• Non ci sono risultati.

Lipid Metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors.

N/A
N/A
Protected

Academic year: 2021

Condividi "Lipid Metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors."

Copied!
25
0
0

Testo completo

(1)

AnimalFeedScienceandTechnology174 (2012) 1–25

ContentslistsavailableatSciVerseScienceDirect

Animal

Feed

Science

and

Technology

journalhomepage:www.elsevier.com/locate/anifeedsci

Review

Lipid

metabolism

in

the

rumen:

New

insights

on

lipolysis

and

biohydrogenation

with

an

emphasis

on

the

role

of

endogenous

plant

factors

Arianna

Buccioni

a

, Mauro

Decandia

b

, Sara

Minieri

a

, Giovanni

Molle

b

,

Andrea

Cabiddu

b,∗

aDipartimentodiScienzeZootecniche,UniversitàdiFirenze,ViadelleCascine,5,50144Firenze,Italy bDipartimentoperlaRicercanelleProduzioniAnimali,Agris,LocalitàBonassai,07040OlmedoSassari,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received10March2011

Receivedinrevisedform15February2012 Accepted15February2012 Keywords: Biohydrogenation Lipolysis PUFA Freshforage Endogenousfactor Invitrostudy

a

b

s

t

r

a

c

t

Dietcompositionisthemajorfactorinfluencingthefattyacidcompositionofmeatand milkfromruminantsbecausethefattyacids(FA)whichreachtheduodenumare,atleast inpart,ofdietaryoriginaswellastheresultofrumenmicrobialbiohydrogenation(BH)of dietarylipids.Inthisreview,effectsofsynthesisofconjugatedlinoleic(CLA)andlinolenic (CLNA)acidisomersintherumen,effectsofthelipidsinherbage,andplantendogenous factorsonsynthesisofnutraceuticalfattyacidsarediscussed.DiscoveryofbeneficialFAin ruminantproducts,suchasCLAandother␻-3FA,stimulatedmanystudiesinthelast20 years,includingthoseontherolesofminorFAintermediatesonrumenBHandmammary glandmetabolism.Muchofthisresearchwastargetedatidentifyingtheintermediates formedduringBHaswellastherumenmicrobialecologyinvolvedintheseprocesses. However,shiftingtheresearchtofeedstuffendogenousfactorswhichinfluencelipolysis (LP)andlossesofpolyunsaturatedFAintherumenmaybeofinterestinidentifying nutri-tionalstrategiestomanipulateFAprofilesinruminantproducts.ThepresenceofFAwith healthfulpropertiesinmilkormeatfromruminantscanbeenhancedbyinclusionoffresh foragesintheirdiet.Hence,thereisincreasinginterestinthecrucialroleofendogenous LP,plantsecondarymetabolites(PSM)andpolyphenoloxidase(PPO)onruminalBH.To betterunderstandthepathwaysthroughwhichPSMorPPOimpactFAmetabolism, char-acterizationoflipidsinfreshforagessuggeststheimportantroleofthedietmatrixonthe ruminalfateoflipids.AcriticaldiscussionoftheroleofoddchainbranchedFA(OBCFA) isalsoreported,includingpotentialimpactsonrumenmicrobialmetabolism.Finally,new insightsintolipidmetabolismfrominvitrotechniquesarediscussed.

© 2012 Elsevier B.V. All rights reserved.

Abbreviations:BH,biohydrogenation;CLA,conjugatedLA;CLNA,conjugatedLNA;DAPA,diaminopimelicacid;DHA,docosahexaenoicacid;DHS, dihy-drosphingosine;DPG,diphosphatidylglycerol;DM,drymatter;EPA,eicosapentanoicacid;ER,endoplasmicreticulum;FA,fattyacid;FAME,fattyacid methylesters;F/C,forage/concentrateratio;FFA,freeFA;FO,fishoil;GA,galactolipids;GL,glycolipids;GPL,glycerophospholipids;GPSL, glycophos-phosphingolipids;GSC,glucosylceramide;LA,linoleicacid;LAB,bacteriaassociatedwithliquidphase;LA-I,linoleicisomerase;LNA,linolenicacid;LP, lipolysis;MFD,milkfatdepression;MGDG,monogalactosyldiacylglicerol;ML,membranelipids;MUFA,monounsaturatedFA;NFA,neutralFA;OA,oleic acid;OBCFA,oddbranchedchainFA;OCFA,oddchainFA;PA,palmiticacid;PB,purinebases;PBP,proteinboundphenols;PC,phosphatidylcholine;PE, phosphatidylethanolamine;PG,phosphatidylglycerol;PHS,phytosphingosine;PI,phosphatidylinositol;PL,phospholipids;PSM,plantsecondary metabo-lites;PUFA,polyunsaturatedFA;PPO,polyphenoloxidase;PS,phosphatidylserine;RA,rumenicacid;RNA,rumelenicacid;SA,stearicacid;SAB1,bacteria looselyattachedtofeedparticles;SAB2,bacteriafirmlyattachedtofeedparticles;SFA,saturatedFA;SHL,sphingolipids;SL,plantsulpholipids;SPH, glyco-sphingolipids;SQDG,1,2diacylglicerol-3-(6-sulpho-␣-d-quinovopyranosyl)-snglycerol;TAG,triacylglycerides;TFA,transFA;UFA,unsaturatedFA;VA, vaccenicacid;VFA,volatilefattyacids;VNA,vaccelenicacid.

∗ Correspondingauthor.Tel.:+390792842349;fax:+39079389450. E-mailaddress:acabiddu@agrisricerca.it(A.Cabiddu).

0377-8401/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.anifeedsci.2012.02.009

(2)

6. Oddandbranchedchainfattyacids:anewfrontierinthestudyofrumenmicrobialmetabolism... 16

7. Futureresearchneeds... 18

7.1. Interactionbetweenpurecultureandpuresubstrate ... 18

7.2. InteractionbetweenPPO,PSM,endogenouslipolysis,andPUFAbiohydrogenation... 19

8. Conclusions... 20

Acknowledgements... 20

References... 21

1. Introduction

Therumenenvironmentischaracterizedby1010bacteria,107 protozoa,106 fungiandyeastspermlofliveliquor,a temperatureof38–39◦C,anormalrangeofpHbetween6.0and6.7,andaredoxpotentialof−150–350mV.Anydeviation fromtheseconditionsmayinfluencethemicrobialpopulationanditsfermentationproducts.Whilefeediswithintherumen asmallamountofdietaryfattyacids(FA)isabsorbedandcatabolisedtovolatileFA(VFA)ortoCO2.However,microorganisms areabletosynthesizeremarkableamountsofFAdenovofromprecursorcarbohydratesandtohydrogenateunsaturatedFA (UFA).ThusFAwhichreachtheduodenumareofdietaryoriginaswellastheresultofmicrobialactivity.Inrecentdecades manyauthors(e.g.,Harfoot,1978;PalmquistandJenkins,1980;Jenkins,1993)havestudiedthefateofdietarylipidsduring rumenfermentation,emphasizingthetwomajorprocessesinwhichesterifiedlipidsareinvolved(i.e.,lipolysis(LP)and biohydrogenation(BH)).ThismicrobialactivityleadstosynthesisoflongchainFAasthepoolforconjugatedlinoleicacid (CLA),conjugatedlinolenic(CLNA)isomersandotherBHintermediates.Whilesomeofthesearefoundinlowconcentrations intherumenliquor,theyaccumulateintissuelipidsandmilkfat(Destaillatsetal.,2005;Akraimetal.,2007).Interesting informationhasbeenobtainedfromadoptionofinvitrofermentationtechniquesintheseinvestigations.

TheaimofthisreviewistopresentanoverviewoflongchainUFAmetabolismpathwaysintherumen,factorsinfluencing synthesisofnutraceuticalFA,andresearchneedsinthefieldofruminallipidmetabolism.RuminalmetabolismofFAfrom freshforageisalsoreviewed,withanupdateonrecentresearchintoplantendogenousmechanismsinvolvedinLP,andtheir influenceonlossofPUFAintherumen.

2. Lipolysisandbiohydrogenation

LipolysisresultsinreleaseoffreeFA(FFA)fromesterstoallowBH,whichisreductionofthenumberofdoublebondson thecarbonchainoftheFA.Sincesubsequenthydrogenationcanonlyhappenifthecarboxylmoietyisfree,LPisanecessary stepinBH.ThusifonlysmallquantitiesofdietaryPUFAreachtheduodenum,thismaybeduetoamissingLP,andmay bewhatdeterminestherateofhydrogenationintherumen.Thisgroupofreactionsappearstobeaprocessutilisedby microorganismstoprotectthemselvesfromtoxiceffectsofUFA(Dehority,2003).

Afteringestion,dietaryesterifiedlipidsarehydrolysedtoFFAandglycerolaswellastosmallamountsofmono-and diglyceridesbymicrobiallipases,whichareextra-cellularenzymesassembledinsmallbeads(Jenkins,1993).Thenumberof microorganismscapableofhydrolysingestersislow,andtheiractivityishighlyspecific(Henderson,1971;Fayetal.,1990). VariousbacterialstrainsofButyrivibriofibrisolvensandAnaerovibriolipolyticaarecapableofhydrolysingtheesterbond,but B.fibrisolvenslipasehydrolysesphospholipids,A.lipolyticahydrolysesonlytri-anddi-glycerides,andtheirratesofhydrolysis differ.Lipaseactivityalsooccursinciliataeprotozoa,butnotinfungi(Dehority,2003),althoughtheircontributionisless thanthatofbacteria.

FFAmayalsoarisefromhydrolysisofplantgalactolipidsandphospholipidscatalysedbyseveralbacterialgalactosidases andphospholipases(e.g.,phospholipaseAandphospholipaseC),producedbyrumenmicrobes(Jenkins,1993).

ThehalflifeoffreeUFAisrelativelyshortduetotheirrapidhydrogenationbyrumenmicrobesintothecorresponding saturatedconfiguration.BHhasbeenestimatedat600and900g/kgofPUFA,andonlycontributestoasmallextenttothe recy-clingofmetabolichydrogenbecauseonly1–2%ofitisusedforthispurpose(Czerkawski,1984).HarvatineandAllen(2006) completedaninvivoexperimentwithlactatingdairycowstodetermineratesofFAbiohydrogenationoffatsupplements withdifferentgradesofunsaturation,anddevelopedakineticmodelofruminalBH.Basedontheirresults,theyshowedthat passageratesofC16:0,C18:0andtotalC18-carbonFAlinearlydecreasedasUFAincreased,whilethetransC18:1fractional

(3)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 3

Fig.1. Lipolysisandbiohydrogenationscheme. FromJenkins(1993),modified.

passageratewasaffectedquadraticallywithamaximumratefortheintermediatetreatment.IncreasingUFAincreasedthe extentofC18:2andC18:3biohydrogenation,anddecreasedtheextentofC18:1andtransC18:1biohydrogenation.

BacteriaarethoughttobemainlyresponsibleforBH,whilethecontributionofprotozoaisregardedasnegligible(Singh andHawke,1979).Thisactivityismainlyassociatedwithbacteriaattachedtofeedparticles,ratherthanwiththosein freeliquid.FreeUFAareadsorbedontofeedparticlesurfacesandhydrogenated(Harfootetal.,1975;Gersonetal.,1988). However,NamandGarnsworthy(2007)studiedtheBHrateoflinoleicacid(C18:2cis-9cis-12,LA)bymixedrumenfungi inaninvitroexperimentandnotedthatrumenfungicanbiohydrogenateLA,butthattheirBHislowerthanthatofrumen bacteria.Theendproductoffungalbiohydrogenationisvaccenicacid(C18:1trans-11,VA),asitisforrumenbacteria,and Orpinomycesisthemostactivebiohydrogenatingfungus.

