C2-alkyl migration
Michele Mari, Simone Lucarini, Francesca Bartoccini, Giovanni Piersanti*§
and Gilberto Spadoni
Full Research Paper
Open AccessAddress:
Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Piazza del Rinascimento 6, 61029 Urbino (PU), Italy
Email:
Giovanni Piersanti* - [email protected]
* Corresponding author
§ Phone, +390722303320; Fax, +390722303313
Keywords:
Dehydroalanine; Friedel–Crafts alkylation; indoles; migration; tryptophans
Beilstein J. Org. Chem. 2014, 10, 1991–1998.
doi:10.3762/bjoc.10.207
Received: 30 May 2014 Accepted: 08 August 2014 Published: 26 August 2014
Associate Editor: B. Stoltz
© 2014 Mari et al; licensee Beilstein-Institut. License and terms: see end of document.
Abstract
The reaction of 3-substituted indoles with dehydroalanine (Dha) derivatives under Lewis acid-mediated conditions has been investi-gated. The formation of 2-substituted tryptophans is proposed to occur through a selective alkylative dearomatization–cyclization followed by C3- to C2-alkyl migration and rearomatization.
Introduction
Facile access to tryptophan and unnatural tryptophan deriva-tives is of general interest because tryptophans are found in many naturally occurring compounds and are an important component of biologically active compounds [1-7]. Tryptophan and tryptophan analogs also have applications in chemical biology thanks to the highly environment-sensitive fluores-cence properties of the indole ring [8-17] and when incorpo-rated into peptides, they lead to compounds with increased resistance to enzymatic degradation and modification [18-25]. As part of our ongoing research on the use of the unsaturated amino acid dehydroalanine (Dha) in organic synthesis [26-37], we have focused our attention on the syntheses of tryptophans, cyclo-tryptophans (also known as pyrroloindolines), and
trypto-phan-containing natural products from simple indole starting materials [38-44].
In 2010, we reported a novel one-pot approach for the prepar-ation of pyrroloindolines 4 by a cascade addition/cyclizprepar-ation strategy between simple alkyl C3-substituted indoles 1 and 2-amidoacrylates 2 in the presence of stoichiometric amounts of a hard Lewis acid (Scheme 1, path a) [39]. Good yields and high exo:endo diastereoselectivities were obtained for a variety of indoles.
If the reaction is performed with indoles containing groups with good migratory aptitude at the C3 position, a mixture of the expected pyrroloindoline 4 and 2-substituted tryptophans 3 was
Scheme 1: Friedel–Crafts alkylation of 3-substituted indoles.
observed. A plausible mechanism for the formation of this unexpected side product involves rearrangement of pyrroloindo-line 4 to the corresponding 2-substituted tryptophan 3 by a C3-to C2-alkyl indole migration and rearomatization (Scheme 1, path b). Therefore, the aim of this study was to exploit the C3 Friedel–Crafts (FC) alkylation/C3- to C2 alkyl migration sequence for the synthesis of 2-substituted tryptophans [45-50]. The known methods for the synthesis of 2-substituted trypto-phans are limited and include both the catalytic and non-catalytic union of 2-alkylindole with a protected aziridine-2-carboxylate or an α-aminoenoate [38,51-54] or directly from 2-unsubstituted protected tryptophan and the appropriate nucleophiles via a 3-chloroindolenine intermediate [55-57]. More recently, direct C2-arylation and alkylation of N-protected tryptophan methyl ester have been reported in the context of a more extensive study on C−H activation reactions [58-61]. The present procedure is comparable to those described previously in terms of yield, but it is superior to previous methods with respect to its simplicity as it employs easily accessible 3-substi-tuted indoles.
Results and Discussion
Initially, the optimal conditions for the critical alkylative dearomatization–cyclization followed by the migration/rearom-atization reaction process were explored. Our initial attempt involved reacting readily available 3-benzylindole (1a) with commercially available N-acetyl-dehydroalanine methyl ester (2a) under the reaction conditions previously optimized for the synthesis of pyrroloindolines. However, in the presence of ZrCl4 (2 equiv), the reaction gave a low conversion (Table 1, entry 1).
