• Non ci sono risultati.

Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention

N/A
N/A
Protected

Academic year: 2021

Condividi "Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention"

Copied!
12
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Multi-band

MEG

signatures

of

BOLD

connectivity

reorganization

during

visuospatial

attention

Chiara

Favaretto

a,h,∗

,

Sara

Spadone

b

,

Carlo

Sestieri

b

,

Viviana

Betti

c,d

,

Angelo

Cenedese

e

,

Stefania

Della

Penna

b,1

,

Maurizio

Corbetta

a,f,g,h,1,∗

a Department of Neuroscience and Padova Neuroscience Center, University of Padova, 35128 Padova, Italy

b Department of Neuroscience, Imaging and Clinical Sciences – and ITAB, Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy

c Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy d IRCCS Fondazione Santa Lucia, 00179 Rome, Italy

e Department of Information Engineering, University of Padova, 35131 Padova, Italy

f Department of Neurology, Radiology, Neuroscience, and Biomedical Engineering Washington University Saint Louis, MO 63110, USA g Venetian Institute of Molecular Medicine, VIMM, 35128 Padova, Italy

h Padova Neuroscience Center, PNC, 35131 Padova, Italy

a

r

t

i

c

l

e

i

n

f

o

Keywords: Functional connectivity MEG fMRI Band-Limited Power (BLP) Visuospatial attention, Principal components analysis

a

b

s

t

r

a

c

t

Thefunctionalarchitectureoftherestingbrain,asmeasuredwiththebloodoxygenationlevel-dependent func-tionalconnectivity(BOLD-FC),isslightlymodifiedduringtaskperformance.Inpreviouswork,wereported be-haviorallyrelevantBOLD-FCmodulationsbetweenvisualanddorsalattentionregionswhensubjectsperformed avisuospatialattentiontaskascomparedtocentralfixation(Spadoneetal.,2015).

Hereweusemagnetoencephalography(MEG)inthesamegroupofsubjectstoidentifythe electrophysiolog-icalcorrelatesoftheBOLD-FCmodulationfoundinourpreviouswork.WhileBOLD-FCtopography,separately atrestandduringvisualattention,correspondedtoneuromagneticBand-LimitedPower(BLP)correlationinthe alphaandbetabands(8–30Hz),BOLD-FCmodulationsevokedbyperformingthevisualattentiontask(Spadone etal.2015)didnotmatchanyspecificoscillatorybandBLPmodulation.Conversely,followingthe applica-tionofanorthogonalspatialdecompositionthatidentifiescommoninter-subjectco-variations,wefoundthat attention–restBOLD-FCmodulationswererecapitulatedbymulti-spectralBLP-FCcomponents.Notably, individ-ualvariabilityofalphaconnectivitybetweenFrontalEyeFieldsandvisualoccipitalregions,jointlywithdecreased interactionintheVisualnetwork,correlatedwithvisualdiscriminationaccuracy.Insummary,task-restBOLD connectivitymodulationsmatchmulti-spectralMEGBLPconnectivity.

1. Introduction

Intherestingstate,severalstudieshaveshownthatthetopography offMRInetworksisrecapitulatedbythetopographyofslow(<0.1Hz) coherentfluctuationsofband-limitedpower(BLP)(dePasqualeetal., 2010;dePasqualeetal.,2012) especiallyinthealphaandbeta fre-quencybands(Brookesetal.,2011b,2011a;dePasqualeetal.,2010; dePasqualeetal.,2012; Hippetal.,2012;Liuetal., 2010) or SNR-correctedmulti-bandpatterns(HippandSiegel,2015).Incontrast,the

Abbreviations:BLP,BandLimitedPower;FC,FunctionalConnectivity;RSN,Resting-stateNetwork;ROI,RegionofInterest;VIS,VisualNetwork;DAN,Dorsal AttentionNetwork;SPL,Superiorintraparietallobule;dFEF,dorsalaspectofthehumanfrontaleyefield;pIPS,Posteriorintraparietalsulcus;MT,Middletemporal visualarea;LFP,LocalFieldPotential;GLM,GeneralizedLinearModel;MNI,MontrealNeurologicalInstitute;ICA,IndependentComponentsAnalysis;PCA,Principal ComponentsAnalysis;PC,PrincipalComponent.

Correspondingauthors.

E-mailaddresses:chiara.favaretto.2@unipd.it(C.Favaretto),maurizio.corbetta@unipd.it(M.Corbetta).

1 Theseseniorauthorscontributedequallytothiswork.

literatureonthecomparisonofBOLDvs.MEGconnectivityduringtask conditionsisscant.Thisispossiblyduetothehighsimilarityofthetask andrest globalinteractionpatterns,asobserved,separately, infMRI (Coleetal.,2014;Smithetal.,2009;Spadoneetal.,2015;Tavoretal., 2016)andMEG(Bettietal.,2018,2013).

ThefewBOLD-MEGconnectivitycomparisonstudiesshowed sim-ilarfunctionalconnectivitytopographyforslowoscillations(<30Hz, see(Bettietal.,2013;Liljeströmetal.,2015)).Bettietal.(Bettietal., 2013)comparedfMRIandBLPconnectivityduringvisualfixation(rest)

https://doi.org/10.1016/j.neuroimage.2021.117781

Received30April2020;Receivedinrevisedform12January2021;Accepted15January2021 Availableonline23January2021

(2)

C. Favaretto, S. Spadone, C. Sestieri et al. NeuroImage 230 (2021) 117781 andtheobservationofamovie(task).Whiletheoveralltopographywas

maintained,thetask-inducedBOLDconnectivitydecreasesinmultiple networks,whichcorrespondedtoadecreaseofalphaandbetaBLP con-nectivity(<30 Hz).Incontrast,BLPconnectivityinotherfrequencies (theta,beta,andgamma)increased,correspondingtobothincreasesor decreasesofBOLDconnectivity.

Liljeströmetal.(Liljeströmetal.,2015)comparedfMRIandMEG networkswhensubjectsnamedeitheractionsorobjectspresentedona screenvs.whentheysimplysawthesamestimuli.AsBettietal.,they foundthegreatestsimilarityin MEGandfMRIderivednetworks for neuralfrequenciesbelow30Hz.However,BOLDnetworktaskvsrest modulationscouldnotbeattributedtoasinglefrequencyband.Instead, theentirespectralprofilewasthebestdescriptorofthecorrespondence betweenMEGandfMRInetworks.

In this study, we revisit the question of rest-task fMRI vs. MEG connectivity modulations using a well-controlled visuospatial atten-tiontask.Thisexperimentintroducesseveralinnovationsascompared toprevious studies. First, thetask is highlycontrolled psychophysi-cally,ascompared topreviousstudiesthatusednaturalistic stimula-tionwithnobehavioralcontrol(Bettietal.,2013)orcovertresponses (Liljeströmetal.,2015).Thisattentionparadigmhasbeenemployed inmultipleexperiments(Capotostoetal.,2015,2013;Shulmanetal., 2010,2009;Spadoneetal.,2015).Subjectseithermaintainvisual fixa-tion(rest)orperformavisuospatialattentiontaskinwhichthefocusof attentioniscovertlydirectedtoaleftorrightstimulusstreambasedon iso-luminantcolorcuesembeddedinthevisualstream.Thedetection oftargets,bykeypress,occurseitheronthesameoroppositesideof attention.Therelativeadvantageinaccuracyandreactiontimesfor at-tendedvs.unattendedtargetsisaprobeoftheallocationofvisuospatial attention.

Secondly,thefunctionalanatomyisknownascomparedtoprevious workinwhichtheregions ofinterestwerepredefinedbasedonprior parcellations(Bettietal.,2013)orsourcelocalizedMEGsignalsonthe sametask(Liljeströmetal.,2015).BasedonfMRIexperimentsranon thesamesubjects(Spadoneetal.2015),weknewthatarelativelysmall setofcorticalregionsweremodulatedbyattention.Theseincluded oc-cipitalvisualregions(VIS),sensitivetothelocation(left,right)of at-tention,andregionsof theso-calleddorsalattentionnetwork(DAN), sensitivetoshiftsofattention.Therefore,weusedsourcelocalizedMEG signalsfromthisspecificsetoffunctionalregions.

Thirdly,wehaveahypothesisonthedirectionofBOLDfunctional connectivity(BOLD-FC)modulationsinducedwhengoingfromvisual fixation(rest) tovisuospatialattention (task)(Spadoneet al.2015). BOLD-FCconnectivitynicelysegregatesDANandVISregionsboth dur-ingfixationandtask,butthetwonetworksincreasetheircorrelation duringthetask inparallel witharelativedecrementof connectivity withintheVISnetwork.

Theaimsofthestudyweretwofold:tocomparethepatternsof task-inducedmodulationoffMRIandMEGconnectivity,specifically within-vs.between-networkinteractions;and,toexaminewhetherthe corre-spondencebetweenBOLDandBLPconnectivitytopographyand rela-tivetask-modulation,is betteraccountedforbysinglevs. multi-band spectralpatterns.

2. MaterialsandMethods

2.1. Subjects

Twentyhealthysubjects(agerange=19–28yold;14females), right-handed(EdinburghInventory),participatedinboththefMRIandMEG scans.Theoriginalsamplesizeof(Spadoneetal.,2015)consistedof21 subjects,but1subjectwasexcludedduetotheincompatibilityofthe headsizewiththeMEGhelmet.Thesubjects,withnoprevious psychi-atricorneurologicalhistory,providedtheirinformedwrittenconsent accordingtotheCodeofEthicsoftheWorldMedicalAssociationand theInstitutionalReviewBoardandEthicsCommitteeattheUniversityof

Chieti.Thisgroupofsubjectswasenrolledthroughapreliminary behav-ioralsession,duringwhichtheyperformedacontinuousvisuospatial at-tentiontasksimilartothetaskoftheneuroimagingscans(seesubsection StimulationParadigms)toevaluateperformanceandeyepositionwith anIReye-trackingsystem(Iscanetl-400;RK-826PCI)(Spadoneetal., 2015).