ThefeedstuffswhichcompriseruminantdietsoftencontainLA,C18:3cis-9cis-12cis-15(linolenicacid,LNA)andC18:1 cis-9(Oleicacid,OA).MostbacteriainvolvedinBHarecellulolyticwiththemostimportantbeingB.fibrisolvens,identified byKepleretal.(1966)asabletoBHtheLA.Atpresentmorethan32strainsofthisbacteriumhavebeenidentifiedand characterized.Clostridiumproteoclasticum,reclassifiedasButyrivibrioproteoclasticus(Moonetal.,2008),istheonlybacteria isolatedfromtherumencapableofconvertingPUFAtoSFA.ThismicroorganismconvertsC18:1substratestoC18:0while Propionibacteriumacneshydratescis-9C18:1andtrans-11C18:1to10-OH-C18:0,whichisfurtheroxidizedto10-O-C18:0 (Kimetal.,2008;McKainetal.,2010).Fig.1showstheBHschemeofFAesters.

Whenthefibrecontentofthedietislowered,andhigherlevelsofconcentratesareusedinthediet,thereisareductionin thenumberofcellulolyticbacteriaintherumen(Lathametal.,1972;DoreauandFerlay,1994;Kalscheuretal.,1997;Loor etal.,2004).Thusthiskindofdietfavourslipidswhichpasstherumenwithoutbeingreduced,especiallyOAandLA(Chilliard etal.,2007).Howeverwhenthedietishighinconcentrates,otheralternativeBHpathwaysoccurwiththeappearanceof sometransfattyacids(TFA),characterizedbyatransdoublebondinthecarbonchain(GriinariandBauman,2006).

OtherdietaryfactorswhichdiminishLPandrumenBHareadvancedmaturityofforageand/orforagewhichhasbeen groundintoextremelyfineparticles(Gersonetal.,1986,1988).Inthelattercasetheadherenceofbacteriatofeedparticle surfacesispoorandthetransitratethroughtherumenisincreased,therebyreducingtimeofexposuretomicrobialactivity. TheamountandtypeoffataddedtothedietcaninfluencetheBHoflipidsintherumen.Forexample,theFAprofileof marineoilisrichinC20:5n-3(eicosapentaenoicacid,EPA)andC22:6n-3(docosahexaenoicacid,DHA)whileoilseedssuch assoybean,sunflower,canolaandlinseedmainlycontainC18PUFAandMUFA.TheseFAarehydrogenatedintherumen andinducesynthesisofBHintermediatessuchasconjugatedandtransisomers(Chilliardetal.,2007).

RumenbacterialpopulationswhichLPandBHcanbedividedintothreemaingroupsbeing:bacteriaassociatedwith theliquidphase(LAB)andbacteriaeitherloosely(SAB1)orfirmly(SAB2)attachedtofeedparticles(Czerkawski,1986; Legay-CarmierandBauchart,1989).Bessaetal.(2009)studiedtheFAcompositionofLAB,SAB1andSAB2withtheaimof identifyingthesebacteriafromtheirFAprofile,andfoundmarkeddifferencesinFAcompositionbetweenLABandSAB(i.e., detachableplusundetachablesolidassociatedbacteria)populations,consistentwithothers(Bauchartetal.,1990a;Kim etal.,2005;Vlaemincketal.,2006b).LABhadalowerFAcontentandahigherproportion(g/kgFA)ofoddbranchedchainFA (OBCFA)thandidSAB,whichhadahigherproportionofC18biohydrogenationderivedFA(C18:0;especiallytransC18:1and CLA).Theratiobetweenbranched-chainandodd-linear-chainFAwasalsohigherinLAB(2.26)thaninSAB(1.46).Bessaetal. (2009)observeddifferencesintheproportionsofFAbetweenSAB1andSAB2.ComparedtoSAB1,theSAB2compartment hadlowerproportionsofodd-chainFAandofsomebranched-chainFA(iso-C14:0andiso-C16:0andanteiso-C17:0),butthe

(4)

Fig.2.Biohydrogenationoflinoleicacid. FromShingfieldetal.(2010),modified.

ratiobetweenbranched-chainandoddlinear-chainFAwasthesame.SAB2alsohadhigherproportionsoftransC18:1,CLA andparticularlyof18:2n-6and18:3n-3thanSAB1.

3. Conjugatedfattyacidisomerssynthesisintherumen

3.1. ConjugatedLinoleicAcidisomerssynthesisintherumen

MicroorganismsmayuseBHasameansofdefenceagainstUFAtoxicity,andLAisomerizationisoneofthestepswhich makesFAinoffensiveinthisregard.CLAisapoolofgeometricalandpositionalisomersofLA(cis-9,cis-12C18:2)which containaconjugatedbondsystemlocatedfrompositions2to17ofthemolecularstructure.Eachpositionalisomerhasfour geometricisomersbeing:cis,trans;trans,cis;cis,cis;trans,trans,foratotalof56possibleisomers.Thedoublebondpositions ofCLAisomersactuallyidentifiedintherumenandinmilkfatrangefrom6,8-to13,15-C18:2inmostpossiblegeometrical configurations,foratotalof32isomers(Bessaetal.,2000;Krameretal.,2004;Shingfieldetal.,2008).

Rumenicacid(RA;cis-9,trans-11C18:2isomer)issynthesizedinsmallamountsintherumenbyLAisomerization,mostly inthemammaryglandby9desaturationofVAinlactatingruminants(GriinariandBauman,1999;Krameretal.,1999; Griinarietal.,2000;Mosleyetal.,2006;ShingfieldandGriinari,2007;Bernardetal.,2009).Palmquistetal.(2004)provided datatosuggestthatthisalsooccursintheadiposetissueoflambs.

ThefirststepoftheLABHpathwayconsistsofenzymaticisomerizationbycis-12,trans-11isomerase,whichturnsthe cis-12bondintoatrans-11(RA,Fig.2).Thisisomerasehasaspecificrequirementforfreecarboxylicgroups,andparticularly oneswiththeisolateddienecharacterizedbyageometry“cis-9,cis-12”.Linoleicisomerase(LA-I)doesnotneedacofactor,or anyactivatingfunctionalgroups,asitisbondedtothebacterialcellwallandhasbeenpartiallypurifiedandcharacterizedin alimitednumberofbacteriainstudiesofKeplerandTove(1967)andKepleretal.(1970)andYokoyamaandDavis(1971). Afterthebondinthetrans-11positionhasbeenformed,hydrogenationtothecis-9positioniseffectedbya microbial reductaseofB.fibrisolvens(Hughesetal.,1982).Theseinitialstepstakeplacerapidly,whiletheBHofVAtostearicacid(SA) ismuchslower,andresultsinVAaccumulationintherumen.Thuswhendifferentgroupsofmicroorganismsareinvolved, VAhydrogenationseemstobethestepwhichdeterminestherateofBH.

KempandLander(1984),classifiedbacteriainvolvedinBHintotwogroupsbeing:groupAbacteriawhichcanisomerize andhydrogenateLAtoVA(i.e.,B.fibrisolvens),andgroupBbacteriawhichcansaturateVAtoSA(i.e.,Fusocillusspp.,C. proteoclasticum).In2003,VandeVossenbergandJoblin(2003)isolatedastrainofButyrivibriohungateifrombovinerumen whichwasabletoformSAfromLA,a rareexampleofbacteriumwhich,actingalone,candirectlyreducePUFAtothe correspondingsaturatedFA.

Inthe1980s,theliteraturesuggestedthatthecontributionofprotozoatoBHwasduetoactivityofingestedbacteria (SinghandHawke,1979).HoweverDevillardetal.(2004)observedthattheCLAandVAcontentofrumenprotozoalcells was4–5foldhigherthanthatinbacteria,whichsuggeststhatprotozoamayalsobeamajorpoolofCLAandVAintherumen. Yà ˇnez-Ruizetal.(2006,2007),usinganapproachbasedonrealtimePCRquantifiedthecontributionofprotozoatoduodenal FAflowconfirmingthatthesemicroorganismcontributealmost400g/kgofRA,300–360g/kgoftrans-10,cis-12CLAand 400g/kgoftheVAleavingtherumenbypassage.ThesimplestexplanationisthatprotozoadonotformCLAandVA,but thattheyareveryefficientinincorporatingintermediatesofbacterialBH(Devillardetal.,2006).Howeveritisdifficultto calculatetherealcontributionofprotozoatoFAsupplybecausestudiesreportedbyDehority(2003)showedthatprotozoa tendtoberetainedintherumen,asoutflowdoesnotalwaysreflectruminalconcentrations.Incontrast,Yà ˇnez-Ruizetal.

(5)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 5

(2006)showedthattheFAwithinprotozoacontributeasignificantproportionoftheCLAandVAreachingtheduodenum ofruminantsandthattheprotozoalFAprofiledependsonthechemicalcompositionoftheanimals’diet.

RumenisomerizationalsoinvolvesotherUFA,suchusOA,whichhasbeenproposedasarumenprecursoroftransC18:1 isomers.SelnerandSchultz(1980)observedanincreaseofC18:1transacidsinmilkfatfromcowsfeddietsrichinOA, andMosleyetal.(2002)showedthatthiscouldbeattributedtorumenisomerizationofOA.Howeverseveralstudieshave shownthatOAistheruminalprecursorofhydroxystearicacid(10-OH-C18:0)andofketostearicacid(10-O-C18:0),whose accumulationinruminalcontentsofcattleisdirectlyrelatedtothequantityofOAintherumen(Jenkinsetal.,2006).In addition,McKainetal.(2010)demonstratedthatP.acnesDSM1897isthemainmicroorganismresponsibleforOAhydration to10-OH-C18:0,whichisfurtheroxidizedto10-O-C18:0.

Hudsonetal.(1995)isolatedtwobacterialstrainswhichconvertOAto10-OH-C18:0insheeprumenliquor.One,the 10-hydroxystearic-acid-producingbacterialgroup,consistedoftwostrainsofananaerobicgram-negativemicroorganism whosemorphologyallowedittobeidentifiedasSelenomonasruminantium.Theother,identifiedasEnterococcusfaecalis, consistedoftwostrainsofafacultativeanaerobicgrampositivechain-formingcocci.Theauthorsshowedthattherewere severaldifferencesinrepresentativecoloniesfromrumenfluidofsheepandcows.Forexample,whileinbothsheepand cowsthestrainsofStreptococcusbovis,LactobacillusandStaphylococcuswerethemostnumeroushydration-positiveisolates, sheeprumenfluidalsocontainedhydration-positivestrainsofEnterococcusandPediococcuswhichcanhydrateUFA.Overall, thesefindingssuggestthatlacticacidbacteriaarethemajorUFAhydratingbacteriaintherumen(Hudsonetal.,2000).

TheamountofVAhydrogenatedtoC18:0isaffectedbyconditionsintherumen,thetypeandtheconcentrationofdietary PUFA,andbydietarypolyphenolicsubstancessuchastanninswhichirreversiblyinhibittheprocess(Harfootetal.,1973). Vastaetal.(2009a,b)suggestedthattanninscanreduceruminalBHbecausetheyinhibitactivityofrumenmicroorganisms. Indeedtheyfoundthatthepresenceofthesepolyphenolicsubstancesinrumenliquor(above0.6mg/mlrumenfluid)results ina23%increaseofVA,a16%decreaseofSA,butnochangeintheproportionofCLA,whichcomesfromLAbymeansofan isomerizationcatalysedbyLA-I,anditsactivityisonlyreducedbythepresenceoftannins.Theauthorssuggestedthatseveral changesinBHproductionoccurbecausetanninsactselectivelyonbacterialstrains.Mooreetal.(1969)suggestedthatlarge amountsoffreeLAstopthesecondstageofBH,althoughthisdoesnotoccurwhenLAisintheesterifiedform.Chilliardetal. (2001,2003)reviewedtheeffectsofnutritionalfactorsaffectingmilkfatcompositionofruminantsandsuggested,onthe basisofliteraturedata,thatsupplementingdietswithmarineoildecreasesruminalBH.Chowetal.(2004)showedthatfish oil(FO)hasnoinfluenceonthedegreeofLPorapparentBHofLAandLNA.Thesimultaneousdecreaseintheamountof SA,andtheincreaseinVAandtrans-11,cis-15,C18:2insubstrates,whenFOisfedindicatesthatthissupplementinhibits thefinalstepofLAandLNABH.SimilarresultswerereportedbyShingfieldetal.(2003,2010)andShingfieldandGriinari (2007)invivo,whoalsoconcludedthatFOenhancestheRAcontentinmilkfatduetotheincreaseinVA.