It was found that the non-coordinating solvent CH2Cl2 gave the best results whereas moving to more polar solvents such as ethanol, DMF, and THF proved to be detrimental, presumably
due to coordination to the Lewis acid (Table 1, entries 2–4). The use of a strong H-bond donor such as trifluoroethanol (TFE) did not accelerate the reaction and still gave low yields after 24 h (Table 1, entry 5). Next, we tested the effect of different acids on the reaction. Although some Lewis acids such as TiCl4, SnCl4, and Sc(OTf)3 did not show beneficial effects (Table 1, entries 6–8), a good yield of 2-benzyltryptophan was achieved when 2 equiv of EtAlCl2 was used (Table 1, entry 9). Notably, resubmission of isolated pyrroloindoline 4a, obtained by reducing the reaction time to five hours (Table 1, entry 12), to the exact reaction conditions above, provided another batch of 2-benzyltryptophan (3a), showing that pyrroloindoline is the intermediate of the reaction. However, increasing the amount of acid did not afford a higher yield (Table 1, entry 11); but on the contrary, a smaller amount prevented the reaction from going to completion (Table 1, entry 10). Despite research by Jackson et al. [45-50] showing an intramolecular rearrangement to yield 2,3-disubstituted indoles using TFA or diluted HCl, our syn-thetic procedure did not work with the addition of these acids, and only some indole oligomers were obtained. The best yield and reactivity were obtained by conducting the reaction with 2 equiv of EtAlCl2 in CH2Cl2 at room temperature for 24 hours (Table 1, entry 9).
Under the optimized reaction conditions (Table 1, entry 9), the substrate scope was then examined, focusing on the relative migratory aptitudes of various C3-indole substituents; the results are summarized in Table 2. The reaction worked well, affording good to excellent yields using 3-(p-methoxy-benzyl)indole (1b) and 3-(p-chloro3-(p-methoxy-benzyl)indole (1c), whereas it did not afford the desired 2-substituted tryptophan when 3-(p-nitrobenzyl)indole (1d) was used as the starting material. These results can be attributed to the greater migratory aptitude of both the p-methoxy- and p-chlorobenzyl groups, compared to the p-nitrobenzyl substituent (even though in this case a detri-mental coordination between nitro group and Lewis acid can
Table 1: Optimization of the reaction conditions.a
Entry Lewis acid Solvent Yield (%)b
1 ZrCl4 CH2Cl2 25 2 ZrCl4 EtOH NR 3 ZrCl4 DMF NR 4 ZrCl4 THF NR 5 ZrCl4 TFE 13 6 TiCl4 CH2Cl2 15 7 SnCl4 CH2Cl2 28 8 Sc(OTf)3 CH2Cl2 12 9 EtAlCl2 CH2Cl2 70 10c EtAlCl2 CH2Cl2 29 11d EtAlCl2 CH2Cl2 68 12e EtAlCl2 CH2Cl2 25
aReaction conditions: 1a (0.25 mmol), 2a (0.3 mmol), Lewis acid (0.5 mmol), solvent (2.5 mL), rt, 24 h. bYields of the isolated products after column chromatography. cLewis acid (0.25 mmol). dLewis acid (1 mmol). eThe reaction was quenched after 5 hours to isolate the pyrroloindolines 4a, see Supporting Information File 1. NR, no reaction.
Table 2: Synthesis of 2-benzyltryptophans 3a–j.a
Entry Indole Tryptophan Time (h) Yield (%)b
1 1a 3a 24 70 2 1b 3b 16 74
Table 2: Synthesis of 2-benzyltryptophans 3a–j.a (continued) 3 1c 3c 48 53 4 1d 3d 72 NR 5 1e 3e 72 NR 6 1f 3f 72 11 7 1g 3g 72 NR 8 1h 3h 24 67 9 1i 3i 48 51
Table 2: Synthesis of 2-benzyltryptophans 3a–j.a (continued)
10c
1a
3j
24 48
aReaction Conditions: 1a–i (0.25 mmol), 2a (0.3 mmol), EtAlCl2 (0.5 mmol), CH2Cl2 (2.5 mL), rt. bYields of the isolated products after column chroma-tography. cMethyl 2-phthalimidoacrylate (2b) was used. NR, no reaction.
