworkundertheassumption

thatallpricesandcosts(timber,labour,interest,regeneration,etc.)areconstantovertimeaccording

totheclassicalFaustmannmodel.Howeverinrealforestry,timberandinputpricesaresubjectto

(12)

(extremeevent,increaseintemperature,etc.).Similarly,inFaustmannformulaanassumptionisthat

theinterestrateisknownandconstantovertheperiod.

In ordertoovercometheselimitstheintegrationofriskinclimatechangedamageestimation

canbeachievedalsobytheadditionofapremiumtothediscountrate(Hanewinkeletal.,2010a).

InastudycarriedoutbyKnokeandHahn(2007)simulationapproachdevelopedthroughMonte

CarloanalysiswasusedtointroduceriskevaluationinFaustmannformula.Uncertaintyrelatedto

timberpricescanbetakenintoaccountbymeansofstochasticdynamicprogramming(Lohmander,

2000).OnLEV reductionviewpointotherstudyestimatevalueclosetotheonesdepictedinthis

research,e.g.forsouthwestGermanyNorwayspruce,theapplicationofFaustmannprocedurelinked

bygeneralizedlinearmodelandsingle-treegrowthsimulatordefinedanaverageLEVreductionof

521D /havs.326D /haofthepresentresearch(Hanewinkeletal.,2010b).

Furthermorethemodelassumesthatalsodamageandmitigationsworkperpetuallyandwith

con-stantquantification.Inordertoconsiderpossiblefluctuationofclimatechange,ecosysteminteractions

andtheirconsequencesonforestcrops,process-basedapproachescanbeasolution.Dynamicsprocess

inparticularlandscapeandvegetationdynamicsorplantphysiologymodelsaresomesuitable

exam-plesofthese.Finallyrecentmethodologicaladvanceshavebeenusedtoconsiderhighlyvariableand

incompleteandnoisycharacteristicsofmostdisturbancedatasets(e.g.,machinelearningalgorithms

suchasrandomforestsandartificialneuralnetwork)(Seidletal.,2011).

Furtherfuturedevelopmentofthemodelcouldinvolvetheextensionofanalysistonon-market

datainordertoachieveamoreholisticframeworktosupportdecisionsinclimatechangeplanning.

Acknowledgements

AuthorsthanktwoanonymousreviewersaswellasDr.M.BracaliniandDr.E.Locandrofortheir

helpfulandstimulatingcommentsandsuggestions.

References

Anderson,P.D.,Chmura,D.J.,2009.Silviculturalapproachestomaintainforesthealthandproductivityundercurrentandfuture

climates.WesternForester54,6–8.

Bentabet,L.,Zhu,Y.M.,Kaftdandjian,V.,Babot,D.,MassandRombaut,D.M.,2000.Useoffuzzyclusteringfordetermining

functionsinDempster–Shafertheory.In:5thInternationalSignalProcessingProceedings,Beijing,China,pp.1462–1470.

Bernetti,I.,Fagarazzi,C.,Sacchelli,S.,Ciampi,C.,Ragaglini,G.,Villani,R.,Triana,F.,Tozzini,C.,Bonari,E.,2009a.Bacini

agroen-ergetici:stimadellapotenzialitàproduttivadelleagrienergieinToscana.In:ManualeARSIA,Firenze.

Bernetti,I.,Ciampi,C.,Sacchelli,S.,2009b.Stimadeidannieconomiciindottidaicambiamenticlimaticisulsettorezootecnico

eagricolotoscano:previsioniperilperiodo2007–2099.Aestimum54,23–50.

Buongiorno,J.,2001.GeneralizationofFaustmann’sFormulaforstochasticforestgrowthandpriceswithMarkovDecision

ProcessModels.ForestScience47,466–474.

Cayuela,L.,ReyBenayas,J.M.,Echeverria,C.,2006.ClearanceandfragmentationoftropicalmontaneforestsintheHighlandsof

Chiapas,Mexico(1975–2000).ForestEcologyandManagement226,208–218.

Carraro,C.,Crimi,J.,Sgobbi,A.,2007.LavalutazioneeconomicadegliimpattideicambiamenticlimaticiinItaliaedellerelative

misurediadattamento.In:Carraro,C.(Ed.),CambiamenticlimaticiestrategiediadattamentoinItalia:unavalutazione

economica.IlMulino,Bologna.