Wasowskaetal.(2006)showedthatFOaddedtoruminantdietsisabletomodifytherateofBHbydecreasingthe initialisomerizationrateofLAandLNA,andsimultaneouslyincreasingVAaccumulation.ThesedataagreewithShingfield etal.(2003),whousedtheomasalsamplingtechniquetomeasurerumenoutflowofFFA.Theauthorsalsohighlighted theinhibitingeffectoffeedsupplementscontainingEPAorDHAongrowthofB.fibrisolvens,andonitsisomeraseactivity. SimilarresultswerenotfoundwithFO,whichdoesnotshowanyeffectsontheactivityofB.fibrisolvensinspiteofitshigh proportionofEPAandDHA.ThusFOinhibitsruminalBHthroughamechanismwhichisnotcompletelybasedoneffectson B.fibrisolvens.Huwsetal.(2010)notedthatincludingFOinthedietchangesthenumberofseveralrumenbacterialstrains, suchasA.lipolytica,F.succinogenesandR.flavefaciens.TheyalsoshowedthattheDNAconcentrationfromB.proteoclasticus strains,whicharetheonlybacterialstrainswhichhavebeenisolatedfromtherumencapableofbiohydrogenatingPUFAto C18:0,hasaweakrelationshipwithC18:0flowtotheduodenum,suggestingthatotherbacteriamayplayaroleinBHwhen FOisfedtocows.ThesedatawereconfirmedinotherstudieswhichexaminedthespecificroleofB.proteoclasticusstrains (Kimetal.,2008;Huwsetal.,2011).

MartinandJenkins(2002)demonstratedthatsomeenvironmentalfactors,suchasruminalpH,appeartohaveagreat influenceonproductionoftransC18:1andCLAisomers.TheseauthorssuggestedthatruminalpHhastobemaintained above6.0ifsynthesisofCLAistobemaximisedbecausecellulolyticbacteriaaresensitivetoacidiccondition.

Inthe1990s,GriinariandBaumanpostulatedthattherewasashiftinthenormalBHpathway(Fig.3)whenruminantswere fedhighconcentrate/lowfibrediets(Griinarietal.,1997,1998;GriinariandBauman,1999).Thistheorywascorroborated byseveralstudieswhichexaminedlowfibredietssupplementedwithplantoilsandFO(Piperovaetal.,2002;Looretal., 2004;Shingfieldetal.,2005).Thepresenceoffatinadietwithrapidlyfermentablecarbohydratesand/orahighproportion ofstarchaltersruminalconditionstoinducechangesintherumenbacterialpopulation.Asaresult,itisverylikelythat alternativepathwaystometabolizeFAareactivated.IthasbeendemonstratedthatLAmaybeisomerizedtoRAortrans-10, cis-12CLA(GriinariandBauman,2006),butthatisomerizationofLAtotrans-10,cis-12CLAconvertsthecis-9bondtoa trans-10throughactivityofacis-9,trans-10isomerase.Thisstepmayoccurviaanionicreactionassuggestedbydiscoveryof thecis-9,trans-10isomerasestructureanditsmechanismofactioninastudybyLiavonchankaetal.(2006).Inthenextstep, C18:2isomerswithtrans-10,cis-12doublebondsandtrans-10C18:1areformed.Reductionsthenoccuruntilthecarbon chainiscompletelysaturated.McKainetal.(2010)demonstratedthatB.fibrisolvensJW11metabolizetrans-10,cis-12C18:2 totrans-10C18:1,whileB.proteoclasticusP-18doesnotgrowinthepresenceoftrans-10,cis-12C18:2,butgrowsinmedium containingtrans-9,trans-11C18:2toformC18:0.TheyalsoshowedthatP.acnes,aruminalspecieswhichisomerizeslinoleic acidtotrans-10,cis-12C18:2,doesnotfurthermetabolizeCLAisomers,andthatB.fibrisolvensisabletometabolizesmall amountsoftrans-10C18:1.

(6)

Fig.3.Shiftoflinoleicacidbiohydrogenation. FromGriinariandBauman(1999),modified.

Trans-10,cis-12CLA(Griinarietal.,1997,1998;GriinariandBauman,1999)isinvolvedinthemilkfatdepression(MFD) syndromeinruminants.AstudybyLocketal.(2007)suggestedthattheroleoftrans-10C18:1inMFDhastobereconsidered, andrecentstudiesconfirmedthatthisisomermaydecreasemammarylipogenesis(Shingfieldetal.,2009).Discrepancies inresultsamongstudiesmayberelatedtothedose-dependenteffect,asKadegowdaetal.(2008)suggestedthattrans-6, trans-7andtrans-8isomersofC18:1mightbemoreimportantthantrans-10C18:1inMFD,andshowedthattrans-10, cis-12andtrans-7,cis-9CLAweretheisomersmoststronglynegativelycorrelatedtomilkfatproportion,whichimpliesthat trans-7,cis-9CLAhasapossibleroleinMFD.

Howeverseveralstudieswithdairycowshaveidentifiedotherputativeinhibitorsofmilkfatsynthesis,suchastrans-9, cis-11andcis-10,trans-12C18:2,althoughthesynthesismechanismhasyettobeconfirmed(Sæbøetal.,2005;Perfield etal.,2007).AstronglynegativeeffectwasdetectedforC18:1trans-10withrespectCLAtrans-9,cis-11indairysheep (Cabidduetal.,2009a).Wallaceetal.(2007)incubatedruminaldigestawithLAandobtained9,11CLAisomerswithfour possiblecombinationsofstructuralgeometry(cis/trans,trans/cis,trans/transandcis/cis)and10,12CLAisomerswiththe geometrytrans/cisandcis/cis.TheyalsoincubatedpureculturesofB.fibrisolvens,ButyrivibrioproteoclasticumandP.acnes G449isolatedfromruminaldigestawithLAindeuteriumoxide-containingbufferandfoundthefirsttwobacterialstrains behavedsimilarly,producingmostlyRAwithsmallamountsofother9,11isomers,alllabelledinC-13.Notraceof10,12 isomersoccurred,exceptinculturescontainingP.acneswhichappearedtobespecializedinproducing10,12CLAisomers. TheseresultsconfirmedthehighspecificityofbacteriastrainsinsynthesisingCLAisomers,andthatdifferentmechanismsare involved.Wallaceetal.(2007)proposedthatLA-IactsbyformingaradicalintermediatewheretheHonC-11ofLAisremoved leavingaradicalwhichisthermodynamicallylessfavourablethanaconjugateddoublebondsystemwheretheradicalis locatedonC-13.Thusmovementofthedoublebondfromcarbonatoms12and13occurstomaintainthermodynamic stability.Ahydrogenatomisthenremovedfromwaterinordertocompletethereaction.Withrespecttoformationofother 9,11conjugatedisomers,whicharecertainlylessfavourableintermsofenergywithrespecttothestabilityofRAradical intermediate,theirsynthesisprobablyoccurssimultaneouslywiththatofRA,anddoesnotinvolvesubsequentcis–transor trans–cisisomerizationofthecis-9trans-11isomer.

ThekineticprofileofCLAproductiondiffersamongisomers,andisinfluencedbytheinoculatedsubstrate.Theliterature agreesinshowingthatminorisomersreachtheirmaximumconcentrationinrumenliquorlaterthanmainisomers(Buccioni etal.,2006,2008,2009;Wallaceetal.,2007).

3.2. Conjugatedlinolenicacidisomerssynthesisintherumen

BHintermediatesofLNAwerefirstobservedbyReiser(1951),whofoundthatafterlinseedoilwasincubatedwithrumen sheepliquor,theLNAconcentrationdecreasedwhiletheproportionofC18:2andC18:1increased.Shorlandetal.(1955) subsequentlyobservedthatthedepotfatofgrazingruminantshadaFAprofilelowinLNA,whichisthemainFAingrass. BoththeseauthorshypothesizedthattherumenBHactivitycouldplayafundamentalroleinreducingLNAreduction.

Inthe1960s,studiesofWardetal.(1964),WildeandDawson(1966)andKepleretal.(1966)wereimportantmilestones inourknowledgeofrumenBHpathways.In1967,KeplerandTovepurifiedcis-12,trans-11isomerasefromB.fibrisolvens andconcludedthatthisenzymemightbeactiveonLAandLNAisomers.ThefirststepinbiohydrogenationofLNAmight beisomerizationoftheC12bond,withthepossibleyieldofintermediatescis-9,trans-11,cis-15C18:3andcis-9,trans-13, cis-15C18:3.

ThishypothesiswassupportedbyidentificationinmilkfatoftwonovelC18:2isomers(i.e.,trans-11,cis-15C18:2and cis-9,trans-13C18:2)byUlberthandHenninger(1994).Destaillatsetal.(2005)characterizedcis-9,trans-11,cis-15C18:3 andcis-9,trans-13,cis-15C18:3andconcludedthatthepresenceoftheseFAinrumenfluid,whichdefinitelyoriginatein smallquantitiesfromrumenmetabolism,confirmthepathwayreportedinFig.4.Thesameauthorsproposed“rumelenic acid”(RNA),“isorumelenicacid”and“vaccelenicacid”(VNA)astrivialnamesrespectivelyforcis-9,trans-11,cis-15C18:3 andcis-9,trans-13,cis-15C18:3andtrans-11,cis-15,C18:2byreferencetoRA,LNAandVA.Looretal.(2004,2005b)founda positivecorrelationbetweenvaccelenicacidand␣-LNAlevelsinmilkfatofdairycowsfeddietssupplementedwithlinseed

(7)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 7

Fig.4.Ruminalbiohydrogenationoflinoleicand˛-linolenicacids. FromDestaillatsetal.(2005),modified.

orsunfloweroil,whichwasconfirmedbyWasowskaetal.(2006)whoshowedthattheconcomitantpresenceofLNAand FOinruminalfluidinducesaccumulationofRNAandVNA.

GriinariandBauman(1999)proposedanalternativepathwayofLABHinvolvingacis-9,trans-10isomerasewhichwas analogouswiththefateofLAwhenrumenfermentationinvolvesruminantlowfibrediets(Fig.5).Itwaspostulatedthat thetrans-10intermediatesmayalsoplayaroleinMFD,andoriginatefromtheBHofLNAinawaysimilartoC18:2isomers withatrans-10doublebond.

Looretal.(2005a,b),completedaninvivoexperimentonmilkcompositionofcowsfedahighconcentratediet (con-centrate/forageratio650:350ondrymatter(DMbasis))supplementedwithlinseedoilat30g/kgDMandfoundadrastic MFDassociatedwithincreasedyieldoftrans-11,cis-15C18:2,andtransisomersofC18:3,withareductioninyieldofC18:0 pluscis-9C18:1.Theynoted,inparticular,thathighlevelsofdietaryconcentratereducedmilkfatyieldscomparedtodiets withalowconcentratecontent(i.e.,−90g/dofmilkfat)andthisdecreasewasworsened−400g/dofmilkfatwhenalow concentratedietwassupplementedwithoil.ThesechangeswereaccompaniedbychangesinthemilkFAprofile.

Thetrans-10C18:1 contentofmilkfatasa consequenceoffeedinghighlevelsofconcentrateplus unsaturatedoil accountedfor360g/kgoftotaltrans-C18:1inthestudyofGriinarietal.(1998),for590ginPiperovaetal.(2000),for 670ginOfferetal.(2001),for430ginPetersonetal.(2003),andfor240ginLooretal.(2005a).Thedifferentproportions oftrans-10C18:1inmilkfatinthesestudiesmaybeduetotherelativelylowlevelsofdietarystarch,230g/kgDM,inLoor etal.(2005a)andbecausethedietsweresupplementedwithpolyunsaturatedoils.

Offeretal.(1999),Donovanetal.(2000),Whitlocketal.(2002)andShingfieldetal.(2003)provideotherevidencefor alinkbetweencis-11-C18:1andFO-inducedMFD.DietaryFOresultedina7-foldincreaseintheproportionoftrans-9, cis-11-C18:2intherumen,whichsuggeststhatthisFAmaybearuminalprecursorofcis-11-C18:1.