Table 3: Synthesis of 2-allyltryptophans 3k–o.a
Entry Indole Tryptophan Time (h) Yield (%)b
1
1k 3k
48 61
occur), thus agreeing with earlier studies on the benzylation of indoles [46].
Whereas indoles bearing a simple C3-benzyl substituent furnish products in good yields, the reaction is very sensitive to the steric bulk around the electrophilic alkyl carbon atom; this observation is in agreement with the fact that the C3-alkyl group is very likely to attack the electrophilic iminium species generated in situ after the Dha/Friedel–Crafts-type reaction with indoles. Attempts to carry out the alkylation/migration reaction with 3-benzhydrylindole (1e) were unfruitful (Table 2, entry 5). When 3-(tetrahydronaphthalen-1-yl)indole (1f) was used, a very low conversion to the corresponding 2-substituted tryptophan was observed (Table 2, entry 6). For indoles containing 3-heterobenzyl substituents, the results were conflicting. Whereas 3-(furan-2-ylmethyl)indole (1g) did not react under the usual reaction conditions (Table 2, entry 7), bis(indol-3-yl)methane (1h) provided the desired product in an excellent yield and decent time (Table 2, entry 8). The latter is an
interesting compound, and to the best of our knowledge, it has never been synthesized previously but only reported as a conta-minant in biotechnologically manufactured tryptophan [62,63]. Also 3-benzyl-N-methylindole (1i) performed well in the reac-tion although a longer reacreac-tion time is needed to obtain a rea-sonable yield of the desired 3i (Table 2, entry 9). Regarding on the influence of the amine protecting group of Dha, the N-acetyl protecting group might promote the C3–C2 rearrangement, rendering the intermediate 3,3-disubstituted indolenium salt more likely to accept the migrating alkyl group at the C2-pos-ition that is in equilibrium with the corresponding tricyclic pyrroloindolines. Indeed, the reaction between 3-benzylindole (1a) and methyl 2-phthalimidoacrylate (2b) gave only 48% yield of the desired rearranged product (3j) (Table 2, entry 10) whereas the N-Cbz and N-Boc protecting groups were unstable under the reaction conditions.
As shown in Table 3, this novel reaction with Dha 2a is not restricted to 3-benzylindole derivatives but can also be
Table 3: Synthesis of 2-allyltryptophans 3k–o.a (continued) 2 1l 3l 16 86 3 1m 3m 16 70 4 1n 3n 72 NR 5 1o 3o 48 68
aReaction conditions: 1k–o (0.25 mmol), 2a (0.3 mmol), EtAlCl2 (0.5 mmol), CH2Cl2 (2.5 mL), rt. bYields of the isolated products after column chroma-tography. NR, no reaction.
employed for other types of SN1-active substrates such as 3-allylindoles [64]. Under the optimized conditions, the use of 3-allyl, 3,3-dimethylallyl (“normal” prenyl), and 3-geranylin-doles as nucleophiles provided the corresponding 2-allyltrypto-phans [65] in good yields, after the expected C3- to C2-indole allyl migration (Table 3, entries 1–3). The high yielding syn-thesis of these compounds is of particular interest as 2-prenyl-tryptophan derivatives have been obtained or isolated from a diverse array of natural sources [66,67] and, in general, prenyla-tion at the indole ring leads to a significant increase in the anti-oxidant and/or cytotoxic activity of tryptophan-containing molecules [68-70]. However, the reaction did not occur with the indole bearing the more bulky 1,1-dimethylallyl (“reverse” prenyl) substituent at C3, confirming the limit of steric hindrance in this reaction (Table 3, entry 4). Unfortunately, the reaction with 3-propargylindole only afforded the corres-ponding pyrrolindoline derivative without any trace of the re-arranged 2-substituted tryptophan, even with extended reaction times.