2.2. StimulationParadigms

Pseudorandom sequences of continuous reorienting/maintenance stimuli(Capotostoetal.,2015, 2013),allgenerated usingthe MAT-LABPsychtoolbox-3(Brainard,1997;Kleineretal.,2007;Pelli,1997), weredeliveredtothesubjects.Stimuliconsistedoftwocontinuous drift-ingGaborpatches,3° diameter,2cycle/° spatialfrequency,0.7°/sdrift rate.Thetwopatcheswerepresentedontoascreen,overalightgrey background,atbothsidesofacentralfixationcrossataneccentricity of5.5°.DuringthefMRIstudy,stimuliwereprojected(usinganEIKI LCXG-250LProjectorSystem)onascreensituatedbehindthesubject’s headandviewedthroughamirrorlocatedabovethesubject’shead.For theMEGstudy,weusedanLCDprojector(NECMT830G+)placed out-sidetheshieldedroom,projectingimagesonapairof45° mirrorsand atranslucentscreen.Forbothprojectors:thehorizontalSyncwas au-tomaticallysetintherange15–100kHz;theverticalSyncintherange 50–100Hz.

Participants were instructed to maintain central fixation while covertlyattendingoneofthetwogratingstodetectbrieflypresented targets.Thesidetobeattendedwasindicatedbyaperipheralcue con-sistingof a300msisoluminantchangein thecolor(pinkandcyan) simultaneouslyappliedtothetwopatches.Onlyonecolor,indicated atthebeginningofeachblockandcounterbalancedacrossblocks,was relevantforcueing.Thecuecouldappearinthesamelocationasthe previous trial(staycue)ortheoppositelocation(shiftcue), indicat-ingthattheattentionhadtobeshifted.Thetargetsconsistedofbrief (150ms)changesofthepatchorientationineitherclockwiseor anti-clockwisedirection,whichshouldbesignaledbythesubjectsby press-ingtheright/leftbuttonwiththeirrightmiddleorindexfingerona re-sponsepad.Thecuecorrectlypredictedthelocationofthetargetwith 80%probability(validtrials),whereasthetargetappearedatthe un-cuedlocation(invalidtrials)in20%ofthetrials.Cuesappearedat ran-domintervalsbetween4and6s,intheMEGsession,andevery2,3,4 repetitiontimes(TR)withinatemporalwindowof+/-400mscentered ontheTR,inthefMRIsession.Aftereachcue,eitherzero,one,ortwo targetscouldbepresented.Cuesdidnotpredictwhenthetargetwould appear,buttheywerelinkedbythreetemporalconstraints:(i)targets couldnotoccurearlierthan1safteracue(ii)cuescouldnotoccur ear-lierthan2safteratarget(iii)targetsoccurred,onaverage,every11s intheMEGsessionandevery9sinfMRI(seeFig.1Aforanexampleof thedisplaysequence).Finally,wegeneratedtwopseudorandom stimu-lussequencesof~16minfortheMEGsession,eachconsistingofthree blocksofattentiontasklasting300sandinterleavedby15speriodsof fixation,usedtominimizefatigueanddropofattention.ForthefMRI session,wegenerated12pseudorandomsequences,eachlasting210s. 2.3. fMRIrecordings

ThefMRIhardwarespecificationsandacquisitionprotocolswere al-readyextensively described in(Spadoneetal., 2015).Briefly,BOLD contrastwasobtainedfromT2∗-weightedimagescollectedonaPhilips Achieva 3TScanner using a gradient echo-planar imagingsequence [TR =1.869 ms; Timeof Echo(TE) = 25 ms;39 slices acquiredin ascending interleaved order; voxel size= 3.59×3.59× 3.59mm3; 64 ×64 matrix;andflipangle=80°].Structuralimages,tobeused alsoforMEGprocessing,werecollectedusingasagittalM-PRAGE T1-weightedsequence(TR=8.14ms;TE=3.7ms;flipangle=8°;voxel size=1×1×1mm3).

(3)

Fig.1. ParadigmandinvolvedROIs.A)Exampleofthestimulusstreaminthevisuospatialattentiontask.B)RepresentationoftheROIsinvolvedduringthe performedtask.TheseROIswereselectedin(Spadoneetal.,2015),onthesamesubjectsscannedbyMEG,basedontheirfMRIresponseprofileduringtheattention task.Differentnetworksarecolor-coded(red:DorsalAttentionNetwork(DAN);yellow:VisualNetwork(VIS)).

ThefMRIsessionincluded3resting-stateruns(eachlasting5min) and12runsoftask.AnMRI-compatibleIReye-trackingsystem(Iscan etl-400;RK-826PCI)wasusedtocontroleyemovements.Subjects’ re-sponseswerecollectedthroughaLUMINALU400ResponsePad(Cedrus Corporation).

2.4. MEGRecordings

MEGscanswereobtainedthroughacustom-madewholehead sys-temdeveloped,installed,andoperatingattheUniversityofChietisince about2000(DellaPenna etal.,2000; Pizzellaetal.,2001).The sys-temwasimplemented incollaborationwiththecurrentATB Biomag UG.TheMEGsystemconsistsof153dcSQUIDmagnetometersplaced onahelmet-shapedsurfacecoveringthewholescalpandspacedabout 3.2cm.Thesensorsarehousedinsidealow-noisedewarwitha helmet-shapedbottom,atadistanceof1.8cmfromroomtemperature.MEG signals,togetherwithtwoECGandtwoEOGchannelstobeusedfor offlineartifactrejectionandformonitoringhorizontaleyemovements, wereband-passedat0.1–250Hzandsampledat1025Hz.Stimuliwere projectedontoascreensituatedinsidethemagneticallyshieldedroom. SubjectsrespondedusingaLUMINALU400ResponsePad(Cedrus Cor-poration).AMEGsessionconsistedof3runsoffixationlasting5min each,followedby2runsofthevisuospatialattentiontask.Aftereach run,thesubject’sheadpositionrelativetotheMEGsensorswas esti-matedfromthefieldproducedbyfivecoilsplacedonthescalp,whose positionsweredigitizedtogetherwith5anatomicallandmarks. 2.5. PreprocessingandFCEvaluation

2.5.1. fMRIDataAnalysis

Thepreprocessingprocedures, theROI identification, andtheFC evaluationareextensivelydescribedin(Spadoneetal.,2015)andin SupplementaryMaterialS1.1.Briefly,inourpreviousstudy,weaimedto identifyregionsshowingactivitymodulationduetothecuetype(shift, stay)orthecuelocation(left,right).Followingstandardpreprocessing, weemployedageneralizedlinearmodel(GLM)thatmadenoapriori assumptionofthehemodynamicresponseshape,bygeneratingseparate Δ-functionregressorsforeachofsevenMRframesstartingattheonset ofcuesandtargets.TheGLMused12typesofregressorsincludingfirst cues(left,right),standardcues(shiftleft,shiftright,stayleft,andstay right),targets(validleft,validright,invalidleft,andinvalidright),and additionalregressorscodingforbaselineandlineartrendineachscan.

SignificantROIswereidentifiedthroughavoxel-wiseANOVAwithcue type(stayandshift),cuelocation(leftandright),andtimeasfactorson thetimecoursesoftheevokedresponsestocuestimuli.Thevoxel-wise ANOVAswerecorrectedfornon-independenceoftimepointsby adjust-ingthedegreesoffreedomandcorrectedformultiplecomparisonsusing ajointz-score/clustersizethreshold(Formanetal.,1995) correspond-ingtoz=3.0andaclustersizeof13facecontiguousvoxels.A peak-searchalgorithmwasappliedtothecuetypebytime,andcuelocation bytimestatisticalmapsresultingintheselectionof6ROIsbelongingto theDorsalAttentionNetwork(DAN– thesuperiorparietallobule(SPL), thedorsalaspectofthehumanfrontaleyefields(dFEF),andthe pos-teriorintraparietalsulcus(pIPS),allbilateral),showingstronger shift-relatedthanstay-relatedactivity,and6ROIsoftheVisualNetwork(VIS – theventralV4-V8,thedorsalV3a-V7intheoccipitalcortexandthe lateralmiddletemporal(MT)visualarea,bilaterally),showingspatially selectiveeffects(contralateralstrongerthanipsilateralactivity).These ROIsareshownonanMNIbrainsurfaceinFig.1B.Followingremoval oftheBOLDresponseevokedbythecuesandtargets,andofthe sig-nal averagedoverthewholebrain,alow passfilterwithacutoff at 0.167Hzwasapplied.Staticconnectivitymatricesattaskandduring fixationwereestimatedthroughthez-Fishertransformofthepairwise Pearson’scorrelationcoefficientsaveragedacrossruns(ascomputedin (Spadoneetal.,2015)).

2.5.2. MEGDataAnalysis

Following thedata quality check of thechannel-level MEGdata (Larson-prioretal., 2013),2subjectswereexcludedduetothe pres-ence ofabnormal artifacts.Forsakeof datacomparison,thesame2 participantswereexcludedfromthefMRIanalysis,aswell.MEGdata wereanalyzedthroughthefollowingsteps(seeFigure2A):(i)apipeline basedonIndependentComponentAnalysis(ICA)followedbyan auto-maticclassificationprocedureaimedtoidentifythebrainandartifactual IndependentComponents(ICs)(dePasqualeetal.,2012;Mantinietal., 2011;Sebastianietal.,2014;Spadoneetal.,2012)wasappliedtothe channeldata(seeSupplementaryMaterialS1.2.1formoredetails).Then, (ii)thesensormapsofthebrainICwereprojectedinthesourcespace us-ingaweightedminimum-normleastsquare(wMNLS)estimator imple-mentedinCurry6.0(Neuroscan),usingarealisticmodelofthesource spaceandvolumeconductorobtainedfromthesubject’sanatomical im-ageandsampledbyaCartesian3Dgridwith4mmvoxelside(see Sup-plementaryMaterialS1.2.2formoredetails).Theindividualsourcemaps werethentransformedintoMNI152spacetoenablesubsequentspatial

(4)