4. Lipidfractionsinherbage,theirmanipulationandeffectsonPUFAruminalbiohydrogenation

4.1. Glycolipids

Thelipidcompositionofherbage(Figs.6and7)isbasedontwoclassesofpolarlipidswhichareusuallyassociatedwith cellularmembranes,andthusarealsocalledmembranelipids(ML):glycolipids(GL)andphospholipids(PL).Incontrast, theseedlipidprofilemainlyconsistsofnon-polarlipids,triacylglycerides(TAG;WeeninkquotedbyGarton,1960;Hawke, 1973).InGLlipidstheheadofthepolargroupisacarbohydrate,inPLitisbasedonphosphate,andTAGhavenopolar group.Herbagelipidaccountsfor33,135and832g/kgoftotalFAinTAG,FFAandMLrespectively(Garton,1960).Since TAGisanessentialandcrucialenergysourceduringearlystagesofseedlinggrowth,itisassumedthatFAmobilization duringseedgerminationislinkedtoplanttissuedevelopment.HoweverleaflipidFAaremainlybasedonGL,withalow energycontentanda25%higherPUFAcontentthanTAG,whichisconnectedtoGL’smetabolicandstructuralrolesin photosynthesis(DörmanandBenning,2002).ThehigherlevelsofPUFAinplantleavesaremainlyduetoLNA,whichis positivelycorrelatedwithtotallipidcontent(Crombie,1958)andrateofphotosynthesisAllakhverdievetal.(2001),whose

(8)

Fig.5.Alternativepathwayoflinolenicacid. FromGriinariandBauman(1999),modified.

resultsconfirmthoseofpreviousstudiesshowingthatwatersolublecarbohydratestendtoincreaseduringdaylight(Orr etal.,1997).Photosynthesistakesplaceinthethylakoidmembranewhichisafluidmosaiccontainingproteins,lipidsand pigments(HeinzandSiefermann-Harms,1981).Thethylakoidmembranecontainsabout400goflipids/kgDMandmainly consistsofGLandPL,whilelipidslocalizedinleafchloroplastsaccountforabout200–250g/kgDM(RoughanandBatt,1969;

Fig.6. Commontypesofstoragesandmembranelipids.Allthelipidtypesshownhaveeitherglycerolorsphingosineasthebackbone,towhichareattached oneormorelongchainalkylgroupsandapolarheadgroup.Intriacylglycerols,glycerophospholipids,galactolipids,andsulpholipids,thealkylgroupsare fattyacidsinesterlinkage.

(9)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 9

Fig.7.Structureofmembraneglycerolipids.Inhigherplantsthenon-phosphorousglycolipidsMGDG,DGDGandSQDGarethepredominantlipidclasses inchloroplast.Phospholipids(i.e.,PC,PE,andPG)areabundantinextraplastidicmembranes.Additionalphospholipids(i.e.,PA,PS,NAPEDPG,andPI)are minorcomponentsofplantmembranesandarerestrictedtospecificorganellesoraccumulateunderonlysomeenvironmentalconditions.

FromDörman(2005),modified. Table1

Lipidcompositionofryegrassleaves(g/kgoflipids).

Glycolipids (308g/kgoflipids) Phospholipids (368g/kgoflipids) Simplelipids (234g/kgoflipids) Pigment(92g/kgof lipids) DGDG 105 PE 44 Diglycerides 88 Chlorophyls 141

MGDG 105 PC 35 Fattyacids 84 Carotenes 34

SQDG 44 PI 13 Sterols 32 Tocopherols 3

Esterifiedsterylglycosides 38 Sterylesters,waxes 30

Componentfattyacids(415g/kgoflipids)

C16:0 C18:0 C18:1 C18:2 C18:3 Other

159 10 23 120 620 68

AdaptedandcalculatedfromHudsonandWarwick(1977).

PC=phosphatidylcholine; PE=phosphatidylethanolamine; PG=phosphatidylglycerol; PI=phosphatidylinositol; PS=phosphatidylserine; DPG=diphosphatidylglycerolMGDG=monogalactosyldiacylglycerol;DGDG=digalactosyldiacylglycerol;SQDG=sulphoquinovosyldiacylglycerol.

Hawke,1973;HeinzandSiefermann-Harms,1981;Jarrigeetal.,1995).Dependingontheirfunction,TAGsynthesistakes placeontheendoplasmicreticulum(ER)whilethatofpolarlipidsoccursinthethylakoid(Gounarisetal.,1986;Fig.8). MostGLinfreshforage(Table1)aremonogalactosyldiacylglicerol(MGDG)anddigalactosyldiacylglycerol(DGDG),also calledgalactolipids(GA)andwerefirstdiscoveredbyCarteretal.(1956)andsubsequentlyconfirmedbyWeenink(1961).

(10)

Fig.8.Synthesisdenovoofpalmitate,stearateandoleatetakesplaceintheplastidstroma.Therelativecontributionofplastidorextra-plastidgenerated diacylglycerolvariesamongplantspecies.Theelongationreactionsforformationofverylongchainfattyacidsareshownherewithacyl-CoAsubstrates,but othersubstratesmaybeusedindifferenttissues.Forclarity,routesoffattyacidandacyllipidsynthesisareshownseparately,buttheyareinterdependent tosomeextent.

FromGounarisetal.(1986),modified.

Shorland(1961)andWeenink(1962)laterfoundthattheFAprofileofGLwerealmostentirelycomposedofLNA(Table2; O’BrienandBenson,1964;RoughanandBatt,1969)andthattheneutralfattyacid(NFA)andFFAfractionshaddifferentFA profiles(Table3).Plantsulpholipids(SL)arespecificallyassociatedwiththephotosyntheticmembranesofhigherplants, wheretheirstructureisbasedon1,2diacylglicerol-3-(6-sulpho-␣-d-quinovopyranosyl)-snglycerol(SQDG;Figs.6and7). PlantSLarethethirdcomponentofGLfreshherbagelipidsafterGAandsphingolipidswithlessLAaswellasmorepalmitic (PA)andSAthanMGDGandDGDG(O’BrienandBenson(1964),inagreementwithRoughanandBoardman(1972)who postulatedthehigherratioofSFAinSL.TheSQDGlevelisabout40–50g/kgoftotallipidinplantleaves(Roughanand Boardman,1972;HudsonandWarwick,1977;Table4).

Glyco-sphingolipids(SPH)haveasphingosinechainastheirbackbone(Figs.6,9,10),towhichareattachedaFAandone ormorecarbohydratesasthepolarheadgroup(Lehninger,1979).Inplantcells,SPHaremainlyglucosylceramide(GSC; cerebrosides)andglycosylatedinositolphosphoryl-ceramides(Fig.11),withhigherSFAcontentandlowerlevelsofcis-9

(11)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 11

Fig.9.Glycosylceramidesfromplants,fungiandmammals.Theceramidebackbonesofglucosylceramidesfromplants(atthetop)showgreatvariety.Their sphingoidbasescarrythreepossiblemodificationsbeing:hydroxylationortransdesaturationatC-4,andcisortransdesaturationatC-8,thecombination ofwhichresultsinsevenfrequentplantsphingoidbases.Thesesphingoidbasesarelinkedtomorethantena-hydroxyfattyacidsvaryinginchainlength andn-9desaturation.Incontrasttoplants,glucosyl-andgalactosylceramidesfromfungi(middle)haveacharacteristicfungalconsensusstructurewith onlyafewstructuralvariations.

FromWarneckeandHeinz(2003),modified.

Fig.10.Structuresofceramideglycosidesfromplants.Theceramidebackbonesofplantsphingolipidshavelargevariability.Theirlong-chainbasescarry fourpossiblemodifications(ongreybackground),whicharehydroxylationor(E)-desaturationatC-4,and(E)-or(Z)-desaturationatC-8resultinginseven frequentlongchainbases.

(12)

C18:3 952.8 818.7 AdaptedfromO’BrienandBenson(1964).

MGDG=monogalactosyldiacylglycerol;DGDG=digalactosyldiacylglycerol;tr=trace. –=notreportedintheoriginalpublication.

Table3

Fattyacidcompositionofredcloverlipidfractions(g/kgoffattyacids).

Galactolipids Hexanesolublelipids

C8:0 – 2.2 C10:0 – tr C12:0 – 5.4 C14:0 – 19.2 C16:0 21.2 142.3 C18:2 19.2 60.1 C18:3 959.6 770.7

AdaptedandcalculatedfromWeenink(1961). –=notreportedintheoriginalpublication. Table4

Lipidcompositionofplantcellmembranes(moles/kgtotallipids).

PC PE PG PI PS DPG MGDG DGDG SQDG Sterols Glyco-sphingolipids Endomembranes Reticulum+Golgi 434.8 232.6 60 60 30 – – – – 41.5 – Tonoplast 152.8 152.8 20 59 20 – – – – 144.3 121.7 Plasmamembrane 83.6 93.2 15 16 11 – – – – 56 63 Chloroplast Outermembrane 320 100 50 – – 170 300 60 – – Innermembrane 90 10 – – 550 300 50 – – Thylakoids 70 10 – – 580 270 70 – – Mitochondria Outermembrane 520 220 30 100 – – – – – 130 – Innermembrane 370 330 20 40 – 110 – – – 130 –

AdaptedandcalculatedfromJouhetetal.(2007). –=notreportedintheoriginalpublication.

PC=phosphatidylcholine; PE=phosphatidylethanolamine; PG=phosphatidylglycerol; PI=phosphatidylinositol; PS=phosphatidylserine; DPG=diphosphatidylglycerolMGDG=monogalactosyldiacylglycerol;DGDG=digalactosyldiacylglycerol;SQDG=sulphoquinovosyldiacylglycerol.

Fig.11. Aglycolipidsbasalstructure(glycosylinositolphosphoceramide)onethesimplestlipidsinhigherplants,themostabundantsphingolipidinthe membranesofleavesoftomatoandsoybean.

FromMarkhametal.(2006),modified.

22–26-carbonmonounsaturatedFA.Thuswhileinositol-containingSPHarefoundonlyinplantsandfungi,GSCistheonly SPHwhichplants,fungiandanimalshaveincommon(WarneckeandHeinz,2003).

4.2. Phospholipids

AnalyticalresearchbyCarteretal.(1969),laterextendedbyHsiehetal.(1978),revealedthatglycophosphosphingolipids (GPSL)containN-acetyl-glucosamineandaninositolbondedviaaphosphodiesterlinktoaceramideandviaaglycosidic linktoachainofcarbohydratesofvariablecomposition,sugarssuchasmannose,arabinoseand/orfructose(Bromleyetal.,

(13)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 13

Fig.12.Thecommonglycerophospholipidsarediacylglycerolslinkedtohead-groupalcoholsthroughaphosphodiesterbond.Headgroupsubstituents couldbeethanolamine,choline,serine,glycerol,myo-inositol4,5biphosphateorphosphatidyl-glycerol.

FromNelsonandCox(2004),modified.

2003).Themainsphingoidbasesinplantsaredihydrosphingosine(DHS)andphytosphingosine(PHS)ofwhichithasbeen estimatedthatthereare300–400molecularspecies(Hannunetal.,2001).Thesimplestformsofawiderangeofstructures areinyeastsandfungi.Morecomplexformsareinprotozoaandinplants,(Fig.9).GPSLmakesup1g/kgofDMinleaves,while LAandLNAacidsare92and720g/kgoftotalFA,respectively.AswithGL,wherethebackboneconsistsofglycerolipids,these lipidsarecalledglycerophospholipids(GPL:Fig.12)while,ifthebackboneisasphingosinelipid,theyarecalledsphingolipids (SHL).