The electronic properties of the migratory group have a pronounced effect on the reaction profile. As known from other Wagner–Meerwein-type rearrangements [71], the migration ten-dency is principally controlled by the stability of the migratory cation. However, we reasoned that indoles with an electron-rich and polarizable atom/functional group at the C3-position (i.e., 3-sulfenylindoles) could be good substrates for the reaction. Notably, 3-(methylthio)indole (1o) underwent the alkylation/ C3–C2 migration sequence to give 2-(methylthio)tryptophan 3o in good yields (Table 3, entry 5). Remarkably, the presence of a thioether in the indole ring offers unique, site-specific handles that can be utilized for further functionalization of the trypto-phan moiety.
Conclusion
In summary, we have developed the synthesis of 2-functional-ized/substituted tryptophans through a novel alkylative dearom-atization–cyclization/migration/rearomatization sequence between easily accessible 3-substituted indoles and
commer-cially available Dha 2a for the construction of 2-substituted tryptophans. The final rearrangement proceeded in moderate to very good yields, depending on the migration tendencies of the C3-indole substituent. Although the substituent migration from the C3- to C2-indole position is principally limited to benzyl, allyl/prenyl, and sulfenyl groups, the operational simplicity, synthetic brevity, and relatively facile access to 3-substituted indoles should make it very useful for the preparation of C2-functionalized tryptophan derivatives.
Experimental
General procedure for the synthesis of
N-acetyl-2-substituted tryptophan methyl
ester
A 1 M solution of EtAlCl2 in hexane (2 mmol, 2 mL) was added dropwise to a stirred and cooled (0 °C) mixture of methyl 2-acetamidoacrylate (172 mg, 1.2 mmol) and the suitable 3-substituted indole (1 mmol) in dry CH2Cl2 (10 mL) under a nitrogen atmosphere. The mixture was stirred at room tempera-ture for 17–72 hours, then carefully poured into an ice-cold saturated aqueous sodium hydrogen carbonate solution (10 mL). The resulting suspension was filtered through Celite and the aqueous layer was extracted with dichloromethane (3 × 15 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated in vacuo. The crude product was puri-fied by flash chromatography on silica gel (cyclohexane/ethyl acetate 8:2, or CH2Cl2/methanol 98:2 for 3h, as eluent) and/or crystallization.
Supporting Information
Supporting Information File 1
Experimental procedures, characterization data, 1H and
13C NMR spectra of new compounds.
[http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-10-207-S1.pdf]
Acknowledgements
We gratefully acknowledge the financial support of the Univer-sity of Urbino “Carlo Bo”, and the PhD Programs of Ministry of Education of Italy.
References
1. Liu, Q.; Zhang, Y.-A.; Xu, P.; Jia, Y. J. Org. Chem. 2013, 78, 10885–10893. doi:10.1021/jo4018777
2. Zhang, Y.-A.; Liu, Q.; Wang, C.; Jia, Y. Org. Lett. 2013, 15, 3662–3665. doi:10.1021/ol401541t
3. Lesma, G.; Cecchi, R.; Cagnotto, A.; Gobbi, M.; Meneghetti, F.; Musolino, M.; Sacchetti, A.; Silvani, A. J. Org. Chem. 2013, 78, 2600–2610. doi:10.1021/jo302737j
4. Okamoto, K.; Sakagami, M.; Feng, F.; Togame, H.; Takemoto, H.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2012, 77, 1367–1377. doi:10.1021/jo202159q
5. Zhao, L.; May, J. P.; Huang, J.; Perrin, D. M. Org. Lett. 2012, 14, 90–93. doi:10.1021/ol202880y
6. Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2011, 133, 14940–14943. doi:10.1021/ja206743v
7. Movassaghi, M.; Ahmad, O. K.; Lathrop, S. P. J. Am. Chem. Soc.
2011, 133, 13002–13005. doi:10.1021/ja2057852
8. Davey, N. E.; Van Roey, K.; Weatheritt, R. J.; Toedt, G.; Uyar, B.; Altenberg, B.; Budd, A.; Diella, F.; Dinkel, H.; Gibson, T. J.