Chen,S.M.,1998.Anewapproachtohandlingfuzzydecisionmakingproblems.IEEETransactionsonSystems,Man,and

Cybernetics18,1012–1016.

Chen,S.M.,Lin,S.Y.,1995.Anewmethodforfuzzyriskanalysis.In:Proceedingsofthe1995ArtificialIntelligenceWorkshop,

Taipei,Taiwan,RepublicofChina,pp.245–250.

Chen,S.J.,Hwang,C.L.,1992.FuzzyMultipleAttributeDecisionMaking:MethodsandApplications.Springer-Verlag,Berlin.

Cheng,C.H.,1999.Asimplefuzzygroupdecisionmakingmethod.In:FuzzySystemsConferenceProceedings,vol.2,Seoul,

Korea,pp.910–915.

Cheng,C.H.,Lin,Y.,2002.Evaluatingthebestmainbattletankusingfuzzydecisiontheorywithlinguisticcriteriaevaluation.

EuropeanJournalofOperationalResearch142,174–186.

Comber,A.J.,Law,A.N.R.,Lishman,J.R.,2004.AcomparisonofBayes’,Dempster–ShaferandEndorsementtheoriesformanaging

knowledgeuncertaintyinthecontextoflandcovermonitoring.Computers,EnvironmentandUrbanSystems28,311–327.

Ducey,M.J.,2001.Representinguncertaintyinsilviculturaldecision:anapplicationoftheDempster–Shafertheoryofevidence.

ForestEcologyandManagement150,199–211.

EFI,BOKU,INRA,AISF,2008.ImpactsofclimatechangeonEuropeanforestsandoptionsforadaptation.ReporttotheEuropean

CommissionDirectorate-GeneralforAgricultureandRuralDevelopment,AGRI-2007-G4-06.

Flannigan,M.D.,Stocks,B.J.,Wotton,B.M.,2000.Climatechangeandforestfires.TheScienceoftheTotalEnvironment262,

221–229.

Gadaud,J.,Rambonilaza,M.,2010.Amenityvaluesandpaymentschemesforfreerecreationservicesfromnon-industrialprivate

(13)

I.Bernettietal./JournalofForestEconomics17 (2011) 285–297 297

Hanewinkel,M.,Hummel,S.,Albrecht,A.,2010a.Assessingnaturalhazardinforestryforriskmanagement:areview.European

JournalofForestResearch,doi:10.1007/s10342-010-0392-1.

Hanewinkel,M.,Hummel,S.,Cullmann,D.A.,2010b.Modellingandeconomicevaluationofforestbiomeshiftsunderclimate

changeinSouthWestGermany.ForestEcologyandManagement259,710–719.

Hildebrandt,P.,Knoke,T.,2011.Investmentdecisionsunderuncertainty—amethodologicalreviewonforestsciencestudies.

ForestPolicyandEconomics13,1–15.

IRPET,2008.10◦RapportoeconomiaepoliticheruraliinToscana.SupplementofAgrisole.

Kauppi,P.,Posch,M.,1988.AcasestudyoftheeffectsofCO2-inducedclimaticwarmingonforestgrowthandtheforestsector:

aproductivityreactionsofnorthernborealforests.In:Parry,M.L.,Carter,T.R.(Eds.),TheImpactofClimaticVariationson

Agriculture,vol.1.AssessmentinCoolTemperateandColdRegions.Kluwer,Dordrecht,TheNetherlands,pp.183–195.

Knoke,T.,Hahn,A.,2007.BaumartenvielfaltundProduktionsrisiken:EinForschungseinblickund-ausblick.Schweizerischen

ZeitschriftfürForstwesen158,312–322.

Lexer,M.J.,Hönninger,K.,Scheifinger,H.,Matulla,C.,Groll,N.,Kromp-Kolb,H.,Schadauer,K.,Starlinger,F.,Englisch,M.,2002.

ThesensitivityofAustrianforeststoscenariosofclimaticchange:alarge-scaleriskassessmentbasedonamodifiedgap

modelandforestinventorydata.ForestEcologyandManagement162,53–72.

Lohmander,P.,2000.Optimalsequentialforestrydecisionsunderrisk.AnnalsofOperationsResearch95,217–228.

Lou,W.B.,Caselton,B.,1997.UsingDempster–Shafertheorytorepresentclimatechangeuncertainties.JournalofEnvironmental

Management49,73–93.