GPLarederivedfromphosphatidicacidand,inallthesecompounds,theheadgroupisjoinedtoglycerolthrougha phos-phodiesterbond.Theusuallevelofphospholipidsinforageisabout260g/kgofetherextract,correspondingto22g/kgof DM(Weenink,1962)withphospatidylcholinbeingthemaincomponent(450g/kgoftotalPL),followedby phospatidylglyc-erol(300g/kg),phospatidylethanolamine(180g/kg)andphosphatidylinositol(100g/kg),asreportedbyRoughanandBatt (1969).Howevertherearedifferencesintheliterature(HudsonandWarwick,1977),probablybecausethePLcomposition wasobtainedfromdifferentforagesspeciesandanalysedusingdifferentmethods.TheFAprofileofGPLhashigherlevels ofPA,andlowerlevelsofLAandLNA(560g/kg,210g/kg,90g/kgofFA,respectively;Weenink(1962),withforagespecies probablyhavinganeffect(Table5;RoughanandBoardman,1972).

Overall,inherbagesamplesthelipidfractionsassociatedwithdifferentFAprofilesmayinfluenceruminalLPandBH. IndeedGLdisappearedveryquicklyfromtherumenofsheepfedgrassherbageand,after8hofruminalincubation,MGDG hydrolysiswastwicethatofDGDG(Dawsonetal.,1974).ItisalsowellknownthatLNAinplantsismorecommoninthepolar fractionthaninFFAorTAG(826and470g/kgofFA,respectively)whileLAismorecommoninTAGthanFFAorthepolar fraction(230,174,50g/kgofFA,respectively).Thisdistributionofplantlipidshelpsexplainthehighertransferefficiencyof PUFAtomeatandmilkofruminantsfedfreshforageratherthanoilsandoilseeds(DoreauandFerlay,1994;Dhimanetal., 1999;Bernardetal.,2009;Leeetal.,2009a).IndeedDawsonetal.(1974)hypothesizedthattheBHrateoflinolenicacid islowerwhenitcomesfromMGDGandDGDGratherthanFFA.RecentresultsfromCabidduetal.(2010)pointedoutfor thefirsttimeinthebibliographythattheBHrateofLNAwasnegativelycorrelatedwithMLfractionlevel(Fig.13)intwo foragespeciesattwodifferentphenologicalstages,whereasViciasativahadhighervaluesofML,LNA(Fig.14)thanTrifolium incarnatum.

5. Plantendogenousfactorswhichinfluencefattyacidprofile,PUFAruminallipolysisandbiohydrogenation

Variationsinthelipidcompositionoffreshforagesareduetomanyfactors,includingplantspecies(Crombie,1958; Shorland,1961;RoughanandBatt,1969;Meloetal.,1995;Addisetal.,2005;Cabidduetal.,2005)cultivarswithinspecies

Table5

Fattyacidcomposition(g/kgtotalfattyacids)onlipidfractionsfromPeaandBeanleaves.

Pea Bean C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 MGDG 26.7 0 tr tr 90.8 881.5 26.6 0 tr tr 48.5 924.9 DGDG 167.8 0 82.7 tr 81.6 668.0 168.0 0 41.4 tr 20.4 770.2 PC 219.1 0 74.0 31.5 448.0 227.5 215.1 0 41.5 10.3 296.6 436.6 PE 205.2 0 62.1 tr 510.0 222.8 253.3 0 31.2 tr 348.8 366.7 PG 538.1 0 42.6 21.2 210.2 187.8 753.7 0 76.0 tr 32.1 138.2 PI 418.3 0 73.8 tr 291.1 216.8 548.3 0 74.7 tr 126.3 250.7 SL 340.1 0 104.8 tr 291.1 216.8 428.5 0 105.6 tr 72.9 392.9

AdaptedandcalculatedfromRoughanandBoardman(1972). tr=trace.

MGDG=monogalactosyldiacylglycerol; DGDG=digalactosyldiacylglycerol; PC=phosphatidylcholine; PE=phosphatidylethanolamine; PG=phosphatidylglycerol;PI=phosphatidylinositol;SL=sulpholipid(sulphoquinovosyldiglyceride).

(14)

Fig.13.Fattyaciddistribution(valuesinbracketsareexpressedasg/kgoffattyacidmethylesters)ofplantswhere(a)and(b)areFAprofilesofmembrane lipidsofViciasativaatvegetativeandreproductivestages,respectively,and(c)and(d)areFAprofilesofmembranelipidsofTrifoliumincarnatumat vegetativeandreproductivestages.

FromCabidduetal.(2010),adapted.

(Quartaccietal.,1995;Elgersmaetal.,2003;Cabidduetal.,2009c),plantageandphenologicalstage(Cabidduetal.,2009c), positionoftheleavesontheplant(Krebskyetal.,1996)levelofsensitivitytodrought(Quartaccietal.,1995),andgrazing orcuttingmanagement(Dewhurstetal.,2001).Nichols(1963)reportedthatlipidclassesarefoundindifferentproportions indifferentplantorgans(i.e.,leavesversusstems),withleaveshavingahigherGLcontentthanstems.Stemsareverylowin TGA,andSLcomparedtoleaveswherethepolarfractionsarethemainlipidcomponent.

Severalauthors(e.g.,Molleetal.,2004)havereportedthatdietsofgrazingruminantsareusuallyricherinleavesthan stemsleadingtotheassumptionthatleavesarethemaindietarysourceoflipidforBH,andthisissupportedbythestrong relationshipbetweentheleafinessofgrazedforagesandthevaccenicacidcontentinmilkfromgrazingsheep(Cabidduetal.,

Fig.14.Relationshipbetweenmembranelipidfractionandlinolenicacid(LNA)ruminalbiohydrogenationinherbagesamplesofViciasativa(rumble symbol)andTrifoliumincarnatum(trianglesymbol)atvegetative(opensymbols)andreproductive(solidsymbols)stages.

(15)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 15 Table6

Fattyacidcomposition(g/kgfattyacids)onlipidfractionsofredcloverleaves.

C12:0 C14:0 C14:1 C15:0 C16:0 C16:1 C17:0 C18br C18:0 C18:1 C18:2 C18:3

Triglycerides 7.1 109.5 – 2.9 174.6 6.0 tr tr 28.4 37.4 407.2 339.3

Phospholipids – 3.6 – tr 566.2 28.2 tr tr 33.8 40.2 229.7 100.3

Galactosylglycerides – 0.8 – – 16.6 tr – – 3.1 6.1 25.2 948.2

AdaptedandcalculatedfromWeenink(1962). tr=trace.

–=notreportedintheoriginalpublication. br=branched.

2004).Thelipidfractioninleavesisnotrandomlydistributed,with400g/kgofleaflipidsinchloroplasts,withGLrestricted toplastidmembranesandPL,themaincomponentsofextraplastidicmembranes(Table4).GLandPLconstitute600g/kgof leaflipids,althoughthisallocationchangeswhenchloroplasts(745versus255g/kgoflipidforGLandPL,respectively)or cytoplasms(840versus150g/kgoflipidsforPLandSL,respectively)areconsidered.

AsreportedinTable6,LAandLNAlevelsdifferamonglipidclasses(SchwertnerandBiale,1973),withahigherlevelof LAinTGAandinPL(373and250g/kgoftotalFA,respectively),whereasLNAismorecommoninGL(950g/kgoftotalFA; Weenink,1961).ItisofinterestthatthedifferentdistributionofLAandLNAinplantorgans,anddifferentFAprofileinthese lipidclasses,mayinfluencethefateofFAtoLPandoxidationloss.Almostfourdecadeshavepassedsincethefirstresults fromFaruqueetal.(1974)suggestedthathydrolysisofTGAandGAfromgrasswasdueprimarilytoplantenzymeactivity, suchasgalactolipaseswhichcatalyseMGDGandDGDG,phospholipaseswhichcatalyseGPLandsulpholipaseswhichcatalyse SL.Inrecentyearsseveralstudieshavebeencompletedtoclarifythepathwaysofendogenouslipolyticsystemsinplants (Leeetal.,2009b;VanRanstetal.,2011).Sincefreshforagecanbearichsourceof␻-3FAandCLAprecursors,considerable efforthasbeenmadetodevelopefficientenrichmentstrategiesfortheseFAinanimalproductsusingfeedingstrategies.In thelastdecadethelargeamountofresearchonplantendogenousfactorsinvolvedinruminallipidmetabolismassumed thatfreshforagecanplayanimportantroleinmakingruminantproductslessexpansive,healthierandtheirproduction moreenvironmentallysustainable.ApreliminarystudybyLeeetal.(2003)showedthatendogenouslipolyticactivityhad adetrimental(−25%)effectonMLcontent,andwasassociatedwitha180%increaseinFFA,whichwasdemonstratedby incubatingleafbladesofLoliumperenneandTrifoliumpratensewithbufferwithoutrumenliquor.Endogenouslipolysis ingrassforagespeciesreachedaplateauafter2hofinvitroincubationwhilethisplateauwasreachedveryslowlyin legumeswitharesultingdetrimentaleffectontheLAandLNABHratioofthelegumes(DewhurstandLee,2004).Leeetal. (2003)hypothesizedthatthisactionmightbeduetopolyphenoloxidase(PPO),whichhadbeenpreviouslyshowntohave aninhibitingeffectonendogenousplantproteolysis(Jonesetal.,1995).Asreportedbyseveralauthors,PPOisacopper metalloproteinwhichfunctionsinthepresenceofoxygen,andisabletoreduceLPinredcloverthroughdeactivationof lipolyticenzymesand/orthroughformationofprotein–phenol–lipidcomplexes.WhenthePPOenzymefromredcloverwas incubatedwithawiderangeofortho-diphenolsinthepresenceofoxygen,therewasrapidconversionfromthelatentto theactiveformofPPO(Leeetal.,2008a),aconversioninhibitedbyaddingascorbicacid,suggestingthatthismechanism requiresformationofortho-quinones.OtherfactorswhichinfluencetheefficacyofPPO,toproducephenol-boundprotein and/orPPOactivationincludesoxygenconcentration,thephenologicalstageoftheplantandtheplant’sNDFcontent(Lee etal.,2009b;Cabidduetal.,2011).

PolyphenoloxidaseincreaseslipidprotectionfromendogenouslipolyticactivityandrumenBHby11–22%(Leeetal., 2007b,2008a),toamaximumof33%(Leeetal.,2006,2007b).Howeveritcannotbedefinitelyconcludedfromtheseresults whetherprotectionisduetolipaseinhibition,oriflipidprotectionisduetoprotein–phenoland/orlipid–phenolcomplexes (Leeetal.,2010).

SeveralstudiesbyLeeetal.(2003,2004,2006,2007b,2008a,2009b,2010)showedthatLPismediatedbyplant endoge-nouslipasesupto50%.Duringgrazing,thefeedbolusisexposedtooxygenbyruminationandthePPOsystemisactivated (Leeetal.,2009b).Inasimulatedrumenenvironment,theextentofendogenousLPafter24hofincubationrangesfrom 650g/kgoflipidsforcocksfootto820g/kgforredclover(Leeetal.,2006,2008a,2011).Bauchartetal.(1990b)foundthat lipidhydrolysiswasmuchhigherindietsenrichedwithlipidsthanindietswithoutlipidsupplements.Severalauthors alsonotedthatLPintherumenneedsapHof6–7(TammingaandDoreau,1991),asdoestherumenmicrobialpopulation andtheirlipolyticactivity(Songetal.,2008).Wheninvivoresultsfromruminantsfedredcloversilage,withhigherPPO activity,werecomparedwiththosefedgrasssilagewithlowerPPOactivity,itwasfoundthatredclovertransfersC18:2 andC18:3fromfeedtomilkmoreefficientlythangrasses(Dewhurstetal.,2003;Leeetal.,2009a;Moorbyetal.,2009). Similarresultshavebeenreportedwhenredcloverwascomparedwithwhiteclover(Steinshamn,2010),thereby support-ingthehypothesisthatPPOoffersprotectionfromplantendogenouslipolysisandfromruminalBH.Asreportedbyseveral authors,manyfactorsareinvolvedinthisprocessbecause,insuchcases,redclovermayindirectlyinfluenceruminallipolysis andbiohydrogenationthroughashiftintheruminalmicrobialpopulation(Huwsetal.,2010),orbylipidencapsulationin protein–phenolmatrices(Leeetal.,2010).Becauseruminallipolysisandbiohydrogenationarealsoindirectlyinfluenced bytherumenpassagerate,theremaybeanassociationbetweenPPOlipolysisprotection,andtheincreaseinpassagerate, asreportedbyVanhataloetal.(2007)inwhiteclover.TheremaybealackofconsistencybetweenthePPO,passagerate andlipidencapsulationtheories.ThuswesuggestthatlipolysisandBHaredirectlyinfluencedbytheassociationofPPO,

(16)

insilagefermentationandthusreducedMLexposuretolipase(VanRanstetal.,2009).Bycontrast,thiseffectdidnotoccur forclover,probablyduetothenegativeeffectofproteinboundphenols(PBP)onmicrobiallipase(VanRanstetal.,2009). Leeetal.(2010)showedthat,inspiteoftheincreaseinPBPafterwilting,endogenouslipolysisisnotaffectedbut,after invitroincubation,LPwaslowerinwiltedcocksfootthantallfescue,duetotheinhibitingeffectofPBPonruminalmicrobial activity(Leeetal.,2011).TheDMcontent(i.e.,wiltingeffect)mayhaveadetrimentaladditiveeffectonlipolysistoamore damagingdegree(VanRanstetal.,2010).