Mol. BioSyst. 2012, 8, 268–281. doi:10.1039/c1mb05231d
9. de Sa Alves, F. R.; Barreiro, E. J.; Manssour Fraga, C. A.
Mini-Rev. Med. Chem. 2009, 9, 782–793.
doi:10.2174/138955709788452649
10. Royer, C. A. Chem. Rev. 2006, 106, 1769–1784. doi:10.1021/cr0404390
11. Heringa, J.; Argos, P. J. Mol. Biol. 1991, 220, 151–171. doi:10.1016/0022-2836(91)90388-M
12. Kielkopf, C. L.; Lücke, S.; Green, M. R. Genes Dev. 2004, 18, 1513–1526. doi:10.1101/gad.1206204
13. Corsini, L.; Bonnal, S.; Basquin, J.; Hothorn, M.; Scheffzek, K.; Valcárcel, J.; Sattler, M. Nat. Struct. Mol. Biol. 2007, 14, 620–629. doi:10.1038/nsmb1260
14. Neufeld, C.; Filipp, F. V.; Simon, B.; Neuhaus, A.; Schüller, N.; David, C.; Kooshapur, H.; Madl, T.; Erdmann, R.; Schliebs, W.; Wilmanns, M.; Sattler, M. EMBO J. 2009, 28, 745–754. doi:10.1038/emboj.2009.7
15. Lepthien, S.; Hoesl, M. G.; Merkel, L.; Budisa, N.
Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 16095–16100.
doi:10.1073/pnas.0802804105
16. Versées, W.; Loverix, S.; Vandemeulebroucke, A.; Geerlings, P.; Steyaert, J. J. Mol. Biol. 2004, 338, 1–6. doi:10.1016/j.jmb.2004.02.049 17. Callis, P. R. Methods Enzymol. 1997, 278, 113–150.
doi:10.1016/S0076-6879(97)78009-1
18. Gademann, K.; Hintermann, T.; Scheiber, J. V. Curr. Med. Chem.
1999, 6, 905–925.
And references cited therein.
19. Cole, D. C. Tetrahedron 1994, 50, 9517–9582. doi:10.1016/S0040-4020(01)85527-7
20. Ojima, I.; Lin, S.; Wang, T. Curr. Med. Chem. 1999, 6, 927–954. 21. Fülöp, F. Chem. Rev. 2001, 101, 2181–2204. doi:10.1021/cr000456z 22. Forro, E.; Fülöp, F. Mini-Rev. Org. Chem. 2004, 1, 93–102.
doi:10.2174/1570193043488908
23. Lelais, G.; Seebach, D. Biopolymers 2004, 76, 206–243. doi:10.1002/bip.20088
24. Kuhl, A.; Hahn, M. G.; Dumić, M.; Mittendorf, J. Amino Acids 2005, 29, 89–100. doi:10.1007/s00726-005-0212-y
25. Lukaszuk, A.; Demaegdt, H.; Szemenyei, E.; Tóth, G.; Tymecka, D.; Misicka, A.; Karoyan, P.; Vanderheyden, P.; Vauquelin, G.; Tourwé, D.
J. Med. Chem. 2008, 51, 2291–2296. doi:10.1021/jm701490g
26. Aydillo, C.; Compañón, I.; Avenoza, A.; Busto, J. H.; Corzana, F.; Peregrina, J. M.; Zurbano, M. M. J. Am. Chem. Soc. 2014, 136, 789–800. doi:10.1021/ja411522f
27. Pirovano, V.; Facoetti, D.; Dell’Acqua, M.; Della Fontana, E.; Abbiati, G.; Rossi, E. Org. Lett. 2013, 15, 3812–3815. doi:10.1021/ol401716b
28. Wang, Z.; Luo, S.; Zhang, S.; Yang, W.-L.; Liu, Y.-Z.; Li, H.; Luo, X.; Deng, W.-P. Chem. – Eur. J. 2013, 19, 6739–6745.