C. Favaretto, S. Spadone, C. Sestieri et al. NeuroImage 230 (2021) 117781

Fig.2. Methods.A)ProcessingstrategystepstoobtaintheBLP-FCmatricesfromtheMEGrawdata.Afterpreprocessing,aimedatremovingartifactsandprojecting channel-levelsignalsintothesourcespace,MEGsourceactivityisfilteredinsixfrequencybandstoestimatetheBLPsignal.IndividualBLP-FCisestimatedthrough Pearson’scorrelationcoefficient(z-Fishertransformed).Finally,theindividualmatricesareaveragedacrosssubjectstogeneratethegroupBLP-FCforeachfrequency band.B)Flowchartofthemulti-bandcomparisonbetweentheBLP-andBOLD-FCmatrices.Individual,vectorizedFCmatrices(rest,taskortask–rest)areconcatenated (acrossfrequenciesandsubjectstogether,incaseofBLP-FC)andusedasinputforthePCA,whichdecomposestheoriginalmatricesintotheproductofthePCsand theweightsofeachPCacrosssubjects(andbands,incaseofBLP).Finally,theBLP-andBOLD-derivedPCsarecomparedusingMantel’sTests.

averagingacrosssubjects.Wedecidedtouseavolumegridbecausethe BOLD-FCdatafromSpadoneetal.,2015wereobtainedfroma3Dgrid intothe711-2Catlas,which wasthenco-registered toMNI, andwe wantedtouse thesametypeof sourcevolumetofacilitatethe com-parisonamongFCmatrices(e.g.wedidnotwanttointroduceany con-foundduetohandlingseedsintodifferentsourcespacesgridandcortical mantle).Moreover,coregistrationoftheindividualsourcespacetothe MNIspaceismorestraightforward,facilitatinggroupaverage.Atthis point,(iii)foreachvoxelcorrespondingtothepeakactivityofthe12 ROIsidentifiedfromfMRI(namelyseedfromnowon)wecorrectedthe leakageeffectsonthesourcespacemapsaccordingtotheGeometrical CorrectionScheme(Wensetal.,2015)appliedtothelinearinverse op-erator𝑊 =∑ic𝑨ic𝒖icasin(Bettietal.,2018;DellaPennaetal.,2019), where𝒖icistherowoftheunmixingmatrixassociatedwiththesource map𝑨ic foragenericindependentcomponentIC (seeSupplementary MaterialS1.2.3formoredetails).Foreachseed,(iv)thevoxelvector ac-tivitiesoftheotherseedswereestimatedasalinearcombinationofthe ICtimecourses,eachweightedbytherelatedleakage-correctedsource mapvalue.Foreachseedandvectorsignaldirectionthecontribution oftheevokedsignalwasadaptivelyremovedfrom eachcueand tar-getasin(DellaPennaetal.,2004)(seeSupplementaryMaterialS1.2.4 formoredetails).Then,(v)alltheleakage-correctedsignalstogether

withtheseeditselfwerefilteredindelta(𝛿)[1–4]Hz,theta(𝜃)[4–8] Hz,alpha (𝛼)[8–14] Hz,beta(𝛽)[14–30]Hz,low-gamma(𝛾l) [30– 50]Hzandhigh-gamma(𝛾h)[50–120]Hzbands.(vi)Foreachseed, asetofMEGBandLimitedPower(BLP)timeseriesatvoxelwere esti-matedbyaveraginginstantaneoussource-spacepoweroversliding win-dowsofduration=150msandstepof20ms.Finally,(vi)the individ-ual,leakage-correctedBLPFunctionalConnectivitymapswereobtained usingpair-wise Pearson’scorrelationcoefficient,followedbyz-Fisher transformation.Connectivityvaluesbetweenregionscloserthan3.5cm weremaskedtoaccountforpossiblemiscorrectioneffectsduetoseed mislocalization(Wensetal.,2015).

Eventually,thegroupFCateachfrequencybandwasobtainedby averagingindividualFCmatricesacrosssubjects.

2.6. ComparisonbetweenBOLD-andSingle-BandBLP-FCMatrices ThefirststepwastocomparetheBOLDandBLP-FCmatricesinthe singlerestortaskconditions.WefirsttestedRSNsegregationforeach modalityusingat-testcomparingwithinvs.betweenaverage correla-tion,averagingtheFCvaluesovereachsub-matrix(DAN,VIS,and DAN-VIS).ForBOLDFC,thistestwasalreadycarriedoutin(Spadoneetal., 2015),thuswerefertothemethodsandresultsreportedinthatpaper.

(5)

Thenwecomparedthepatternsobtainedbythetwomodalitiesthrough aregressionanalysisonallthepairwisecorrelationvaluesforeach sub-ject,wheretheBOLD- andsingle-bandBLP-FC datawereconsidered astheindependent,andthedependentvariables,respectivelyandwe testedthesignificanceoftheregressioncoefficientvs.0throughat-test oversubjects.

Secondly,wesearchedforBLPcorrelatesoftask-inducedBOLD-FC modulationsatthelevelofthewholematrixandsub-matrices,based onthecorrelationstrengthandcorrelationpattern.(i)Thefirsttypeof comparisonconsideredthesignpolarityofthetaskvs.restcorrelation differences.Giventhat(Spadoneetal.,2015)reportedin task-minus-restFCnoFCchangebetweenDANregions,anFCdecreasebetween VISregions,andanFCincreasebetweenVISandDANregions, respec-tively,welookedfortheirspectralsignatures.Henceforbothmodalities (andseparatelyforeachfrequencyband),themeanpairwise connectiv-ityovertask–restmatricesorsubmatriceswascomparedvs.0through a2-tailedt-testoversubjects(p<0.05,Bonferronicorrectedacross6 bands).Thesubmatricesincludedonlypairwisecorrelationsbetween re-gionsthatbelongedrespectivelytotheVISonly,DANonly,orVIS-DAN. (ii)Thesecondanalysislookedforthesimilarityoftask–restcorrelation patternsonthewholematrixandsub-matricesforeachband.Asinthe singlecondition,wefirstcomparedthewholematricesapplyingalinear regressionanalysisoverthenodepairsforeachsubject.Theregression coefficientsweretestedvs.0throughat-test,Bonferronicorrectedfor6 (thenumberoffrequency)multiplecomparisons.Thesamestrategywas appliedtosub-matrices,togetherwithadditionalanalysesdescribedin theSupplementaryMaterial(S1.3andS2.1).

2.7. ComparisonBetweenBOLD-andMulti-BandBLP-FCPrincipal Components

Inadditiontothestandardanalysesdescribedintheprevious subsec-tion,weinvestigatedwhethertheFCmatricescouldbedecomposedinto connectivitypatterns(components)thatwerecommonacrosssubjects. Thisstrategywasmotivatedbythehypothesisthatwhileinsingle con-ditionstheconnectivitypatternsweredominatedbythecontributionof alargerwithin-thanbetween-networkconnectivityasalreadyrevealed in(Spadoneetal.,2015),inthetaskvs.restdifferencealarger inter-subjectvariabilitymightemerge.Inthiscase,separationtechniquesare usefulforthefollowingreasons:(i)toextractinformationfromthedata; (ii)toselectcommon(acrosssubjects)spatialpatternsoftask-induced connectivitychangeswithouta-prioriassumptions;(iii)toreducethe numberofvariablestobecompared.Thus,weappliedaspatial sep-aration,through(not-centered)PrincipalComponentsAnalysis(PCA), toBOLD-andmultivariateBLP-FC,asshownschematicallyinFig.2B, forsinglecondition(restandtask),separately,andthedifferencetask vs.rest.WealsoappliedPCAtosinglebandBLP-FC,andadescription ofmethodsandresultsarereportedintheSupplementaryMaterial(S1.4 andS2.3).First,foreachcondition,individualBOLD-FC masked ma-triceswerevectorized(unrollingtheuppertriangularFCmatrix)and normalizedtothemaximumabsoluteFCvalue,toobtainaBOLD-FC vectorofdimension57foreachsubject(thisdimensionaccountsfor theexclusionofthesamepairswhichweremaskedintheBLPFC ma-trix).TheseindividualvectorswerearrangedinamatrixofFCs,with dimension57×18,where18wasthenumberofsubjects.Thespatial PCAdecomposedthismatrixintotheproductoftheBOLD-PCs(matrix dimensions57×NPC-BOLD)andtherelatedweightsofeachBOLD-PC acrosssubjects(matrixdimensionsNPC-BOLD×18).

Similarly, for each frequency band separately, the vectorized, masked,andnormalizedBLP-FC wasorganized intoaninputmatrix withdimension57×18.Then,allfrequencybandswerearrangedinto asingleinputmatrixwithdimension57×(18×6),wherethe band-specificvectorizedFCmatriceswereconcatenatedacrosssubjectsfor eachband.NotethatforBLP-FC,themaximumFCvaluehasbeen eval-uatedamongallthefrequencybands,topreservetheinter-bands rela-tionships.ThespatialPCAappliedtothismatrixproducedaBLP-PCs

matrix(matrixdimensions57×NPC-BLP)andaweightmatrixacross frequencybandsandsubjects(matrixdimensionsNPC-BLP×(18×6)). Foreachmodality,thenumberofPCstobeconsideredforthesimilarity analysiswasidentifiedapplyinganautomaticselectionmethod,defined astheelbowmethod,whichconsistsintheidentificationoftheelbow pointalongthescreeplotoftheexplainedvarianceofeachcomponent (Cattell,1966;Lattinetal.,2003).Variancevaluesbelowtheelboware consideredtoosmall,andtherelatedcomponentsarediscarded.

BOLD-PCsandmulti-bandBLP-PCswerecomparedthroughMantel’s test(MantelandHaenszel,1959),whichisusedtocalculatethe cor-relationsbetweencorrespondingpositionsoftwosimilaritysymmetric matricesderivedfrommultivariatedata.Specifically,thetestusesthe unfoldeduppertriangularpartofeachmatrixandevaluatesthe correla-tioncoefficientbetweenthesevectors.Mantelstatisticsweretestedfor significanceby15,000permutations,duringeachofwhichtherowsand columnsofeitheroneofthetwomatriceswerepermutedandthe Man-telstatisticwasrecomputedtodeterminetheexpecteddistributionof thestatisticunderthenullhypothesis.Finally,thevalueobtainedfrom theobserveddatawascomparedtothenulldistribution,toassessthe statisticalsignificance.

BeforecomparingtheobtainedPCsacrossmethods,weruna proce-duretoidentifythePCpolarity,whichisundeterminedinPCA. Specif-ically,eachBOLD-PCpolaritywasselectedtobepositivelycorrelated withthegroup-levelBOLDFCmatrix.ThepolarityoftheBLP-PCswas insteadsettoproduce,fortheBLP-PC,apositivemaximumcorrelation withtheBOLD-PCs.