BiohydrogenationisheavilyinfluencedbyPSM,whichincludesPPO,fattyacidoxidation(FAOP)andtannins(Leeetal., 2007a;Cabidduetal.,2009b,2010).Severalreportsontherelationshipbetweentanninandrumenmetabolismmention thenegativeeffects ofmodulationofproteinandfibredegradationondevelopmentoftherumenmicroflora.However littleinformationisavailableoneffectsofpolyphenoliccompounds,suchasLA-I,onrumenenzymeactivity(Cabidduetal., 2009b,2010).HoweverVastaetal.(2009a,b)reportedthattanninsdonotinterferewithLA-I,butdointerferewithmicrobial proliferation.Thustanninsdonotinhibittheactivityofmicrobialenzymes,butshiftthecompositionoftherumenmicrobial population.

6. Oddandbranchedchainfattyacids:anewfrontierinthestudyofrumenmicrobialmetabolism

Ruminalbacteriacontain50–90g/kg(DM)lipids,withPUFAandoddandbranchedchainfattyacids(OBCFA)representing 40g/kgand50g/kgoftotalFA,respectively(Kaneda,1991;MansbridgeandBlake,1997).OBCFAfromrumenmicroorganisms mainlyconsistsofisoC13:0,anteisoC13:0,isoC14:0,isoC15:0,anteisoC15:0,isoC16:0,anteisoC16:0,isoC17:0,anteiso C17:0(Vlaemincketal.,2004a,2006a).ThereisincreasinginterestinmilkOBCFAaspotentialdiagnostictoolsofrumen functionbecausedeterminingmilkOBCFAisnon-invasive,andthusmoreacceptablethancurrentinvivotechniqueswhich usuallyinvolveuseofruminallyfistulatedanimals(Vlaemincketal.,2006a;Bessaetal.,2009).RumenbacteriaOBCFAare mainlyC15:0isomers,with590–670g/kgoftotalOBCFA(Vlaemincketal.,2004b).Amongdietarycomponents,starchand fibreproportionsplayacriticalroleinrumenandmilkOBCFAcontent(Basetal.,2003;Vlaemincketal.,2004b;Cabrita etal.,2009)throughtheirinfluenceonthecompositionanddevelopmentofthemicrobialpopulationand,inparticular, onnumbersofbacteriaofcellulolyticbacterialstrains(Vlaemincketal.,2004a).Oddchainfattyacids(OCFA)areformed throughelongationofpropionateorvaleratewhereasprecursorsofbranchedchainfattyacids(BCFA)arethebranchedchain aminoacidsvaline,leucineandisoleucine,orthebranchedshortchaincarboxylicacids(BSCFA)isobutyricandisovalericacid (Kaneda,1991).AmultiplelinearregressionbasedonOBCFAhighlightsthepositiveinfluenceofruminalisoC15:0,anteiso C15:0andanteisoC17:0onthemolarproportionofacetate,whileC15:0wasmostimportantfortheruminalproportionof propionate(Vlaemincketal.,2004b).Sincetheruminalmicrobialpopulationisinfluencedbyawiderangeofvariablessuch asdietchemicalcomposition,ruminalpH,dietaryF/Cratio,ruminalNH3concentration,theserelationshipshaveonlybeen partiallyconfirmedbyothersstudies.Rigoutetal.(2003)andCabritaetal.(2007)foundsmallerresponsesintheC17:0 contentofmilkafterruminalinfusionofpropionicacidthaninC15:0content,whileDewhurstetal.(2007)foundlower levelsofC15:0andC17:0inmilkfromcowsfedwithhighF/CratiosthanfromcowsfeddietswithlowF/Cratios.OBCFA levelsarenegativelyinfluencedbylipidsupplementsaddedtothediet(Bauchartetal.,1990a)andalsobyPSM(Cabiddu etal.,2009b,2010),asaresultoftheirinhibitingeffectontheruminalmicrobialpopulation,directlybytoxinsorindirectly byreductionofnutrientsubstrateavailabilityforthemicrobes.Overall,OBCFAlevelsinmilkappearstobeapotentially usefultooltoevaluaterumenfermentationparameters,withoutignoringeffectsoffactorssuchasfeedparticlesizeandfeed management,whichcaninfluencetherumenVFAprofile(DehorityandOrpin,1997;Looretal.,2004).Indeed,exceptfor C17:1whichisendogenouslysynthesizedbytheactionof9desaturase(Fievezetal.,2003),C15:0andC17:0arepartially denovosynthesized(Vlaemincketal.,2006a;Cabritaetal.,2007).OBCFAhavebeenconfirmedtobeextremelyrelevant asmarkersofruminalmicrobialactivity,especiallywheneffectsofincubationtimeofsubstrateorsamplepreparation methodsofmicrobialcolonization/contaminationinvivoandinvitroneedtobeevaluated(Kimetal.,2005).Attemptsto validaterelationshipsbetweenrumenOBCFAoutputandmilkOBCFAaremixedcomparedwithmicrobialmarkerssuchas diaminopimelicacid(DAPA)andpurinebases(PB;Fievezetal.,2003).Vlaemincketal.(2005)foundthatdailymilksecretion ofOBCFAwascloselyrelatedtoduodenalflowofDAPAandPB,withverylowcoefficientsofvariation(10.1&and10.0%for DAPAandPB,respectively).Dewhurstetal.(2007)alsoseemtoindicatethatmilkOBCFAarenotalwaysrelatedtoduodenal flowoftheseFA,suggestingthatcorrelatingmilkOBCFAlevelwithrumenVFAmayidentifyaninterestingrelationship betweenisoC14:0andisoC15:0.Theseresultsalsosupporttheargumentfortherebeingarelationshipbetweendietary NDFlevelsandisoC14:0andisoC15:0levelsinruminalmicroorganisms(Vlaemincketal.,2006c).Arelationshipalso

(17)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 17

Fig.15.RelationshipbetweenruminalammoniacontentandsomeOBCFAintherumen. FromLooretal.(2002),Moorbyetal.(2006),Leeetal.(2008b),andDewhurstetal.(2007),adapted.

occurredbetweenlinearoddchainfattyacids(OCFA)andtheproportionofpropionateintherumenbecauseamylolytic bacteriacontainshighlevelsofOCFA(Vlaemincketal.,2004b,2006c),suggestingthatitmaybepossibletopredictrumen fermentationpatternsfrommilkOBCFA,ratherthanfromthechemicalcompositionofthediet.Inparticular,thelower valuesoftherootmeansquarepredictionerrorbetweenmilkOBCFAandruminalVFA(3.0%,9.0%and8.9%foracetate, propionateandbutyrate,respectively),duringthevalidationofthepredictionequation(Vlaemincketal.,2006c),suggest thatthisnewapproachiscorrect.

Newchallenges inestablishingthepreciseroleofOBCFA includeimprovingourunderstandingoftherelationships betweenseveralcellulosolyticbacteriastrainswhichcontainhighlevelsofodd-chainiso-fattyacidscomparedtoamylolytic bacteriawhichareparticularlyrichinOCFA(Vlaemincketal.,2006a).Vlaemincketal.(2006a)foundadecreaseinisoC14:0 andisoC15:0andisoC15:0,andanincreaseintheisoC17:0andanteisoC17:0,proportioninmilkfromcowsfedgrassversus maizesilage.Howevertheresultsdifferedamongcows,sheepandgoats,perhapsbecausemethylmalonyl-CoAsynthesis usestheFAdifferentlyamongspecies(Vlaemincketal.,2006a).Understandingthemechanismofactionoftheruminal microbialpopulationremainsaworkinprogress,althoughitisknownthatlipidsupplementsinhibitrumenbacteriain differentways,withGram+beingmoresensitivethanGram−,andthattheseeffectschangewiththeunsaturationlevels andcisversustransconfigurationoftheFA.Thereareseveralopinionsontheeffectsofsupplementingruminantdietwith lipids.Forexample,adietenrichedinLAandLNAresultedinareductionofOBCFAinmilk,whereasaFOormarinealgae supplementincreasedthetotalOBCFAcontentofmilk(Vlaemincketal.,2006a).Shingfieldetal.(2008)showedthatmilk fromcowsfeddietssupplementedwithsunfloweroils,withahighlevelofLA,linearlyincreasedOBCFAlevels(isoC15:0, C15:0andanteisoC17:0)comparedwithmilkfromtheunsupplementedgroup.Thesameresultsoccurredinvitro,where bacterialsynthesisofOBCFAincreasedwithDHAsupplementfeedinglevel(Vlaemincketal.,2008).

SomemilkOBCFAlevelsarenegativelycorrelatedwithdietarystarchlevels(isoC14:0,isoC15:0andisoC16:0)while others(isoC15:0andisoC14:0)arepositivelycorrelated.Inasimilarway,anegativerelationship(Fig.15)occurredbetween anteisoC17:0andruminalNH3asapotentialmarkerofrumenproteindegradabilityaccordingtoVlaemincketal.(2006a), whofoundalinearrelationshipbetweenduodenalmicrobialproteinflowandsecretionofOBCFAinmilk.HoweverDoreau etal.(2007)didnotconfirmtheirfindings,probablyduetothedifficultyofcorrelatingOBCFAwithduodenalmicrobial proteinflowinindividualcows,asrecentlyreportedbyGadeyneetal.(2011).Finally,isoC17:0isstronglycorrelatedwith BHintermediatessuchustransmoneneFA.OBCFAdetectioninmilkcouldbeapotentialwaytodiscriminatebetween grazingruminantswhosedietshavedifferentbotanicalcomposition,asreportedbyLourenc¸oetal.(2007)whofound40% higherlevelsofisoC17:0intherumenoflambsgrazingnaturalpastureswithhighlevelsofplantdiversitythaninlambs grazingpasturerichinlegumesorryegrass.UnfortunatelytheseresultswerenotconfirmedbyCoppaetal.(2011)who foundnodifferencesintheisoC17:0levelinmilkwhentheycomparedcowsgrazingpastureswithdifferentbotanical compositions.ThedifficultyindescribingtheruminalbacterialpopulationsbasedontheirOBCFAprofilewasconfirmedby thehigherlevelsofanteisoC15:0insomestrainsoftheB.fibrisolvens,thelowcontentofthisfattyacidinS.ruminantium andhighcontentofisoC17:0insomestrainsofPrevotellaruminicola(Vlaemincketal.,2006b).Finally,asweshallseelater, futureevaluationsoftheprotozoa/bacterialcommunityratiomaybeausefulwayofimprovingtheaccuracyofpredictions, and/orevaluationofrumenfunction,becausethelevelofOBCFAinprotozoaisconsistent(110versus160g/kgoftotalFAin bacteriaandprotozoa,respectively),asreportedbyOr-Rashidetal.(2007).

(18)

Fig.16.Comparisonoftwoapproachestoclassifyruminalbacterialonthebasisofbiohydrogenationpower(a)ortaxonomy(b). (a)isfromHarfootandHazelwood(1988);(b)isfromLourenc¸oetal.(2010).

7. Futureresearchneeds

7.1. Interactionbetweenpurecultureandpuresubstrate

Futureresearchaimedatbetterunderstandingruminallipidmetabolismshouldfocusontheoccurrenceof biohydro-genatedintermediatesbystudyinglipidmetabolismbypurebacterialstrainsgrowingonuniqueUFAsubstrates,quantifying impactsofprotozoalisomerizationmechanismsandtheirprotectiveeffectsonFABH,andevaluatingeffectsofplant endoge-nousfactorsonLPandBH.Inrecentyearsthefocusofresearchintolipidmetabolismshaschanged,withmoreattention beingpaidtoidentifyingthemetabolicpathwaysofsubstratesbymeansofculturingindividualmicrobialstrains.Inthis area,resultsfromdifferentgroupsproposedifferentclassificationcriteriaofbacteriainvolvedinthevariousPUFA biohy-drogenationsteps.InthecaseofButyrivibriospp.,thesecriteriaincludetheclassicalbiohydrogenationsteps(Fig.16a),and thetaxonomy(Fig.16b)alsobasedontoxiceffectoflinoleicacid.(HarfootandHazelwood,1988;Lourenc¸oetal.,2010). AsreportedinSection3ofthispaper,rumenbacteriainvolvedinBHwereclassifiedeitherasgroupA(Hazlewoodetal., 1979asquotedbyKempandLander(1984)orgroupB(KempandLander,1984).Studyinglipidmetabolismwithspecific strains,associatedwithspecificsubstrates,couldbehelpfulbecause,asreportedbyMcKainetal.(2010),whenone com-paresvariousruminalbacteriawiththeirrelatedbiohydrogenatedintermediates,thenthereductionofCLAisomers(9,11 geometricisomers)occursviadifferentmechanismscomparedwithmetabolismofotherunsaturatedFA(Fig.17).These resultsexplainwhyinterpretingresultsofruminalmicrobialecologystudiesthroughBHproductsaremorecomplexthan originallythought.Forexample,B.proteoclasticumdidnotgrowinthepresenceofCLAcis-9,trans-11orCLAtrans-10,cis-12, andtheirC18:0productionwasalsoinfluencedbyitsgrowthphase(Wallaceetal.,2006),suggestingthatthefateofFA,both precursorsandintermediates,isstronglyinfluencedbythebacterialstrainsandtheirphysiologicalstage(i.e.,exponential versusstationary)ofthemicroorganisms.Theinteractionbetweentheprotozoalandbacterialcommunitiesassociatedwith specificsubstratesalsoappearsinterestinginrelationshiptotheirimpactonBHintermediates.Theruminalmicrobial pop-ulation(expressedasviablecells)consistsofbacteria(1010/mlofruminalliquid),protozoa(104–106/mlofruminalliquid) andfungi(103/mlofruminalliquid).Bacteriausuallyhasthehighestgeneticdiversity(NamandGarnsworthy,2007;Jenkins etal.,2008),anditisrecognizedthatruminalbacteriaaremainlyresponsibleforLP(Dawsonetal.,1977;Jenkinsetal.,2008; Lourenc¸oetal.,2010)andBH(NamandGarnsworthy,2007).However,contrarytoexpectations,protozoaalsoinfluencethe contentofBHintermediatebyisomerase(Devillardetal.,2006;Or-Rashidetal.,2011;Shenetal.,2011)asdofungi(Nam andGarnsworthy,2007).ResultsofOr-Rashidetal.(2011)appearinterestinginthiscontextastheircomparisonoflinoleic acidmetabolisminbacteria,protozoaandtheirmixtureshowedthatallmetabolizelinoleicacidtodifferentCLAisomers andprotozoawereincapableofbiohydrogenatingLAand,whentestedinthebacterial/protozoalmixture,modulatedBH ofLA(Varadyovaetal.,2008).ThevaryingcapacitiesofthemicrobialgroupstometabolizeLAreportedinFigs.17and18 showthatbacterial/protozoalmixturesmayhavegreatercapabilitytobiohydrogenateCLAcis-9,trans-11toVAthan bac-teriaalone,withalowerrateofruminalbiohydrogenation.Thisprovidesnewinsightsintolipidmetabolismthroughthe newlyidentifiedintermediatestrans-11,trans-13CLAandcis-11,trans-13CLA(Or-Rashidetal.,2011;Fig.18).However thelackofSAproductionfromC18:1cis-12andfromC18:1trans-12remainstobeexamined.Theruminalbiohydrogenate intermediateprofilecanbechangedbymodulatingthehydrogenation/isomerizationrate,asobservedbyLaverrouxetal. (2011),whofoundthatisomerizationofVAappearstobeveryfastinthefirst5hofincubationwitha22.5%increaseofthe isomerizationratiowhentherumenfluidcamefromcowsfedahighF/Cdiet.Atpresent,itisnotclearwhythisincreased isomerizationoccursattheexpenseofhydrogenation,althoughitisprobablyduetochangesintheruminalbacterialand

(19)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 19

Fig.17.RoleofButyrivibriospp.,PropionibacteriumacnesandButyrivibrioproteoclasticumonmetabolismoftheunsaturatedfattyacidslinoleicandoleic acids.

FromMcKainetal.(2010)andWallaceetal.(2006),modified.

Fig.18.MetabolicpathwaysforbiosynthesisofCLAandrelatedcompoundsfromlinoleicacidbyrumenbacteria(B)andprotozoa(P).Solidarrowsare bacterialandprotozoalactivitiesleadingtoformationofisomersofCLAandC18:1,includingC18:0,theminordottedarrowsarethebacterialactivity leadingtoformationoftheprospectivecompounds,andthemajordottedarrowsrepresentthebacterialactivities.

FromOr-Rashidetal.(2011),modified.

protozoalcommunitiesstrains.AllthesechangesarealsofoundontheBHintermediates,andhaveimpactsofdifferent magnitudesontheruminalbacteriaandprotozoaOBCFA.

7.2. InteractionbetweenPPO,PSM,endogenouslipolysis,andPUFAbiohydrogenation

Lipidsinforagearelessdegradedthanoils,asreportedbyPerrieretal.(1992).TheseresultswereconfirmedbyWachira etal.(2000)whofounda15%lowerlinolenicBHratioinsheepfedonlygreenforagethaninsheepalsofedlinseed-based supplements.Thismaybeduetoplantssecondarymetabolites,suchasPPOandtannins(Vastaetal.,2009b;VanRanst etal.,2011;Cabidduetal.,2009b,2010),butmayalsobeduetoprotectionoflipidsfromLPandBHbycellularstructures, asreportedbyDoreauandFerlay(1994).TheliteraturesuggeststhatBHlevelsare820–850g/kgofLAand920–970g/kg ofLNA(Jalcetal.,2009a,b)incornandgrasssilages.AninterestingstudycompletedbyLeeetal.(2010)highlightedthe influenceofPPOonruminalBHprocessesthroughitscontrolofLP.Resultsfromseveralstudiesshowedthatendogenous

(20)

Fig.19. RelationshipsbetweentanninscontentsandactivePPOinTrifoliumspp.(X)Plantagospp.()Medicagospp.().PPOactivitywasdeterminedas opticaldensity/gfreshweight.

FromCabidduetal.(2011),adapted.

LP,after24hofincubationinasimulatedrumenenvironment,rangedbetween650g/kgoflipidsforcocksfootand820g/kg forredclover(Leeetal.,2006,2008a,2010).TheseresultsdonotagreewithBauchartetal.(1990b),whofoundthatlipolysis washigherincowsfedlipid-supplementeddietsthaninthosefednonsupplementeddiets.Astronginteractionbetween ruminalpHandbothmicrobialandendogenouslipaseshasbeendiscovered:indeedtheruminalmicrobialpopulationhas anoptimalpHof6.0–6.7(TammingaandDoreau,1991),whileplantendogenouslypoliticsystemsneedanoptimumpH of7–8,(Songetal.,2008).SincePUFAinforageareintheformofglycolipids,morestudiesontheendogenouslipolytic systemappearrequired,whichshouldfocusonhowgalactolipaseactivityisinfluencedbyPSMlevel,ratherthanPUFA,on microbialactivity.AsreportedbyKaniuga(2008),studiesongalactolipaseactivityarescantandrelatedtoeffectsoflight andtemperature,whichrevealthatitispossibletomodulatethisactivitybygeneticallymodifyingplants.Onlyrecentlydo someauthorsmentionthatgalactolipasearecapableofhydrolysinggalactolipidsandphospholipids,butnottriglycerides (MatosandPham-Thi,2009),andthatitsactivityisstronglyinfluencedbyforagespecies(GemelandKaniuga,1987).Another endogenousfactorwhichoccursinplants,suchasChrysanthemumcoronarium,iscoronaricacid(C18:H32O3,anepoxyfatty acid)whichcanhaveinhibitoryeffectsonrumenmicroorganism(−30%ofruminalBHrespecttocontrol)asreportedby Woodetal.(2010).InadditionCabidduetal.(2006)foundthatincludingC.coronarium,adaisyplantwithahighlevelofLA, inthedietofgrazingsheepincreasedmilkCLAcis-9,trans-11by60%andC18:1trans-11by60%throughitsinhibitingeffect onruminalmicrobialactivitymediatedbyLA,andbyincreasingmammarygland9desaturaseactivity.Itisrecognized thatC.coronariumalsohasPPOactivity,withaprobablesynergisticorantagonisticeffectonLPandBH.Forthisreason,itis necessarytounderstandtheinteractionsofUFA,PPO,coronaricacidandothersPSMandclarifytheroleofeachcomponent ontheruminalbiohydrogenationpathways.PreliminaryresultsfromCabidduetal.(2011)showedthatplantPPOactivity couldbeaffectedbyspecifictanninswithaninteractionofforagespeciesandplantphenologicalstage(Fig.19).

8. Conclusions

ThestudyofrumenFAmetabolismisimportanttotheunderstandingoffactorswhichinfluencethetypesofFAinhuman foodproductsderivedfromruminants.FoodproductsfromruminantsarenaturallyrichinCLA,VAandCLNA,andthe variationintheproportionsoftheseFAinhumanfoodsiscloselylinkedtotheanimals’diet.

Theplantlipidfractionsassociatedwiththeseendogenousfactors(i.e.,PSM,PPO)affectsrumenLPandBH.Althoughthe criticalroleofbacteriainBHiswellknown,protozoahavealsobeenshowntointeractwithFAmetabolismtoreduceBH andincreasetheextentofisomerization.ThisimpliesthatthereareunknownintermediateFApathways.

AchallengeinthefutureistocompletestudiesonplantlipidfractionsinconjunctionwithPSMandPPOinorderto discriminatebetweeneffectsofplantlipidsonFAbiohydrogenateintermediates.Thismaybecomethebasisforachieving moresustainable,lessexpansiveandhealthierruminantderivedhumanfood.

Acknowledgements

ThisresearchwascompletedwiththesupportoftheItalianAnimalScienceandProductionAssociationcommission “Evaluationofinvitrotechniquesforthecharacterizationoffeedsandforthestudyofdigestiveprocessesofdomestic animals”.Specialthanksmustbegiventothecoordinator,PaoloBani,withoutwhosehelpitwouldnothavebeenpossible. Theresearchalsoreceivedfinancial supportfromPRINProject2007–prot. 200778K3KJ–“Effectsoftanninsofsome ruminantfeedsontherumendegradabilityofproteinandfibrefractions,onthebiohydrogenationoflipidsandonthe

(21)

A.Buccionietal./AnimalFeedScienceandTechnology174 (2012) 1–25 21

qualityofmilkandmeat”,fromtheMinistryofUniversityandResearch(MiUR).WewouldalsoliketothanktheRegione AutonomadellaSardegna,whichfinanceddevelopmentofSections4–7throughtheproject“studyofdietarystrategiesto improvethequalityofdairysheepproducts”.Finallytheauthorsaresincerelyindebtedtotheanonymousrefereeswhose detailedadviceplayedafundamentalroleinimprovingthemanuscript.