29. Attanasi, O. A.; Favi, G.; Giorgi, G.; Mantellini, F.; Moscatelli, G.; Piersanti, G. Curr. Org. Synth. 2013, 10, 803–811.
doi:10.2174/1570179411310050011
30. Jousseaume, T.; Wurz, N. E.; Glorius, F. Angew. Chem., Int. Ed. 2011,
50, 1410–1414. doi:10.1002/anie.201006548
31. Duan, S.-W.; An, J.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2011, 13, 2290–2293. doi:10.1021/ol200550y
32. Repka, L. M.; Ni, J.; Reisman, S. E. J. Am. Chem. Soc. 2010, 132, 14418–14420. doi:10.1021/ja107328g
33. Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K.
Angew. Chem., Int. Ed. 2011, 50, 1338–1341.
doi:10.1002/anie.201006381
34. Wieland, J.; Breit, B. Nat. Chem. 2010, 2, 832–837. doi:10.1038/nchem.800
35. Gilmore, C. D.; Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 1558–1559. doi:10.1021/ja0780582
36. Navarre, L.; Martinez, R.; Genet, J.-P.; Darses, S. J. Am. Chem. Soc.
2008, 130, 6159–6169. doi:10.1021/ja710691p
37. Chapman, C. J.; Hargrave, J. D.; Bish, G.; Frost, C. G. Tetrahedron
2008, 64, 9528–9539. doi:10.1016/j.tet.2008.07.067
38. Angelini, E.; Balsamini, C.; Bartoccini, F.; Lucarini, S.; Piersanti, G.
J. Org. Chem. 2008, 73, 5654–5657. doi:10.1021/jo800881u
39. Lucarini, S.; Bartoccini, F.; Battistoni, F.; Diamantini, G.; Piersanti, G.; Righi, M.; Spadoni, G. Org. Lett. 2010, 12, 3844–3847.
doi:10.1021/ol101527j
40. Righi, M.; Bartoccini, F.; Lucarini, S.; Piersanti, G. Tetrahedron 2011,
67, 7923–7928. doi:10.1016/j.tet.2011.08.039
41. Bartolucci, S.; Bartoccini, F.; Righi, M.; Piersanti, G. Org. Lett. 2012,
14, 600–603. doi:10.1021/ol203216h
42. Lucarini, S.; Mari, M.; Piersanti, G.; Spadoni, G. RSC Adv. 2013, 3, 19135–19143. doi:10.1039/c3ra42922a
43. Mari, M.; Bartoccini, F.; Piersanti, G. J. Org. Chem. 2013, 78, 7727–7734. doi:10.1021/jo4013767
44. Bartoccini, F.; Casoli, M.; Mari, M.; Piersanti, G. J. Org. Chem. 2014,
79, 3255–3259. doi:10.1021/jo500245s
45. Jackson, A. H.; Smith, A. E. Tetrahedron 1965, 21, 989–1000. doi:10.1016/0040-4020(65)80038-2
46. Jackson, A. H.; Smith, A. E. Tetrahedron 1968, 24, 403–413. doi:10.1016/0040-4020(68)89038-6
47. Jackson, A. H.; Smith, P. Tetrahedron 1968, 24, 2227–2239. doi:10.1016/0040-4020(68)88125-6
48. Jackson, A. H.; Naidoo, B.; Smith, P. Tetrahedron 1968, 24, 6119–6129. doi:10.1016/S0040-4020(01)96344-6
49. Biswas, K. M.; Jackson, A. H. Tetrahedron 1969, 25, 227–241. doi:10.1016/S0040-4020(01)99475-X
50. Ibaceta-Lizana, J. S. L.; Jackson, A. H.; Prasitpan, N.;
Shannon, P. V. R. J. Chem. Soc., Perkin Trans. 2 1987, 1221–1226. doi:10.1039/p29870001221