Loustau,D.,Bosc,A.,Colin,A.,Ogée,J.,Davi,H.,Franc¸ois,C.,Dufrêne,E.,Déqué,M.,Cloppet,E.,Arrouays,D.,LeBas,C.,Saby,N.,

Pignard,G.,Hamza,N.,Granier,A.,Bréda,N.,Ciais,P.,Viovy,N.,Delage,F.,2005.Modelingclimatechangeeffectsonthe

potentialproductionofFrenchplainsforestsatthesub-regionallevel.TreePhysiology25,813–823.

Nitschke,C.R.,Innes,J.L.,2008.IntegratingclimatechangeintoforestmanagementinSouth-CentralBritishColumbia:an

assess-mentoflandscapevulnerabilityanddevelopmentofaclimatesmartframework.ForestEcologyandManagement256,

313–327.

Mora,B.,Fournier,R.A.,Focher,S.,2010.Applicationofevidentialreasoningtoimprovethemappingofregeneratingforest

stands.InternationalJournalofAppliedEarthObservationandGeoinformation,doi:10.1016/j.jag.2010.10.001.

Moriondo,M.,Pacini,C.,Trombi,G.,Vazzana,C.,Bindi,M.,2010.SustainabilityofdairyfarmingsysteminTuscanyinachanging

climate.EuropeanJournalofAgronomy32,80–90.

Patt,A.,Dessai,S.,2005.Communicatinguncertainty:lessonslearnedandsuggestionsforclimatechangeassessment.External

Geophysics,ClimateandEnvironment337,425–441.

Raje, D., Mujumdar, P.P., 2010. Hydrologic drought prediction under climate change: uncertainty modeling with

Dempster–ShaferandBayesianapproach.AdvancesinWaterResources33,1176–1186.

RegioneToscana,2008.RapportosullostatodelleforesteinToscana2007.Litografeditor,Perugia.

Savage,L.J.,1954.TheFoundationsofStatistics.NewYork,NY,Wiley.

Scherm,H.,2000.Simulatinguncertaintyinclimate-pestmodelswithfuzzynumbers.EnvironmentalPollution108(3),373–379.

Seidl,R.,Fernandes,P.M.,Fonseca,T.F.,Gillet,F.,Jönsson,A.M.,Merganicová,K.,Netherer,S.,Arpaci,A.,Bontemps,J.D.,

Bug-mann,H.,González-Olabarria,J.R.,Lasch,P.,Meredieu,C.,Moreira,F.,Schelhaas,M.J.,Mohren,F.,2011.Modellingnatural

disturbancesinforestecosystem:areview.EcologicalModelling222,903–924.

Shafer,G.,1976.AMathematicalTheoryofEvidence.PrincetonUniversity,Princeton.

Solomon,A.M.,1986.TransientresponseofforeststoCO2-inducedclimatechange:simulationmodelingexperimentsineastern

NorthAmerica.Oecologia68,567–579.

Stern,N.,2007.TheEconomicsofClimateChange:TheSternReview.CambridgeUniversityPress,Cambridge.

Varma,V.K.,Ferguson,I.,Wild,I.,2000.Decisionsupportsystemforthesustainableforestmanagement.ForestEcologyand

Riferimenti

Documenti correlati

The conference is organized jointly by the INNS and the IEEE Computational Intelligence Society (CIS), and is the premiere international meeting for researchers and other

The following sections provide an overview of the information about the general absorption- regeneration scheme, the chemistry of solution, the thermodynamic equilibrium models, the

By contrast, if the average productivity is relatively high, the most plausible outcome is a pooling equilibrium where both types of workers are overeducated and are paid a wage

Proprio su questo terreno, a partire dal primo intervento di Stefano Vitali, moltissimo è emerso in questi giorni, a cominciare dalla gestazione e dalla lenta maturazione

Architecture, Built Environment and Construction Engineering—ABC Department, Politecnico di Milano, Milan, Italy.

Effetto della terapia con FSH ricombinante sulla frammentazione del DNA spermatico in pazienti affetti da oligoastenoteratozoospermia avviati a cicli ICSI.. SUMMARY: Effect of

Il Consorzio BIM del resto è il soggetto istituzionale di riferimento a livello territoriale in quanto dotato di qualità e competenze specifiche, può funzionare da vero