References

Addis,M.,Cabiddu,A.,Pinna,G.,Decandia,M.,Piredda,G.,Pirisi,A.,Molle,G.,2005.Milkandcheesefattyacidcompositionofsheepfeddifferent MediterraneanforageswithparticularreferencetoCLAcis-9,trans-11.J.DairySci.88,3443–3454.

Akraim,F.,Nicot,M.C.,Juaneda,P.,Enjalbert,F.,2007.Conjugatedlinolenicacid(CLnA),conjugatedlinoleicacid(CLA)andotherbiohydrogenation intermediatesinplasmamilkfatofcowsfedraworextrudedlinseed.Animal6,835–843.

Allakhverdiev,S.I.,Kinoshita,M.,Inaba,M.,Suzuki,I.,Murata,N.,2001.Unsaturatedfattyacidsinmembranelipidsprotectthephotosyntheticmachinery againstsalt-induceddamageinsynechococcus.PlantPhys.125,1842–1853.

Bas,P.,Archimede,H.,Rouzeau,A.,Sauvant,D.,2003.Fattyacidcompositionofmixed-rumenbacteria:effectofconcentrationandtypeofforage.J.Dairy Sci.86,2940–2948.

Bauchart,D.,Legay-Carmier,F.,Doreau,M.,Gaillard,B.,1990a.Lipidmetabolismofliquid-associatedandsolid-adherentbacteriainrumencontentsofdairy cowsofferedlipid-supplementeddiets.Brit.J.Nutr.63,563–578.

Bauchart,D.,Legay-Carmier,F.,Doreau,M.,1990b.Ruminalhydrolysisofdietarytriglyceridesindairycowsfedlipid-supplementeddiets.Reprod.Nutr. Dev.S2,187S.

Bernard,L.,Bonnet,M.,Leroux,C.,Shingfield,K.J.,Chilliard,Y.,2009.Effectofsunflower-seedoilandlinseedoilontissuelipidmetabolism,geneexpression, andmilkfattyacidsecretioninalpinegoatsfedmaizesilage-baseddiets.J.DairySci.92,6083–6094.

Bessa,R.J.B.,Santos-Silva,J.,Ribeiro,J.M.R.,Portugal,A.V.,2000.Reticulo-rumenbiohydrogenationandtheenrichmentofruminantedibleproductswith linoleicacidconjugatedisomers.Livest.Prod.Sci.63,201–211.

Bessa,R.J.B.,Maia,M.R.G.,Jerónimo,E.,Belo,A.T.,Cabrita,A.R.J.,Dewhurst,R.J.,Fonseca,A.J.M.,2009.Usingmicrobialfattyacidstoimproveunderstanding ofthecontributionofsolidassociatedbacteriatomicrobialmassintherumen.Anim.FeedSci.Technol.150,197–206.

Bromley,P.E.,Li,Y.O.,Murphy,S.M.,Sumner,C.M.,Lync,D.V.,2003.Complexsphingolipidsynthesisinplants:characterizationof inositolphosphorylce-ramidesynthaseactivityinbeanmicrosomes.Arch.Biochem.Biophys.417,219–226.

Buccioni,A.,Antongiovanni,M.,Petacchi,F.,Mele,M.,Serra,A.,Secchiari,P.,Benvenuti,D.,2006.EffectofdietaryfatqualityonC18:1fattyacidsand conjugatedlinoleicacidproduction:aninvitrorumenfermentationstudy.Anim.FeedSci.Technol.127,268–282.

Buccioni,A.,Antongiovanni,M.,Petacchi,F.,Mele,M.,Serra,A.,Secchiari,P.,Minieri,S.,2008.Effectofdriedorgreenherbageonvaccenicacidandconjugated linoleicacidproductionduringinvitrorumenfermentation.Anim.FeedSci.Technol.140,207–213.

Buccioni,A.,Antongiovanni,M.,Minieri,M.,Rapaccini,R.,Pratesi,V.,Mele,M.,2009.Effectofthreespeciesofherbage(Medicagosativa,Loliummultiflorum, Avenasativa)ininvitroruminalproductionofconjugatedlinoleicandvaccenicacids.Ital.J.Anim.Sci.8,231–244.

Cabiddu,A.,Addis,M.,Spada,S.,Sitzia,M.,Molle,G.,Piredda,G.,2004.Theeffectofdifferentlegume-basedpasturesonthefattyacidcompositionofsheep milkwithfocusonCLA.In:Lüscher,A.,Jeangros,B.,Kessler,W.,Huguenin,O.,Lobsiger,M.,Millar,N.,Suter,D.(Eds.),LandUseSystemsinGrassland DominatedRegions.ETHZentrumZurich,Switzerland,pp.1133–1135.

Cabiddu,A.,Decandia,M.,Addis,M.,Piredda,G.,Pirisi,A.,Molle,G.,2005.ManagingMediterraneanpasturesinordertoenhancethelevelofbeneficialfatty acidsinsheepmilk.SmallRum.Res.59,169–180.

Cabiddu,A.,Addis,M.,Pinna,G.,Spada,S.,Fiori,M.,Sitzia,M.,Pirisi,A.,Piredda,G.,Molle,G.,2006.Theinclusionofadaisyplant(Chrysanthemumcoronarium) indairysheepdiet.1:effectonmilkandcheesefattyacidcompositionwithparticularreferencetoC18:2cis-9,trans-11.Livest.Sci.101,57–67. Cabiddu,A.,Addis,M.,Spada,S.,Acciaro,M.,Sitzia,M.,Decandia,M.,Molle,G.,2009a.Effectofdifferentsupplyanddifferentsourceofpolyunsaturated

fattyacidonmilkfatsynthesisofgrazingdairysheep.In:Chilliard,Y.,Glasser,F.,Faulconnier,Y.,Boquier,F.,Veissier,I.,Doreau,M.(Eds.),Ruminant Physiology.WageningenAcademicPublishersWageningen,Netherlands,pp.474–475.

Cabiddu,A.,Molle,G.,Decandia,M.,Spada,S.,Fiori,M.,Piredda,G.,Addis,M.,2009b.Responsestocondensedtanninsoffloweringsulla(Hedysarum coronariumL.)grazedbydairysheep.Part2:effectsonmilkfattyacidprofile.Livest.Sci.123,230–240.

Cabiddu,A.,Decandia,M.,Salis,L.,Scanu,G.,Fiori,M.,Addis,M.,Sitzia,M.,Molle,G.,2009c.Effectofspecies,cultivarandphonologicalstageofdifferent foragelegumesonherbagefattyacidcomposition.Ital.J.Anim.Sci.8(S2),277–279.

Cabiddu,A.,Salis,L.,Tweed,J.K.S.,Molle,G.,Decandia,M.,Lee,M.R.F.,2010.Theinfluenceofplantpolyphenolsonlipolysisandbiohydrogenationindried foragesatdifferentphenologicalstages:invitrostudy.J.Sci.FoodAgric.90,829–835.

Cabiddu,A.,Lee,M.R.F.,Decandia,M.,Molle,G.,Salis,L.,Vargiu,M.,Winters,A.L.,2011.Characterizationofpolyphenoloxidaseactivityindifferentforage ecotypeswithdifferentphenolicsubstrates.Adv.Anim.Biosci.2,543.

Cabrita,A.R.J.,Bessa,R.J.B.,Alves,S.P.,Dewhurst,R.J.,Fonseca,A.J.M.,2007.Effectsofdietaryproteinandstarchonintake,milkproduction,andmilkfatty acidprofilesofdairycowsfedcornsilage-baseddiets.J.DairySci.90,1429–1439.

Cabrita,A.R.J.,Vale,J.M.P.,Bessa,R.J.B.,Dewhurst,R.J.,Fonseca,A.J.M.,2009.Effectsofdietarystarchsourceandbuffersonmilkresponsesandrumenfatty acidbiohydrogenationindairycowsfedmaizesilage-baseddiets.Anim.FeedSci.Technol.152,267–277.

Carlsen,C.K.,Fomsgaard,I.S.,2008.Biologicallyactivesecondarymetabolitesinwhiteclover(TrifoliumrepensL.)—areviewfocusingoncontentsinthe plant,plant–pestinteractionsandtransformation.Chemoecology18,129–170.

Carter,R.H.E.,Mccluer,H.,Slifer,E.D.,1956.Lipidsofwheatflour.I.Characterizationofgalactosylglycerolcomponents.J.Biol.Chem.Soc.268,17794–17802. Carter,E.,Strobach,D.R.,Hawthorne,J.N.,1969.Biochemistryofthesphingolipids.XVIII.Completestructureoftetrasaccharidephytoglycolipid.Biochemistry

8,383–388.

Chilliard,Y.,Ferlay,A.,Doreau,M.,2001.Effectofdifferenttypesofforages,animalfatormarineoilsincow’sdietonmilkfatsecretionandcomposition, especiallyconjugatedlinoleicacid(CLA)andpolyunsaturatedfattyacids.Livest.Prod.Sci.70,31–48.

Chilliard,Y.,Ferlay,A.,Rouel,J.,Lamberet,G.,2003.Areviewofnutritionalandphysiologicalfactorsaffectinggoatmilklipidsynthesisandlipolysis.J.Dairy Sci.86,1751–1770.

Chilliard,Y.,Glasser,F.,Ferlay,A.,Bernard,L.,Rouel,J.,Doreau,M.,2007.Diet,rumenbiohydrogenationandnutritionalqualityofcowandgoatmilkfat. Eur.J.LipidSci.Technol.109,828–855.

Chow,T.T.,Fievez,V.,Moloney,A.P.,Raes,K.,Demeyer,D.,DeSmet,S.,2004.Effectoffishoiloninvitrorumenlipolysis,apparentbiohydrogenationof linoleicandlinolenicacidandaccumulationofbiohydrogenationintermediates.Anim.FeedSci.Technol.117,1–12.

Coppa,M.,Verdier-Metz,I.,Ferlay,A.,Pradel,P.,Didienne,R.,Farruggia,A.,Montel,M.C.,Martin,B.,2011.Effectofdifferentgrazingsystemsonupland pasturescomparedwithhaydietoncheesesensorypropertiesevaluatedatdifferentripeningtimes.Int.DairyJ.21,815–822.

Crombie,M.W.,1958.Fattyacidsinchloroplastandleaves.J.Exp.Bot.9,254–261. Czerkawski,J.W.,1984.Microbialfermentationintherumen.Proc.Nutr.Soc.43,101–118.

Czerkawski,J.W.,1986.Degradationofsolidfeedsintherumen:spatialdistributionofmicrobialactivityanditsconsequences.In:Milligan,L.P.,Grovum, W.L.,Dobson,A.(Eds.),ControlofDigestionandMetabolisminRuminants.PrenticeHall,EnglewoodCliffs,NJ,USA,pp.158–172.

Dawson,R.M.,Hemington,N.,Grime,D.,Lander,D.,Kemp,P.,1974.Lypolysisandhydrogenationofgalactolipidsandtheaccumulationofphytanicacidin therumen.J.Biochem.144,169–171.

Riferimenti

Documenti correlati

By using an archaeomagnetic technique we dated (fig. 1) structures discovered at the lowermost stratigraphic level inside the archaeological site of Croce di Papa, near Nola

restrained P2X3 receptors in WT neurons, namely, increased P2X3 serine phosphorylation and receptor redistribution from lipid rafts to non-raft membrane

Images with signals for DAPI, TRIM27, myc-NOD2 and an overlay (blue: DAPI, red: TRIM27, green: NOD2) are shown. B) Quantification of NOD2 subcellular localization in HeLa

Negli anni ’70 sono stati introdotti nuovi farmaci, definiti di seconda generazione e rinominati “antipsicotici atipici”, che hanno dimostrato di essere molto efficaci

As part of the second Gaia data release in 2018 April, radial velocities for some seven million stars brighter than G ≈ 13 have been measured based on R = 11 500 spectra around the

pHBSP protects against multiple organ injury/dysfunction and inflammation caused by severe hemorrhagic shock by a mechanism that may involve activation of Akt and endothelial

The dynamics and the coherence properties of quantum uids of light and matter have been modeled in a few simple regimes, but many central questions remain open concerning vortical

Topic Organizer: Erol Ulucakli, Lafayette College Location: Easton , United States.