TherobustnessofthePCtestwasanalyzedthroughaleave-one-out testdescribedinSupplementaryMaterials(S1.5andS2.4).

2.8. Task–RestMulti-BandBLP-FCComponentsandTargetDiscrimination Accuracy

Toexploretherelationshipbetweentask-inducedconnectivityBLP modulationandthebehavioralperformance,foreachtask–rest multi-bandBLP-PC,weevaluatedthesignificanceoftheassociatedoscillatory bands.First,weevaluatedthesubject-wiserelativeparticipationweight (inabsolutevalue)ofeachfrequencyband,normalizedtothe individ-ualweightsum.Inthismanner,foreachsubject,andeachBLP-PCwe obtained avectorof6components,indicatingthepercentage contri-bution(inabsolutevalue)ofeachfrequencyband.Theindividual tar-getdiscriminationaccuracywasbinarizedinhighandlowperformance levels concerning themeanaccuracyacross subjects. Foreach task– restBLP-PC,wetestedpossibledifferencesoftherelativeparticipation weightsacrossbandsusingatwo-waymultivariateANOVAacross sub-jects,withbandsasthewithin-subjectsfactorandbinaryperformance astheacross-subjectsfactor.

All BOLD andBLP averaged functionalconnectivity matrices, as well as BOLD and BLP-PCs (rest, task, and task–rest) with related participationweights,areavailablein“MendeleyData” (https://data. mendeley.com/).

3. Results

3.1. Single-bandComparisonbetweenfMRIandMEGConnectivity Matrices

ThegroupaverageBOLD-andBLP-FCmatricesatrestandtask,and theirdifference(task–rest)areshowninFig.3.Eachrowrepresentsan ROIoftheDAN,andthentheVISnetworkandthecolorscalerepresents thepairwisecorrelation(z-Fishertransformed).Blackenedcellsindicate regionpairscloserthan3.5cmandmaskedforfurtheranalysesbased ontheleakagecorrectionalgorithm(Wensetal.,2015)(seeMaterials andMethods-MEGdataanalysisandSupplementaryMaterialS1.2.3).

First,let’sfocusonseparaterestandtaskmatrices.BOLD-FCmatrices includebothpositiveandnegativeweights(i.e.,positiveandnegative correlation)whileBLP-matricescontainonlypositiveweights.Wethink

(6)

C. Favaretto, S. Spadone, C. Sestieri et al. NeuroImage 230 (2021) 117781

Fig.3.FunctionalConnectivityvalues.Top)AveragedBOLD-FCmatrices(gray-shadedarea)andaveragedBLP-FCmatricesforeachfrequencyband(fromdelta tohighgamma)forrest,task,andtask–restdifference.BlackareasindicatefunctionalconnectionsthatweremaskedoutfromtheMEGdataanalysisduetothe spatialclosenessofthecorrespondingROIpair.ThesamemaskisappliedtoBOLD-FCforcomparison.Whiletheaveragewasusedtodefinethesegroupconnectivity matrices,thefollowinganalysesarebasedonindividualdata.Bottom)ScatterplotoftheBLPfunctionalconnections(y-axis),separateforeachband,versusthe BOLDfunctionalconnections(x-axis)forrest(green),task(red),andtask–restdifference(yellow).EachcrossstandsforasinglecelloftheFCmatrix,centeredat theaverageacrosssubjects,andwiththearms’lengthequaltothestandarderroracrosssubjects.Ablackdottedlineindicatesthebisector.Greenandredcircles indicatesignificantregressionsinrestandtask,respectively.Intheseplots,itnotpossibletofindanyclearevidenceofalinearrelationshipbetweenBLP-FCand BOLD-FCvaluesfortask–restmatrices.

thisisduetothewhole-brainsignalregression,asteptakeninthefMRI preprocessingthatcentersthecorrelationvaluesaround0.Thisstep isnoteasilyimplementedintheMEGpreprocessing(seeDiscussion), butitwillbeessentiallydealtwithinthePCAanalysisdescribedinthe nextsection.Secondly,DANandVISnetworks areclearlysegregated inBOLD-FCmatrices,andthecorrelationbetweenregionsoftheDAN andtheVISnetworksignificantlyincreasesduringthetask(p<10−4; t-test),asshownin(Spadoneetal.,2015),whereallthestatistical anal-yseswerereported.IntheBLP-FCmatrices,wealsoobservenetwork segregation.In fact,within-networkBLPcorrelationis strongerthan between-networkBLPcorrelationatrestandtaskinseveralbands(rest: delta,theta, alpha,beta,lowgamma,allp<0.05;task:delta,theta, alpha,beta,low-gamma,high-gamma,allp<0.05;allpsBonferroni

corrected),asassessedthrought-tests.TheincreaseinDAN-VIS correla-tionisobservedonlyforhigh-gammaconnectivity,butthep-valuewas notsignificantanymoreafterBonferronicorrection(p=0.011,before correction).

ToanalyzetherelationshipbetweenFCpatternsatrestandduring task,atthegrouplevel,wearrangedtheFCvaluesintoscatterplotsand estimatedtheregressioncoefficients.Theseplotsareshownatthe bot-tomofFig.3,inwhichwedisplaythemeanandstandarderror(across subjects)oftheBOLD(x-axis)andBLP(y-axis)FCvaluesofeachnode pair,foreachbandandcondition(i.e.,restingreen,taskinred,and task–restinyellow).Focusingonthetaskandrestconditions,wefound significantregressioncoefficientsonlyinthealphaandbetabandsin bothtask (𝑏𝛼=0.17,p-alpha=0.038;𝑏𝛽=0.14,p-beta=0.0012, all

(7)

Fig.4. Comparisonbetweenmulti-bandBLP-andBOLD-PrincipalComponentsatrest(Top)andtask(Bottom).Left)BOLDPrincipalComponents(PC1andPC2). Middle)Multi-bandBLP-PCs.Right)Leftcolumn:scatterplotofBOLD-PC1(reddots)andBOLD-PC2(graydots)vs.BLP-PC1pairwiseregionalconnectivityvalues (p-valuesassessedthroughMantel’stest,Bonferronicorrected).NotethesignificantcorrelationbetweenBOLD-PC1andBLP-PC1.Rightcolumn:participationweights ofeachfrequencybandtotheBLP-PCs,evaluatedasthesumoftheabsoluteweightvaluesacrosssubjects.

Bonferronicorrected)andrest(𝑏𝛼=0.17,p-alpha=0.0024;𝑏𝛽=0.08,

p-beta=0.025,allBonferronicorrected).Therefore,theseresultsshow asignificantspatialsimilarityofgroupaverageBOLD-FCandBLP-FC to-pographyatrestandduringtasks,eventhoughtaskcorrelationvalues arelower.

Next,let’s consider thedifference BOLD-FC matrix(task–rest). A significantdecreaseofwithin-VIScorrelationwasparalleledbya cor-relationincrease between VISandDAN regions,asalready reported in(Spadoneetal.2015)).ThepictureforBLP-FCwasmorecomplex. Therewasanoveralldecreaseofconnectivityintwobands,assessed throught-test across subjectsof average couplingstrength vs. 0: al-pha(t-val =-3.90,p-val= 0.0016)andbetabands(t-val=-4.25, p-val=0.0005).Thereisalsoincreasedcorrelationinthehigh-gamma band(t-val =2.5536,p-val =0.02).Indelta,theta,andlow-gamma bands,bothincreasesanddecreaseswerefounddependingonthe spe-cificpairofregions.

However,atthelevelofasingleband,noneofthesespatial pat-ternswaslinearlyrelatedtothepatternoftask-evokedFCmodulation measuredinfMRI.ThisisconfirmedinthescatterplotsofFig.3bottom (yellowcrosses),wherenoregressioncoefficientwassignificantly differ-entfrom0(𝑏𝛿= −0.04;𝑏𝜃= −0.02;𝑏𝛼= 0.001;𝑏𝛽= 0.02; 𝑏𝛾𝑙= −0.04; 𝑏𝛾ℎ=−0.03;allps=n.s.).However,qualitatively,acrossbands,some

ofthesalientBOLD-FCmodulationsareevident.Forinstance, BOLD-FCdecrementsintheVISnetworkcorrespondtobothalpha-beta decre-mentsandtheta-gammaBLP-FCincreases.Similarly,DAN-VISBOLD-FC incrementscorrespondtobothalpha-betadecreases,andhighgamma BLP-FCincreases. Thissuggeststhatmulti-band modulationsmaybe importanttodescribetask-dependentchangesinconnectivity. 3.2. ComparisonbetweenBOLD-andMulti-BandBLP-FCComponents

GiventhelackofaclearBOLD-BLPFCcorrespondenceatthelevel ofgroup-averageddataandsingleBLPbandsandthepresenceofalarge commonsignalintheMEGBLPmatrices,weperformedananalysisto seeksimilarspatialcomponentpatternsacrosssubjectsandmodalities. Therefore,weranaseparatePCAonBOLDandsingle-bandBLP corre-lationmatricesandcomparedtheobtainedprincipalcomponents(PCs)

across modalities.Weappliedthisdata-drivenspatialpattern separa-tionbothinsingleconditions(restandtask)separately,andintask–rest data.ForbothfMRIandMEGdataandeverycondition,weselectedthe componentstoberetainedfortheanalysisthroughtheautomaticelbow method,toavoidanybias.

3.2.1. SingleConditionsComponents

Insingleconditions,theBLPconnectivitywasalmostcompletely de-scribedbythefirstBLP-PC,whichexplained95%and93.3%ofthetotal variance,atrestandtask,respectively.Thiscomponentmainlyloaded onalphaandbetabandsinbothconditions(Fig.4).Thisisconsistent, atleastforrest,withtheliterature(e.g.(Brookesetal.,2011b,2011a; dePasqualeetal.,2010),andourpreviousunivariateanalysis.

ForBOLDconnectivity,weidentified2componentsbothatrestand task,thefirstofwhichexplains68%(rest)and76%(task)of the to-talvariance,anditis aclearrepresentationoftheaverageBOLD-FC acrosssubjects.WhileBOLD-PC1reflectsthesegregationofRSN,with strongerwithin-thanbetween-networkcorrelation,BOLD-PC2reflects theenhancedintegrationbetweenVIS-DAN,andstronger communica-tionwithinVIS,whichisstrongerduringthevisuospatialattentiontask (seeFig.4).

ThespatialtopographyofBOLDandBLPcomponentswassimilar atrestandduringtasksconsistentlywiththepreviousanalysis. Specifi-cally,therewasasignificantcorrelationbetweenBOLD-PC1atrestand task(corr=0.95,p<10−7,Mantel’stest),andbetweenBLP-PC1atrest andtask(corr=0.93,p<10−7,Mantel’stest),suggestingthatthePC1 accountsforspatialpatternsthatdonotmodulateduringtheattentional task.Inaddition,wefoundthatBLP-PC1wassignificantlycorrelated withBOLD-PC1bothatrestandduringtask(rest:corr=0.40,p=0.016; task:corr=0.42,p=0.0011;allBonferronicorrected)(Figure4middle panel,scatterplot).BLP-PC1loadedonallbands,especiallyalphaand betabands(Fig.4right).However,thesimilaritybetweenBOLD-and BLP-PC1donotreflecttask-relatedchanges,butonlystronger within-thanbetween-networkinteractionsthatarepresentbothduringrestand taskconditions.

Insummary,thesefindingsshowthatbothBOLDandBLP connec-tivitypatternsarespatiallylowdimensional,andinthecaseoftheBLP

(8)

C. Favaretto, S. Spadone, C. Sestieri et al. NeuroImage 230 (2021) 117781

Fig.5. Comparisonbetweenmulti-bandBLP-andBOLD-task–restPrincipalComponents.Top)BOLDPrincipalComponents,sortedconcerningtheexplained vari-ance.PCssignificantlysimilar(p<0.05,Bonferronicorrected)tomulti-bandBLP-PCsareembeddedinblackandgraycontours.Middle)Multi-bandPCssorted concerningtheexplainedvariance.BLP-PCswithapatternsignificantlysimilartotheBOLD-PCsareembeddedinblackandgraycontours.Bottom-left)Pattern similaritybetweeneachpairofBLP-PCsandBOLD-PCs.Colorsrepresentthestrengthofthecorrelation,whilewhitefilleddotsindicatevaluesthataresignificantly differentfromzero(Mantel’sTest,p<0.05,Bonferronicorrected)andblackdotsmarksignificant,uncorrectedcomparisons.Bottom-right)Upper:Participation weightsofeachfrequencyband.Thesevaluesrepresentthesumoftheabsoluteweightvaluesacrosssubjects.Lower:Participationweightsofeachfrequencyband forthegroupsofsubjectswithlowandhighaccuracy,togetherwithstatisticalresults(theaveragealphaweightofsubjectswithhighaccuracyislargerthanallthe otherbandsinbothgroups,∗standsforp<0.0008).

involvemainlyalphaandbetabands.Thesepatternsaresimilarbetween restandtaskandcorrelatebetweenmodalities.Giventhepresenceof suchstrong correlatedspatial componentsacross multiplefrequency bandsisnotsurprisingthattask–restsignalsdonotcorrelatebetween BOLD-andBLP-FC,especiallyforsinglefrequencies (Fig.3bottom). Thisledustoexaminemulti-bandrelationshipsbetweenBOLDandBLP connectivity.

3.2.2. Task–RestComponents

Whenthedifferencebetweentaskandrestisconsidered,theelbow methodselected3PCsforfMRIand5PCsforBLP(seeFig.5,forPC

patterns; FigureS2,screeplotsofall separations).Resultsof control analysestotesttherobustnessoftheobtainedseparationarereported inSupplementaryMaterial(SectionS2.4).

ThefirstBOLD-PC(42% ofthetotalvariance) iscomposedof an increaseofDAN-VISinteractionsalongwithaparalleldecreaseof inter-actionsbetweenthevisualregions.BOLD-PC2(15%ofvariance)shows increasedconnectivitybetween theleftFEF,therightSPL,and,toa smallerextent,therightFEFregions(thelatteratasmallerextent)with everyotherregion,inparallelwithdecreasedconnectivitywithinthe vi-sualnetwork.BOLD-PC3(7%ofvariance)describesageneralincrease forallDAN-VISconnectivitypairs,exceptleftFEF,andaweakFC decre-mentinthevisualregions.

(9)

ThefirstBLP-PC,whichaccountsfor43.78%ofthetotalvariance, re-flectsthenon-spatiallyspecificmodulation,commontoeveryfrequency band,consistentwiththeglobalsignal.

The BLP multi-band patterns were compared to the BOLD-PC throughPearson’scorrelationcoefficient,whosesignificancewas eval-uatedbyaMantel’sTestwith15,000permutations.Thepolarityofthe BLP-PCswassettoproduce,foreachrowinthesimilaritymatrix (BLP-PC),apositive maximumcorrelationwiththeBOLD-PCs(seeFig.5, bottomleft).

Thestrongestpatternsimilarity(correlation=0.69,p<10−4, Bonfer-ronicorrected)occursbetweenBOLD-PC2andBLP-PC2(12.29% vari-ance)andcapturestheincreasedinteractionoftheleftFEFandright FEF-SPL(thelatteratalowerextent)withothernodesoftheDANand VISnetworks,aswellasthedecrementsofconnectivityintheVIS sys-tem.TheweightsofBLP-PC2loadsmainlyonthealphaband,as con-firmedbythemaineffectband(p<0.00001)inthemultivariateANOVA andsignificantpost-hoctests(p<0.0004).Aftersplittingsubjectsinto lowandhighperformersbasedonthemeantargetdiscrimination accu-racy,asignificantinteractionbandxperformance(p<0.003)showed thatalphaweightsweresignificantlylargerinhighperformersas com-paredtoallotherbands, aswell asalphaweightsin lowperformers (p<0.0008,Fig.5bottomright).

ThesecondstrongestpatternsimilarityregardsBOLD-PC3and BLP-PC5(correlation=0.52,p=0.003,Bonferronicorrected),withasimilar distributionofweightsacrossbands.

Inasupplementaryanalysis(seeSupplementaryMaterialS2.3.1),we alsocomparedsingle-vs.multi-bandBLPPCstoexplainBOLD-PC de-compositionusingtheBayesianInformationCriterion(BIC).Ingeneral, wefoundmulti-bandBLPcomponentstobeabetterdescriptorof task-relatedfMRIconnectivitychanges.Fig.6showsasummaryofBOLD-PC toBLP-PCcorrespondencewiththeirregionaltopographyandrelative weightsoftheconnectivity.BLP-PC2istheonerelatedtotheaccuracy duringthetaskforweightsonthealphaband.

4. Discussion

Thegoalofthisstudywastoidentifytheneurophysiological corre-latesoffunctionalconnectivitychanges,measuredwithfMRI (BOLD-FC) as observers go from a rest state (visualfixation) toa specific taskstateinvolvingtheallocationandshiftsofvisuospatialattention (Spadoneetal.,2015).Wefocusedonthestatictemporalcorrelationof amplitudefluctuationsofband-limitedpower(BLP-FC)measuredwith MEG,whichisconsideredthemostconsistentelectrophysiological cor-relateofBOLDRSNs.Weaskedifthesetask–restmodulationsoccurin specificfrequencybandsorinvolvejointparticipationofmultiplebands. Atthegrouplevel,wefoundanoveralldecreaseofBLP-FCacross twobands(alphaandbeta)andanincreaseinthegammaband(Fig.3, top).Whenseparatelyconsideringrestandtaskstates,wefounda sig-nificantcorrelationbetweenthetopographyoftheBOLD-FCandthat ofBLP-FCinthealphaandbetabands(Fig.3,bottom).Instead,no sig-nificanttopographycorrelationoccurredfortask–restFCmodulationin anyofthebands.Thisnegativeresultisprobablyduetothelow di-mensionalityoftheelectrophysiologicalpatternsobservedatrestand taskconditions, focusingonasinglecomponent,which loadsmostly inalphaandbetabands,andthatdoesnotchangemuchbetweenrest andtaskconditions(Fig.4).Thisdominantpatternaccounts(i)forthe largerwithin-thanbetween-networkconnectivity,incommonwiththe firstBOLD-FCpattern,and(ii)forthecommonsignalinMEG,spread acrossallfrequencybands(eventhoughmostlyinalphaandbeta).The subtractionoperationbetweentaskandrestconnectivityremovesthis commonelectrophysiologicalfactorandallowsfordifferentandhigher dimensionalpatternstoemergethatcannotberesolvedwitha single-bandapproach.

Inaccordancewiththat,wefoundasignificantsimilaritybetween task–restBOLDand multi-band BLPfunctionalconnectivity patterns afterorthogonalizationthroughaPCAprocedure.Twomainpatterns

Fig.6. SummaryoftheBOLD-BLP-PCscomparison.Spatialpatternsof connec-tivitymodulationsrepresentingtheBLP-PCscorrespondingtoBOLD-PC2and BOLD-PC3,allprojectedontotheMNIbrainrepresentation.Positiveand neg-ativevaluesarecodedinredandblue,respectively.Linethicknessrepresents thestrengthofthemodulation.

emerged:first,theinteractionofleftFEFandrightSPLwithother re-gions of theDAN andVIS along witha decrementof inter-regional VISconnectivity;second,theenhancedcorrelationbetweenDANand VISregions.Notably,thealphaweightofthefirstpatterndiffered be-tweensubjectswithlowandhighbehavioralperformance.These pat-ternsresemblethemainpatternsidentifiedinourpreviousfMRIstudy (Spadoneetal.,2015),andcorrespondtoabehaviorallyrelevant top-downinfluencefromtheDANtotheVISnetwork.

4.1. AssociationBetweenBLP-FCandBOLD-FCTask-InducedModulations Since theseminal workof Logothetis andcolleaguesin primates (Logothetisetal.,2001),BLPcorrelationshavebeenproposedasthe electrophysiologicalcorrelateoftheresting-statenetworks(RSNs) mea-suredthroughfMRI(Brookesetal.,2011b,2011a;dePasqualeetal., 2010; dePasqualeetal.,2012; Hackeretal., 2017;Heetal.,2008; Hippetal.,2012;Kelleretal.,2013;Leopoldetal.,2003;Mantinietal., 2007).MoststudieshaveemphasizedthatthesimilaritybetweenBOLD RSNsandBLPRSNsismostreliableinthealphaandbetabands.

Ourworkisconsistentwiththeseobservations.Wefindevenatthe levelofsinglesubjectsasignificantrelationshipbetweenthemagnitude oftheBOLDandBLPcorrelationinalphaandbetabands,atrest,and duringtheattentiontask(Fig.3).

However,evenearlystudiesshowedthateachfMRIRSNsis charac-terizedbyaspecificelectrophysiologicalsignaturethatinvolves

(10)

mul-C. Favaretto, S. Spadone, mul-C. Sestieri et al. NeuroImage 230 (2021) 117781 tiple brain rhythms (de Pasquale et al., 2010; Hipp et al., 2012;

Mantinietal.,2007).Moreover,alphaandbetarhythmshavethe high-estsignal-to-noise(SNR)in theMEGsignal,whichmayexplaintheir moreconsistentrelationshiptofMRIRSNs.WhenSNRdifferencesacross bandsarecorrected,thenBLPcorrelatesof fMRIRSNsextends from deltatogammaband(HippandSiegel,2015)(seealso(Garcésetal., 2016)).Accordingly,wefoundmulti-bandBLPmodulationswhen go-ingfrom resttoattention.Twoprincipalmodulationsoccurred:first, anoverallnot-spatially-specificmodulationofcorrelation across sev-eralbands, andsecond,coupledmodulationsof BLPacrossdifferent rhythmscorrespondingtospecificspatialpatternsofBOLD-FC modula-tions.

Theoverallchange ofBLPcorrelationacrossnodesandnetworks reflectsthemodulatedamplitudeoftheglobalsignalthatunderlies in-creasedvigilanceduringtheattentiontask(Liuetal.,2018;Taletal., 2013;Wongetal.,2013).Thiseffectisquitestrong,accountingformore than40%ofthevariabilityacrosssubjects, nodes,andbands. While therearedifferentstrategiestoremovetheglobalsignalfromfMRIdata (MurphyandFox,2017),awhole-brainsignalregressiononBLPdata isparticularlychallengingduetothedifficultytoaccountforpossible band-specificdifferencesinthespectralcontributiontotheglobalsignal. However,themulti-bandPCAapproacheffectivelyisolatescomponents representingmodulationoftheglobalsignalfromresttotask:although theparticipationweightofthealphabandtotheBLP-PC1providesthe largestcontributiontothisoverallmodulation,theweightsoftheother bandsarenotnegligible(Fig.5).Thus,multi-bandBLP-PC1might re-flectabroadbandelectrophysiologicalsignalrelatedtotheBOLD ongo-ingglobalsignal(WenandLiu,2016),whichwasinsteadremovedfrom fMRIdatabeforeestimatingtheFC.ChangesinMEGglobalsignalasa functionoftaskconditionsisstillarelativelyunexploredtopicworth futureinvestigationgiventherobustnessofthiseffect.

Thesecondeffectwasaspatiallyspecificmulti-bandmodulationof BLPcorrelationinvolvingnodesofthedorsalattentionnetwork(FEF, IPS,SPL)andnodesoftheVISnetwork.Therearethreemainelementsto thisinteractioninthefMRIdata:(1)anincreaseofcorrelationbetween leftFEFandrightSPL withallothernodesoftheDANandVIS;(2) adecreaseofcorrelationwithintheVIS;(3)anincreasedcorrelation betweenDANandVISnodes(Fig.4,5,6).Theseelementsarecaptured bytheBOLDPCA:PC1captures(2)(3);BOLDPC2captures(1)(2),and BOLDPC3captures(3).

BOLD-PC2(15%ofthetotalvariance)capturestheincreased interac-tionbetweenleftFEFandrightFEF-SPLwithothernodesoftheDANand VISnetworks,aswellasthedecrementsofconnectivityintheVIS sys-tem.BOLD-PC2showsthelargestpatternsimilaritywithBLP-PC2 load-ingmainlyinthealphaband.TheincreasedcorrelationbetweenFEF andotherregionsshowninBOLD-PC2andthecorrespondingBLP-PC2is consistentwiththeknownFEFroleinestablishingcue-related prepara-torysignals(CorbettaandShulman,2002)andexertingtop-down influ-enceonsensoryprocessing(Bressleretal.,2008;Heinenetal.,2017; Moore,1999),modulatingactivityandconnectivitywiththevisual oc-cipitalcortex.

Theweightsof BLP-PC2,especially in thealpha band,were pre-dictiveof accuracyacrosssubjects. Thisresultis consistentwiththe previouslyobservedpositive relationshipbetween accuracyand FEF-VISconnectivity changesduringtheattentiontask in Spadoneetal. (Spadoneetal.,2015).ThelinkbetweenalphabandBLPand perfor-manceisconsistentwithalargeliteratureonalphapowermodulationin attentionparadigms.Modulationofalphaactivityhastraditionallybeen associatedwithinhibitionofthenot-to-be-attendedside(Jensenetal., 2012)andanticipationofavisualtarget(BonnefondandJensen,2012; Jensenetal.,2012;Sausengetal.,2008;Thutetal.,2006).Whilethese paradigmshavereportedattention-relatedmodulationintheorderof hundredsofmillisecondstoseconds,time-lockedtospecificevents(cue ortarget),ourdataindicatemoresustainedmodulationsofalphaband connectivity(tensofseconds)relatedtoattentionperformance.Similar longertimesscalebehaviorallyrelevantmodulationscapturing

individ-ual variabilityhavebeenreportedinmanyfMRIconnectivitystudies (Rosenbergetal.,2020;Sestierietal.,2013;Spadoneetal.,2015).

Thesecond association involvedBOLD-PC3(7%of variance) and BLP-PC5.BOLD-PC3describesageneralincreaseofallDAN-VIS con-nectivitypairs,exceptforleftFEF,whichwasinsteadclearlyinvolved inPC2.Previousstudieshavealsoshownbroadbandmodulationsin at-tentiontasks(Siegeletal.,2008).

Howdoweaccountforthesemulti-bandpatternsoftask–rest mod-ulation?

Ononehand,thehigherSNRofthealphabandcomparedwiththe otherbands(HippandSiegel,2015)maybethereasonwhythe modu-lationinotherbandsdoesnotappeartobesignificantlyassociatedwith behavioralperformance.

Ontheotherhand,asecondexplanationisthatthemodulationof differentfrequenciescarriesdifferentkindsofinformation.Forinstance, (Magrietal.,2012)foundthatfluctuationsoftheBOLDsignalinthe vi-sualcortexco-variedwiththepowerofalpha,beta,andgammaLFP bands. However,alpha/gamma relationshipswereinformativeabout theamplitudeoftheBOLDsignal,whilebeta/gammainformedthe la-tencyofBOLD.

Ingeneral, consistentlywiththeseresults,we findthatdecreases in alpha/betabands were associated with increases in high gamma (Figure 3). It is also consistent with electrophysiological evidence that LFP power <20 Hz is important for distant BOLDconnectivity (Wangetal.,2012),andthatlowfrequenciesplayaroleinlarge-scale coordination(Bressleretal.,2008;SchroederandLakatos,2009). 4.2. MethodologicalConsiderationsontheSpatialSeparationofCommon Patterns

OurchoiceofapplyingthePrincipalComponentsAnalysistoseek fortheelectrophysiologicalcorrelatesoftheBOLDconnectivitychanges observedwhengoingfromfixationtoataskconditionwasbasedon sev-eralconsiderations.(i)Atfirst,wewantedtoextractinformationfrom thedata, takingintoaccount theacross-subjectsvariabilityobserved intask–restconnectivitymatrices.Weobservedthatthecoefficientof variation(CV)oftask–restconnectivityvaluesacrosssubjectswas sig-nificantlylargerthanchance,anddifferentthansingleconditions(rest, task)infMRI(seeSupplementaryMaterialS2.2).Thisobservation indi-catesthattheaveragetask–restBOLDFCmatrixrepresentsonlypartof theinformationcontainedinthedata.(ii)Moreover,wewantedtoselect common(acrosssubjects)spatialpatternsoftask-inducedconnectivity changesthroughadata-drivenapproach,wherenoinitialassumptions areconsidered. Thisdifferentiates, forinstance,fromtheapplication ofthegeneralizedlinearmodel(GLM),ahypothesis-drivenapproach, wherethesetofregressorsshouldbedesigneda-prioriandvalidatedby theresults.Inabsenceofanyinitialhypotheses,wethuspreferredto implementamoreflexibledata-driventechnique.(iii)Another impor-tantconsiderationregardsthevariablestobeconsideredforBOLD-FC andBLP-FCcomparison.Indeed,thePCAapplicationisasuitabletoolto reducethenumberofvariablestobecomparedbyconsideringonlythe patternsbyPCAratherthanallthepairwisecorrelationvalues.Finally, (iv)withthisspatialseparation,weaccountedforthehighpositive cor-relationsobservedinBLP-FCacrossregionsandbands.

Notably,thefirstthreemotivationsdonotexclusivelyapplyto BLP-FCdata,butalsoBOLD-FCdata.Importantly,spatialseparation tech-niques have been already applied to BOLD-FC in recent studies ex-ploitingtheinter-subjectsvariabilityofconnectivitythrougha relation-shipwithbehavioralmeasures(AmicoandGoñi,2018),ormultimodal (EEG-fMRI)topologicalsimilarity(Wirsichetal.,2020),eventhough thecommonBOLDsignalwas removedasinourstudy.Notably,we also appliedmultivariate PCAtosingle-condition connectivitymaps, which wasusedtoextractconnectivitypatternscommonacross sub-jects.Weindeedobtainedadominantpatterninthetwoconditionsand modalities(PC1).EventhoughBOLDandBLPPC1werecorrelated,this doesnotprovideinformationaboutBOLD-BLPassociationduring

(11)

task-relatedchanges,andthesingleconditionanalysisexplainswhystandard single-frequencycross-modalitycomparisonsoftaskvs.restcorrelation changesdidnotproducesignificantassociations(Fig.3).

ThemainlimitationofPCAis theabsenceofsuitablestatisticsto verifytheresults.Thisisthereasonwhywetestedtherobustnessofthe PCsthroughaleave-one-outtestoversubjects,describedinthe Supple-mentaryMaterial(SectionsS1.5andS2.4).

5. Conclusions

WefoundthatthespatialpatternsofBOLDconnectivitymodulation observedwhengoingfromresttoavisuospatialattentiontaskcannot bedirectlyassociatedwithsingle-bandBLPmodulations.Rather,BOLD componentsrepresentingcommonpatternsacrosssubjectscanbebest recapitulatedbymulti-bandcomponentsofMEGconnectivity. Specifi-cally,wefoundthatcross-networkincreasesbetweendorsalattention andvisualnetworks,andtheconcomitantdecreaseswithinthevisual networkareassociatedwithconcordantmodulationsinallthebands, withaprimaryroleofthealphaband.

DeclarationofCompetingInterest None

Creditauthorshipcontributionstatement

ChiaraFavaretto:Writing-originaldraft,Software,Formal analy-sis,Writing-review&editing.SaraSpadone:Datacuration, Investiga-tion.CarloSestieri:Investigation,Writing-review&editing.Viviana Betti:Writing-review&editing.AngeloCenedese:Writing-review &editing.StefaniaDellaPenna:Conceptualization,Writing-review &editing,Supervision.MaurizioCorbetta:Conceptualization,Writing -review&editing,Supervision.

Acknowledgements

CFissupportedbyFLAG-ERAJTC 2017andCARIPARO Founda-tion2019Padova: DarkEnergy; MCis supportedbyFLAG-ERAJTC 2017;DepartmentsofExcellenceItalinaMinistryofResearch(MIUR): NeuroDIP;CARIPAROFoundation2019Padova:DarkEnergy;Ministry ofHealthItaly:Brain-Connnetworkabnormalitiesinstroke;CELEGHIN FoundationPadova:Neuro-OncoPlan.CS,SDP andSS aresupported bythe“DepartmentsofExcellence2018-2022” initiativeoftheItalian MinistryofEducation,UniversityandResearchfortheDepartmentof Neuroscience,ImagingandClinicalSciences(DNISC)oftheUniversity ofChieti-Pescara.

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.neuroimage.2021.117781. References

Amico, E., Goñi, J., 2018. The quest for identifiability in human functional connectomes. Sci. Rep. 8, 8254. doi: 10.1038/s41598-018-25089-1 .

Betti, V., Corbetta, M., de Pasquale, F., Wens, V., Della Penna, S., 2018. Topology of functional connectivity and hub dynamics in the beta band as temporal prior for natural vision in the human brain. J. Neurosci. 1017–1089. doi: 10.1523/JNEU- ROSCI.1089-17.2018 .

Betti, V., Della Penna, S., de Pasquale, F., Mantini, D., Marzetti, L., Romani, G.L., Cor- betta, M., Penna, S., Della, Pasquale, F., De, Mantini, D., Marzetti, L., Romani, G.L., DellaPenna, S., de Pasquale, F., Mantini, D., Marzetti, L., Romani, G.L., Corbetta, M., Della Penna, S., de Pasquale, F., Mantini, D., Marzetti, L., Romani, G.L., Corbetta, M., 2013. Natural scenes viewing alters the dynamics of functional connectivity in the human brain. Neuron 79, 782–797. doi: 10.1016/j.neuron.2013.06.022 .

Bonnefond, M., Jensen, O., 2012. Alpha oscillations serve to protect working mem- ory maintenance against anticipated distracters. Curr. Biol. 22, 1969–1974. doi: 10.1016/j.cub.2012.08.029 .

Brainard, D.H., 1997. The psychophysics toolbox. Spat. Vis. 10, 433–436. doi: 10.1163/156856897X00357 .

Bressler, S.L., Tang, W., Sylvester, C.M., Shulman, G.L., Corbetta, M., 2008. Top-down con- trol of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J. Neurosci. 28, 10056–10061. doi: 10.1523/JNEUROSCI.1776-08.2008 . Brookes, M.J., Hale, J.R., Zumer, J.M., Stevenson, C.M., Francis, S.T., Barnes, G.R.,

Owen, J.P., Morris, P.G., Nagarajan, S.S., 2011a. Measuring functional connectivity using MEG: Methodology and comparison with fcMRI. Neuroimage 56, 1082–1104. doi: 10.1016/j.neuroimage.2011.02.054 .

Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale, J.R., Stephenson, M.C., Barnes, G.R., Smith, S.M., Morris, P.G., 2011b. Investigating the electrophysiologi- cal basis of resting state networks using magnetoencephalography. Proc. Natl. Acad. Sci. 108, 16783–16788. doi: 10.1073/pnas.1112685108 .

Capotosto, P., Spadone, S., Tosoni, A., Sestieri, C., Romani, G.L., Della Penna, S., Cor- betta, M., 2015. Dynamics of EEG rhythms support distinct visual selection mecha- nisms in parietal cortex: a simultaneous transcranial magnetic stimulation and EEG study. J. Neurosci. 35, 721–730. doi: 10.1523/JNEUROSCI.2066-14.2015 . Capotosto, P., Tosoni, A., Spadone, S., Sestieri, C., Perrucci, M.G., Romani, G.L., Della

Penna, S., Corbetta, M., 2013. Anatomical segregation of visual selection mecha- nisms in human parietal cortex. J. Neurosci. 33, 6225–6229. doi: 10.1523/JNEU- ROSCI.4983-12.2013 .

Cattell, R.B., 1966. The Scree test for the number of factors. Multivariate Behav. Res. 1, 245–276. doi: 10.1207/s15327906mbr0102_10 .

Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E., 2014. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251. doi: 10.1016/j.neuron.2014.05.014 .

Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi: 10.1038/nrn755 .

others de Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., Mantini, D., Marzetti, L., Belardinelli, P., Ciancetta, L., Pizzella, V., Romani, G.L., Corbetta, M., 2010. Temporal dynamics of spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. 107, 200913863. doi: 10.1073/pnas.0913863107 .

de Pasquale, F., Della Penna, S., Snyder, A.Z., Marzetti, L., Pizzella, V., Romani, G.L., Corbetta, M., De Pasquale, F., Della Penna, S., Snyder, A.Z., Marzetti, L., Pizzella, V., Romani, G.L., Corbetta, M., 2012. A cortical core for dynamic inte- gration of functional networks in the resting human brain. Neuron 74, 753–764. doi: 10.1016/j.neuron.2012.03.031 .

Della Penna, S., Corbetta, M., Wens, V., de Pasquale, F., 2019. The Impact of the Geometric Correction Scheme on MEG Functional Topology at Rest. Front. Neurosci. 13, 1–19. doi: 10.3389/fnins.2019.01114 .

Della Penna, S., Delgratta, C., Granata, C., Pasquarelli, A., Pizzella, V., Rossi, R., Russo, M., Torquatiand, K., Erné, S.N., Del Gratta, C., Granata, C., Pasquarelli, A., Pizzella, V., Rossi, R., Russo, M., Torquati, K., Erné, S.N., 2000. Biomagnetic systems for clinical use. Philos. Mag. B 80, 937–948. doi: 10.1080/01418630008221960 .

Della Penna, S., Torquati, K., Pizzella, V., Babiloni, C., Franciotti, R., Rossini, P.M., Ro- mani, G.L., 2004. Temporal dynamics of alpha and beta rhythms in human SI and SII after galvanic median nerve stimulation. A MEG study. Neuroimage 22 (4), 1438– 1446. doi: 10.1016/j.neuroimage.2004.03.045 .

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C., 1995. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn. Reson. Med. 33, 636–647. doi: 10.1002/mrm.1910330508 .

Garcés, P., Pereda, E., Hernández-Tamames, J.A., Del-Pozo, F., Maestú, F., Ángel Pineda- Pardo, J., 2016. Multimodal description of whole brain connectivity: a comparison of resting state MEG, fMRI, and DWI: Multimodal description of whole brain connectiv- ity. Hum. Brain Mapp. 37, 20–34. doi: 10.1002/hbm.22995 .

Hacker, C.~D.C.D., Snyder, A.Z.A.~Z., Pahwa, M., Corbetta, M., Leuthardt, E.C.E.~C., Leuthardt, C., 2017. Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage 149, 446–457. doi: 10.1016/j.neuroimage.2017.01.054 . He, B.J., Snyder, A.Z., Zempel, J.M., Smyth, M.D., Raichle, M.E., 2008. Electrophysiolog- ical correlates of the brain’s intrinsic large-scale functional architecture. Proc. Natl. Acad. Sci 105, 16039–16044. doi: 10.1073/pnas.0807010105 .

Heinen, K., Feredoes, E., Ruff, C.C., Driver, J., 2017. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts. Neuropsychologia 99, 81–91. doi: 10.1016/j.neuropsychologia.2017.02.024 .

Hipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M., Engel, A.K., 2012. Large-scale corti- cal correlation structure of spontaneous oscillatory activity. Nat. Neurosci. 15, 884. doi: 10.1038/nn.3101 .

Hipp, J.F., Siegel, M., 2015. BOLD fMRI correlation reflects frequency-specific neuronal correlation. Curr. Biol. 25, 1368–1374. doi: 10.1016/j.cub.2015.03.049 .

Jensen, O., Bonnefond, M., VanRullen, R., 2012. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn. Sci. doi: 10.1016/j.tics.2012.03.002 . Keller, C.J., Bickel, S., Honey, C.J., Groppe, D.M., Entz, L., Craddock, R.C., Lado, F.A.,

Kelly, C., Milham, M., Mehta, A.D., 2013. Neurophysiological investigation of sponta- neous correlated and anticorrelated fluctuations of the BOLD signal. J. Neurosci. 33, 6333–6342. doi: 10.1523/JNEUROSCI.4837-12.2013 .

Kleiner, M. , Brainard, D. , Pelli, D. , Ingling, A. , Murray, R. , Broussard, C. , 2007. What’s new in Psychtoolbox-3. Perception 36 (14), 1 .

Larson-prior, L.J., Oostenveld, R., Penna, Della, Stefania, Michalareas, G., Prior, F., Babajani-feremi, A., Schoffelen, J.-M., Marzetti, L., de Pasquale, Francesco, Di Pompeo, F., others, Penna, S Della, Michalareas, G., Prior, F., Babajani-feremi, A., Schoffelen, J.-M., Marzetti, L., Pasquale, F De, Pompeo, F.Di, Stout, J., Woolrich, M., Luo, Q., Bucholz, R., Fries, P., Pizzella, V., Romani, G.L., Corbetta, M., Snyder, A.Z., Hcp, W., 2013. Adding dynamics to the Human Connectome Project with MEG. Neu- roimage 80, 190–201. doi: 10.1016/j.neuroimage.2013.05.056 .

(12)

C. Favaretto, S. Spadone, C. Sestieri et al. NeuroImage 230 (2021) 117781 Lattin, J.M. , Carroll, J.D. , Green, P.E. , 2003. Analyzing multivariate data. Analyzing mul-

tivariate data. Thomson Brooks/Cole, Pacific Grove, CA .

Leopold, D.A., Murayama, Y., Logothetis, N.K., 2003. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb. cortex 13, 422–433. doi: 10.1093/cercor/13.4.422 .

Liljeström, M., Stevenson, C., Kujala, J., Salmelin, R., 2015. Task- and stimulus- related cortical networks in language production: exploring similarity of MEG- and fMRI-derived functional connectivity. Neuroimage 120, 75–87. doi: 10.1016/j.neuroimage.2015.07.017 .

Liu, T.T., Nalci, A., Falahpour, M., Jolla, L., Drive, G., Jolla, L., 2018. The Global Signal in fMRI: Nuisance or Information? Neuroimage 213–229. doi: 10.1016/j.neuroimage.2017.02.036 .

Liu, Z., Fukunaga, M., de Zwart, J.A., Duyn, J.H., 2010. Large-scale spontaneous fluctua- tions and correlations in brain electrical activity observed with magnetoencephalog- raphy. Neuroimage 51, 102–111. doi: 10.1016/j.neuroimage.2010.01.092 . Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., 2001. Neuro-

physiological investigation of the basis of the fMRI signal. Nature 412, 150. doi: 10.1038/35084005 .

Magri, C., Schridde, U., Murayama, Y., Panzeri, S., Logothetis, N.K., 2012. The amplitude and timing of the BOLD signal reflects the relationship between local field poten- tial power at different frequencies. J. Neurosci. 32, 1396–1407. doi: 10.1523/JNEU- ROSCI.3985-11.2012 .

Mantel, N., Haenszel, W., 1959. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. cancer Inst. 22, 719–748. doi: 10.1093/jnci/22.4.719 . Mantini, D., Penna, S.Della, Marzetti, L., De Pasquale, F., Pizzella, V., Corbetta, M., Ro-

mani, G.L., 2011. A signal-processing pipeline for magnetoencephalography resting- state networks. Brain Connect 1, 49–59. doi: 10.1089/brain.2011.0001 .

Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L., Corbetta, M., 2007. Electrophys- iological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci 104, 13170–13175. doi: 10.1073/pnas.0700668104 .

Moore, T., 1999. Shape representations and visual guidance of saccadic eye movements. Science 285 (80–.), 1914–1917. doi: 10.1126/science.285.5435.1914 .

Murphy, K., Fox, M.D., 2017. Towards a consensus regarding global signal regres- sion for resting state functional connectivity MRI. Neuroimage 154, 169–173. doi: 10.1016/j.neuroimage.2016.11.052 .

Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: Transforming num- bers into movies. Spat. Vis. 10, 437–442. doi: 10.1163/156856897X00366 . Pizzella, V., Della Penna, S., Del Gratta, C., Romani, G.L., 2001. SQUID systems for biomag-

netic imaging. Supercond. Sci. Technol. 14, R79. doi: 10.1088/0953-2048/14/7/201 . Rosenberg, M.D., Scheinost, D., Greene, A.S., Avery, E.W., Kwon, Y.H., Finn, E.S., Ra- mani, R., Qiu, M., Todd Constable, R., Chun, M.M., 2020. Functional connectivity predicts changes in attention observed across minutes, days, and months. Proc. Natl. Acad. Sci. U. S. A. 117, 3797–3807. doi: 10.1073/pnas.1912226117 .

Sauseng, P., Klimesch, W., Gruber, W.R., Birbaumer, N., 2008. Cross-frequency phase syn- chronization: A brain mechanism of memory matching and attention. Neuroimage 40, 308–317. doi: 10.1016/j.neuroimage.2007.11.032 .

Schroeder, C.E., Lakatos, P., 2009. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32, 9–18. doi: 10.1016/j.tins.2008.09.012 . Sebastiani, V., de Pasquale, F., Costantini, M., Mantini, D., Pizzella, V., Romani, G.L., Della

Penna, S., 2014. Being an agent or an observer: different spectral dynamics revealed by MEG. Neuroimage 102, 717–728. doi: 10.1016/j.neuroimage.2014.08.031 .

Sestieri, C., Corbetta, M., Spadone, S., Romani, G.L., Shulman, G.L., 2013. Domain-general signals in the cingulo-opercular network for visuospatial attention and Episodic Mem- ory. J. Cogn. Neurosci. 26, 551–568. doi: 10.1162/jocn_a_00504 .

Shulman, G.L., Astafiev, S.V, Franke, D., Pope, D.L.W., Snyder, A.Z., McAvoy, M.P., Cor- betta, M., 2009. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J. Neurosci. 29, 4392– 4407. doi: 10.1523/JNEUROSCI.5609-08.2009 .

Shulman, G.L., Pope, D.L.W., Astafiev, S.V, McAvoy, M.P., Snyder, A.Z., Corbetta, M., 2010. Right hemisphere dominance during spatial selective attention and target de- tection occurs outside the dorsal Frontoparietal Network. J. Neurosci. 30, 3640–3651. doi: 10.1523/JNEUROSCI.4085-09.2010 .

Siegel, M., Donner, T.H., Oostenveld, R., Fries, P., Engel, A.K., 2008. Neuronal synchro- nization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60, 709–719. doi: 10.1016/j.neuron.2008.09.010 .

Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Watkins, K.E., Toro, R., Laird, A.R., Beckmann, C.F., 2009. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106, 13040–13045. doi: 10.1073/pnas.0905267106 .

Spadone, S., de Pasquale, F., Mantini, D., Della Penna, S., 2012. A K-means multivari- ate approach for clustering independent components from magnetoencephalographic data. Neuroimage 62, 1912–1923. doi: 10.1016/j.neuroimage.2012.05.051 . Spadone, S., Della Penna, S., Sestieri, C., Betti, V., Tosoni, A., Perrucci, M.G., Ro-

mani, G.L., Corbetta, M., 2015. Dynamic reorganization of human resting-state networks during visuospatial attention. Proc. Natl. Acad. Sci. 112, 8112–8117. doi: 10.1073/pnas.1415439112 .

Tal, O., Diwakar, M., Wong, C.W., Olafsson, V., Lee, R., Huang, M.X., Liu, T.T., 2013. Caffeine-induced global reductions in resting-state BOLD connectivity re- flect widespread decreases in MEG connectivity. Front. Hum. Neurosci. 7, 1–10. doi: 10.3389/fnhum.2013.00063 .

Tavor, I., Parker Jones, O., Mars, R.B., Smith, S.M., Behrens, T.E., Jbabdi, S., 2016. Task- free MRI predicts individual differences in brain activity during task performance. Science (80-. ) 352, 216–220. doi: 10.1126/science.aad8127 .

Thut, G., Nietzel, A., Brandt, S.A., Pascual-Leone, A., 2006. 𝛼-Band electroencephalo- graphic activity over occipital cortex indexes visuospatial attention bias and pre- dicts visual target detection. J. Neurosci. 26, 9494–9502. doi: 10.1523/JNEU- ROSCI.0875-06.2006 .

Wang, liang, Saalmann, Y.B., Pinsk, M.A., Arcaro, M.J., Kastner, S., 2012. fre- quency coupling contributes to BOLD connectivity. Neuron 76, 1010–1020. doi: 10.1016/j.neuron.2012.09.033.Electrophysiological .

Wen, H., Liu, Z., 2016. Broadband electrophysiological dynamics contribute to global resting-state fMRI signal. J. Neurosci. 36, 6030–6040. doi: 10.1523/JNEU- ROSCI.0187-16.2016 .

Wens, V., Marty, B., Mary, A., Bourguignon, M., Op De Beeck, M., Goldman, S., Van Bo- gaert, P., Peigneux, P., De Tiège, X., 2015. A geometric correction scheme for spatial leakage effects in MEG/EEG seed-based functional connectivity mapping. Hum. Brain Mapp. 36, 4604–4621. doi: 10.1002/hbm.22943 .

Wirsich, J., Amico, E., Giraud, A.-L., Goñi, J., Sadaghiani, S., 2020. Multi-timescale hybrid components of the functional brain connectome: a bimodal EEG-fMRI decomposition. Netw. Neurosci. 4, 658–677. doi: 10.1162/netn_a_00135 .

Wong, C.W., Olafsson, V., Tal, O., Liu, T.T., 2013. The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures. Neuroimage 83, 983–990. doi: 10.1016/j.neuroimage.2013.07.057 .

Riferimenti

Documenti correlati

We have carried out four different computations, according to the pricing method (either ILP or the combinatorial algorithm) and to the initial solution (either one very large

Particular aspects of Burberry ’s best practices include: delineating customer-centric objectives and consequently campaigns; innovating in order to captivate and engage

By measuring GluN2A and GluN1 S-nitrosylation levels in CZ-treated wild-type and PrP C -null mouse OHC by CZ addition, we found that copper chelation lowers GluN2A and

The more well-studied of the two is structural balance theory, based on the common principles that “the friend of my friend is my friend,” “the enemy of my friend is my enemy,”

using the trnL-trnF chloroplast DNA (cpDNA) sequence (composed: trnL intron, second trnL exon, and partial sequence of the trnL-trnF intergenic spacer), that has been previously

Daily physical activity monitoring could play an important role in diabetes man- agement even for those patients affected by foot ulcer and it can positively affect sev- eral aspects

This narrow Hα map shows that the star formation in the host is not symmetrical distributed: most of the star formation activity is concentrated in the nucleus and in just