51. Li, J. P.; Newlander, K. A.; Yellin, T. O. Synthesis 1988, 73–76. doi:10.1055/s-1988-27471
52. Sui, Y.; Liu, L.; Zhao, J.-L.; Wang, D.; Chen, Y.-J. Tetrahedron Lett.
2007, 48, 3779–3782. doi:10.1016/j.tetlet.2007.04.002
53. Kieffer, M. E.; Repka, L. M.; Reisman, S. E. J. Am. Chem. Soc. 2012,
134, 5131–5137. doi:10.1021/ja209390d
54. Tirotta, I.; Fifer, N. L.; Eakins, J.; Hutton, C. A. Tetrahedron Lett. 2013,
54, 618–620. doi:10.1016/j.tetlet.2012.11.139
55. Depew, K. M.; Danishefsky, S. J.; Rosen, N.; Sepp-Lorenzino, L.
J. Am. Chem. Soc. 1996, 118, 12463–12464. doi:10.1021/ja962954o
56. Kuehne, M. E.; Xu, F. J. Org. Chem. 1997, 62, 7950–7960. doi:10.1021/jo970207j
57. Schkeryantz, J. M.; Woo, J. C. G.; Siliphaivanh, P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 11964–11975. doi:10.1021/ja9925249
58. Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613–1616. doi:10.1126/science.1208839
See for C2-benzylation.
59. Gui, J.; Zhou, Q.; Pan, C.-M.; Yabe, Y.; Burns, A. C.; Collins, M. R.; Ornelas, M. A.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 4853–4856. doi:10.1021/ja5007838
See for C2-methylation.
60. Preciado, S.; Mendive-Tapia, L.; Albericio, F.; Lavilla, R. J. Org. Chem.
2013, 78, 8129–8135. doi:10.1021/jo400961x
See for C2-arylation.
61. Potukuchi, H. K.; Bach, T. J. Org. Chem. 2013, 78, 12263–12267. doi:10.1021/jo402107m
See for C2-alkylation.
62. Oguri, E. R. Identification and quantitative determination of major chemical contaminants associated with L-Tryptophan. U.S. Patent 12,347,892 , Nov 22, 2011.
63. Simat, T. J.; Kleeberg, K. K.; Mueller, B.; Sierts, A.
Eur. Food Res. Technol. 2003, 216, 241–252.
64. Wang, H.; Reisman, S. E. Angew. Chem., Int. Ed. 2014, 53, 6206–6210. doi:10.1002/anie.201402571
A C3–C2 allyl rearrangement was noted recently during the synthesis of nocardioazin.
65. Okada, M. I.; Sato, I.; Cho, S. J.; Suzuki, Y.; Ojika, M.; Dubnau, D.; Sakagami, Y. Biosci., Biotechnol., Biochem. 2004, 68, 2374–2387. doi:10.1271/bbb.68.2374
66. Williams, R. M.; Stocking, E. M.; Sanz-Cervera, J. F. Top. Curr. Chem.
2000, 209, 97–173. doi:10.1007/3-540-48146-X_3
67. Li, S.-M. Nat. Prod. Rep. 2010, 27, 57–78. doi:10.1039/b909987p 68. Wollinsky, B.; Ludwig, L.; Hamacher, A.; Yu, X.; Kassack, M. U.;
Li, S.-M. Bioorg. Med. Chem. Lett. 2012, 22, 3866–3869. doi:10.1016/j.bmcl.2012.04.119
69. Rudolf, J. D.; Wang, H.; Poulter, C. D. J. Am. Chem. Soc. 2013, 135, 1895–1902. doi:10.1021/ja310734n
70. Botta, B.; Vitali, A.; Menendez, P.; Misiti, D.; Delle Monache, G.
Curr. Med. Chem. 2005, 12, 713–739. doi:10.2174/0929867053202241
71. Birladeanu, L. J. Chem. Educ. 2000, 77, 858–863. doi:10.1021/ed077p858
License and Terms
This is an Open Access article under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Organic
Chemistry terms and conditions:
(http://www.beilstein-journals.org/bjoc)
The definitive version of this article is the electronic one which can be found at: