• Non ci sono risultati.

Measurement of the 154Gd(n,γ) cross section and its astrophysical implications

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the 154Gd(n,γ) cross section and its astrophysical implications"

Copied!
7
0
0

Testo completo

(1)

2020

Publication Year

2021-01-21T14:38:07Z

Acceptance in OA@INAF

þÿMeasurement of the 154Gd(n,³) cross section and its astrophysical implications

Title

Mazzone, A.; CRISTALLO, Sergio; Aberle, O.; Alaerts, G.; Alcayne, V.; et al.

Authors

10.1016/j.physletb.2020.135405

DOI

http://hdl.handle.net/20.500.12386/29924

Handle

PHYSICS LETTERS. SECTION B

Journal

804

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

154

Gd(n,

γ

)

cross

section

and

its

astrophysical

implications

A. Mazzone

a

,

b

,

S. Cristallo

c

,

d

,

O. Aberle

e

,

G. Alaerts

f

,

V. Alcayne

g

,

S. Amaducci

h

,

i

,

J. Andrzejewski

j

,

L. Audouin

k

,

V. Babiano-Suarez

l

,

M. Bacak

e

,

m

,

n

,

M. Barbagallo

e

,

a

,

V. Bécares

g

,

F. Beˇcváˇr

o

,

G. Bellia

h

,

i

,

E. Berthoumieux

n

,

J. Billowes

p

,

D. Bosnar

q

,

A.S. Brown

r

,

M. Busso

c

,

s

,

M. Caamaño

t

,

L. Caballero

l

,

M. Calviani

e

,

F. Calviño

u

,

D. Cano-Ott

g

,

A. Casanovas

u

,

D.M. Castelluccio

v

,

w

,

F. Cerutti

e

,

Y.H. Chen

k

,

E. Chiaveri

p

,

x

,

e

,

G. Clai

v

,

w

,

N. Colonna

a

,

G.P. Cortés

u

,

M.A. Cortés-Giraldo

x

,

L. Cosentino

h

,

L.A. Damone

a

,

y

,

M. Diakaki

z

,

M. Dietz

aa

,

C. Domingo-Pardo

l

,

R. Dressler

ab

,

E. Dupont

n

,

I. Durán

t

,

Z. Eleme

ac

,

B. Fernández-Domíngez

t

,

A. Ferrari

e

,

I. Ferro-Gonçalves

ad

,

P. Finocchiaro

h

,

V. Furman

ae

,

R. Garg

aa

,

A. Gawlik

j

,

S. Gilardoni

e

,

T. Glodariu

af

,

K. Göbel

ag

,

E. González-Romero

g

,

C. Guerrero

x

,

F. Gunsing

n

,

S. Heinitz

ab

,

J. Heyse

f

,

D.G. Jenkins

r

,

E. Jericha

m

,

Y. Kadi

e

,

F. Käppeler

ah

,

A. Kimura

ai

,

N. Kivel

ab

,

M. Kokkoris

z

,

Y. Kopatch

ae

,

S. Kopecky

f

,

M. Krtiˇcka

o

,

D. Kurtulgil

ag

,

I. Ladarescu

l

,

C. Lederer-Woods

aa

,

J. Lerendegui-Marco

x

,

S. Lo Meo

v

,

w

,

S.-J. Lonsdale

aa

,

D. Macina

e

,

A. Manna

v

,

aj

,

T. Martínez

g

,

A. Masi

e

,

C. Massimi

v

,

aj

,∗

,

P.F. Mastinu

ak

,

M. Mastromarco

e

,

p

,

F. Matteucci

al

,

am

,

E. Maugeri

ab

,

E. Mendoza

g

,

A. Mengoni

v

,

w

,

V. Michalopoulou

z

,

P.M. Milazzo

al

,

F. Mingrone

e

,

R. Mucciola

v

,

aj

,

A. Musumarra

h

,

i

,

A. Negret

af

,

R. Nolte

an

,

F. Ogállar

ao

,

A. Oprea

af

,

N. Patronis

ac

,

A. Pavlik

ap

,

J. Perkowski

j

,

L. Piersanti

c

,

d

,

I. Porras

ao

,

J. Praena

ao

,

J.M. Quesada

x

,

D. Radeck

an

,

D. Ramos Doval

k

,

R. Reifarth

ag

,

D. Rochman

ab

,

C. Rubbia

e

,

M. Sabaté-Gilarte

x

,

e

,

A. Saxena

aq

,

P. Schillebeeckx

f

,

D. Schumann

ab

,

A.G. Smith

p

,

N. Sosnin

p

,

A. Stamatopoulos

z

,

G. Tagliente

a

,

J.L. Tain

l

,

Z. Talip

ab

,

A.E. Tarifeño-Saldivia

u

,

L. Tassan-Got

e

,

z

,

k

,

P. Torres-Sánchez

ao

,

A. Tsinganis

e

,

J. Ulrich

ab

,

S. Urlass

e

,

ar

,

S. Valenta

o

,

G. Vannini

v

,

aj

,

V. Variale

a

,

P. Vaz

ad

,

A. Ventura

v

,

D. Vescovi

c

,

as

,

d

,

V. Vlachoudis

e

,

R. Vlastou

z

,

A. Wallner

at

,

P.J. Woods

aa

,

R. Wynants

f

,

T.J. Wright

p

,

P. Žugec

q

aIstitutoNazionalediFisicaNucleare,Bari,Italy bConsiglioNazionaledelleRicerche,Bari,Italy cIstitutoNazionalediFisicaNazionale,Perugia,Italy

dIstitutoNazionalediAstrofisica- OsservatorioAstronomicod’Abruzzo,Italy eEuropeanOrganisationforNuclearResearch(CERN),Switzerland

fEuropeanCommission,JointResearchCentre,Geel,Retieseweg111,B-2440Geel,Belgium gCentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Spain hINFNLaboratoriNazionalidelSud,Catania,Italy

iDipartimentodiFisicaeAstronomia,UniversitàdiCatania,Italy jUniversityofLodz,Poland

kIPN,CNRS-IN2P3,Univ.Paris-Sud,UniversitéParis-Saclay,F-91406OrsayCedex,France lInstitutodeFísicaCorpuscular,CSIC- UniversidaddeValencia,Spain

mTechnischeUniversitätWien,Austria

nCEASaclay,Irfu,UniversitéParis-Saclay,Gif-sur-Yvette,France oCharlesUniversity,Prague,CzechRepublic

pUniversityofManchester,UnitedKingdom

qDepartmentofPhysics,FacultyofScience,UniversityofZagreb,Croatia

*

Correspondingauthorat:DipartimentodiFisicaeAstronomia,UniversitàdiBologna,Italy.

E-mailaddress:Cristian.Massimi@bo.infn.it(C. Massimi).

https://doi.org/10.1016/j.physletb.2020.135405

0370-2693/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

2 A. Mazzone et al. / Physics Letters B 804 (2020) 135405

rUniversityofYork,UnitedKingdom

sDipartimentodiFisicaeGeologia,UniversitàdiPerugia,Italy tUniversityofSantiagodeCompostela,Spain

uUniversitatPolitècnicadeCatalunya,Spain

vIstitutoNazionalediFisicaNucleare,SezionediBologna,Italy

wAgenzianazionaleperlenuovetecnologie,l’energiaelosviluppoeconomicosostenibile(ENEA),Bologna,Italy xUniversidaddeSevilla,Spain

yDipartimentodiFisica,UniversitàdegliStudidiBari,Italy zNationalTechnicalUniversityofAthens,Greece

aaSchoolofPhysicsandAstronomy,UniversityofEdinburgh,UnitedKingdom abPaulScherrerInstitut(PSI),Villigen,Switzerland

acUniversityofIoannina,Greece

adInstitutoSuperiorTécnico,Lisbon,Portugal

aeJointInstituteforNuclearResearch(JINR),Dubna,Russia

afHoriaHulubeiNationalInstituteofPhysicsandNuclearEngineering(IFIN-HH),Bucharest,Magurele,Romania agGoetheUniversityFrankfurt,Germany

ahKarlsruheInstituteofTechnology,CampusNorth,IKP,76021Karlsruhe,Germany aiJapanAtomicEnergyAgency(JAEA),Tokai-mura,Japan

ajDipartimentodiFisicaeAstronomia,UniversitàdiBologna,Italy ak

IstitutoNazionalediFisicaNucleare,SezionediLegnaro,Italy alIstitutoNazionalediFisicaNazionale,Trieste,Italy amDipartimentodiFisica,UniversitàdiTrieste,Italy

anPhysikalisch-TechnischeBundesanstalt(PTB),Bundesallee100,38116Braunschweig,Germany aoUniversityofGranada,Spain

apUniversityofVienna,FacultyofPhysics,Vienna,Austria aqBhabhaAtomicResearchCentre(BARC),India arHelmholtz-ZentrumDresden-Rossendorf,Germany asGranSassoScienceInstitute,L’Aquila,Italy atAustralianNationalUniversity,Canberra,Australia

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received4February2020

Receivedinrevisedform30March2020 Accepted31March2020

Availableonline3April2020 Editor:D.F.Geesaman

Keywords:

sprocess

154Gd

Neutrontimeofflight n_TOF

Theneutroncapturecrosssectionof154Gdwasmeasuredfrom1eVto300keVintheexperimentalarea located185mfromtheCERNn_TOFneutronspallationsource,usingametallicsampleofgadolinium, enrichedto67% in154Gd.Thecapture measurement,performedwithfourC

6D6 scintillationdetectors,

hasbeencomplementedbyatransmissionmeasurementperformedattheGELINAtime-of-flightfacility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averagedcapturecrosssection(MACS)wasdeducedoverthetemperaturerangeofinterestforsprocess nucleosynthesismodelling.Wereportavalueof880(50)mbfortheMACSatkT=30 keV,significantly lowercomparedtovaluesavailableinliterature.Thenewadopted154Gd(n,

γ

)crosssectionreducesthe

discrepancy betweenobserved andcalculated solar s-onlyisotopicabundancespredicted bys-process nucleosynthesismodels.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Alltheelementsheavierthanthoseintheirongroup are pro-ducedby a sequence ofneutron capture reactions and

β

decays takingplaceina hotstellar environment,during differentphases ofstellarevolution.Thetwomainprocessesinvolvedaretheslow (s)andtherapid(r)neutroncaptureprocesses.Thesprocess[1,2] owesits nametotheneutron-capture timescale,whichallows

β

decaytooccur betweenconsecutivecaptureevents.Consequently, aseriesofthesereactionsproducestableisotopesbymovingalong the

β

-stability valley.On theother hand,whenthe neutron den-sitiesarehighenough[3], theneutroncapturesequenceismuch fasterthanthe

β

decaysandthepath,therprocesspath,can pro-ceedtoward many short-lived isotopes, approaching the neutron dripline.

Mostnuclei receive a contributionfrom both the s andthe r processes(seee.g.[4]).However,afewisotopescannotreceiveany contributionfromtherprocess becausetheyareshieldedagainst

β

decays by stable isobars and for this reason are called s-only isotopes. This is the case of the two gadolinium isotopes 152Gd and 154Gd which are shielded against the

β

-decay chains from the r-process region by their stable samariumisobars, as shown inFig.1.Tobeprecise,152Gdmayreceiveanadditional

contribu-tionfromthep process,whichproceedsvia photo-disintegration.

Fig. 1. The yellowlinerepresentsthemains-processpathintheSm-Eu-Gdregion; thes-onlyisotopesarehighlightedwithayellowdashedbox.Stableelementsare inblack,β+,β−andβ+radioisotopesareinorange,blueandred,respectively.

Theamountofthep-processcontributiontothe152Gdabundance isstillfarfrombeingpreciselydetermined(see[5] andreferences therein),whileaminorp-processcontributiontothe154Gd

abun-dancecannotbeexcludedaswell.

The almostpure s-processoriginof154Gd(asforother s-only isotopes),makesitscapturecrosssectioncrucialfortestingvarious stellar models aimingatunderstanding s process nucleosynthesis in AsymptoticGiant Branch(AGB) stars,themostimportant

(4)

stel-larsiteforthesprocess.Inparticular,relevanthintsontheshape andextensionofthemainsprocessneutronsource,theso-called

13C pocket [6], can be derived. Recently, several studies [7,8,4]

have been conducted analyzing the solar s process abundances in the framework of a Galactic Chemical Evolution (GCE) model toinvestigatetheeffectofdifferentinternalstructures ofthe 13C pocket,whichmayaffecttheefficiencyofthe13C(

α

,n)16Oreaction. In addition, Trippella and Collaborators [9] carried out a similar analysis based on single stellar models. Cristallo et al. [8] and Prantzos et al. [4] have obtained an under-production (-30%) of the154Gd1 s-onlynucleuscomparedto thes-only isotope150Sm, whichisan un-branched isotope,usually assumedasareference for the s process flow. This result is at odds with observations. The authors ofref. [8], have suggested that part ofsuch a devi-ationcould be connectedto uncertainties intheadopted nuclear physicsinputs,takenfromtheKarlsruheAstrophysicalDatabaseof NucleosynthesisinStars(KADoNiS) version0.3 [10],includingthe neutroncapture cross section of 154Gd. In the work by Trippella

etal. [9],problemsforthesprocessproductionofGdwerefound aswell,although inthiscase,thediscrepancybetweenthe abun-dancesof150Smand154Gdislesspronounced.Theneedforanew 154Gd(n,

γ

)measurementwasunderlinedbytheunreasonable

pre-dictionforthe over-productionsof152Gdand154Gdwithrespect to their solar abundances. In particular, the ratio 154Gd/152Gd), turnedout tobelower thanunity, whileitisthoughtthat 152Gd should exhibit a higher p-process contribution as compared to

154Gd [9]. In addition, 154Gd was found to be produced

insuffi-cientlycomparedtothelighters-only148Sm and142Nd,produced mostlybythesprocessandpossiblypartlybythepprocess.

Theclose correlationbetweenstellar abundances andneutron capturecross sections calls foran accurate determination of the

154Gd(n,

γ

) crosssection. In addition,thereduction ofthe

uncer-taintyrelatedto nuclearphysics inputscouldrule outone ofthe possiblecausesofpresentdiscrepancies betweenobservationand modelpredictions oftheabundances. Infact,refinedstellar mod-els requirea full set ofMaxwellian AveragedCapture Cross Sec-tion (MACS) forthermal energies in the range kT

=

8

30 keV. In the case of 154Gd, 80% of the MACS at kT

=

8 keV is

deter-mined bythe capturecrosssection in theneutron energyregion between2

.

7

300 keV- hereafter werefertothisenergyregion asUnresolvedResonanceRegion(URR).At

kT

=

30 keV,theMACS dependsalmost entirelyon the cross section in the URR. In this energyregion, threetime-of-flight 154Gd(n,

γ

) cross section

mea-surementsarereportedinliterature,byShorinetal.[11],Beerand Macklin[12] andWisshaketal.[13].Theyall covertheURR and therespectiveMACSexhibit largedifferencesandat

kT

=

30 keV, theyrangefrom878(27)mbto1278(102)mb.Therefore,thedata presentintheliterature,sofar,arenotconclusiveenoughto con-strainstellarmodelcalculations.

The large spread in the available experimental data could be relatedtothecorrectionsforisotopicimpuritieswhichare neces-sarilyapplied in thedata analysis. Inparticular, the poor knowl-edge oftheir cross sections,given the low naturalabundance of

154Gd(2.18%).Differentdiscrepanciesmayberelatedto:

i) the

de-tectorsusedin thepast experiments,which insome cases could havesuffered from highneutron sensitivity;ii) the experimental determinationofthe neutronflux,whichmighthavebeenbiased insomeprevious measurements;iii) the qualityofoxidesamples andtheneedofcanningforthecontainertoavoidlossofmaterial. Thepresentmeasurementreducedtheimpactoftheselimiting factors,byusingthewell-established,lowneutron-sensitivityC6D6

detectors[14], combined toa self-sustaining metallic sample

en-1 Inthefollowing,anindividualisotopeor/anditsabundanceisimplyindicated

bythesymbol(e.g.152Gd),tosimplifythenotation.

richedin154Gd,andexploitingtheresultsoftherecent155Gd(n,

γ

)

measurementperformedatn_TOF[15].Moreover,thegadolinium sample was characterisedby a transmission measurement atthe neutrontime-of-flightfacilityGELINAatEC-JRC-Geel(Belgium).

2. Measurements

Theneutroncapturecrosssectionmeasurementwasperformed attheneutron time-of-flightfacilityn_TOFatCERN.In this facil-ity, neutrons are produced by spallation reactions induced on a leadtargetby20GeV/cprotonsfromtheCERNProtonSynchrotron (PS),whichprovidesatotalof2

×

1015neutrons/pulse,generated by a 7

×

1012 protons/pulse primary beam. The initially fast

neu-tronsaremoderatedandthencollimatedthroughtwoflightpaths of differentlengths. The presentmeasurement was performedat the experimental area located 185 m from the spallation target. Thislongflight-path,combinedwiththe7nswidthoftheproton bunches from the PS, results in a high energy resolution rang-ing from



E

/

E

=

3

×

10−4 at 1 eV to



E

/

E

=

3

×

10−3 at 100 keV(calculated usingtheFWHMof theresolutionfunction [16]). Theneutroncaptureeventswereobservedviathedetectionofthe prompt

γ

-raycascadefrom155Gdexcitedstates.FourC6D6

detec-tors, modified forminimizing their neutronsensitivity [14],were arrangedat125◦ relativetotheneutronbeamdirectionandabout 10cmupstreamfromthegadoliniumsampleposition.This config-urationminimisedtheeffectofanisotropicemissionof

γ

cascades whilereducingthebackgroundfromin-beamphotonsscatteredby the sample. The Total Energy detectors (see [17] and references therein) were used in combination with Pulse Height Weighting Technique(PHWT)[18,17].

The sample consisted of 0.263 g of metallic gadolinium en-richedat66.78% in 154Gd. Themaincontaminant, i.e.155Gd,was declared by the sample providerat 17.52%. Adetailed resonance analysisofthecapturedata,basedontherecentresultsobtained bytimeofflighton155Gd(n,

γ

)atn_TOF,allowedustoestimatea contentof155Gdequalto20.2%.Thishighervaluewas confirmed byatransmissionmeasurementonthesamesamplecarriedoutat GELINA.

AAusample ofthesamediameterwas usedtonormalisethe measured yield, by applying the saturated resonance technique [19]. Also, two other samples with the same diameter of 3 cm wereused.Aleadsampleenabledtheestimateofthebackground, whileanaturalgadoliniumsampleallowedtoassignobserved res-onancestothecorrectgadoliniumisotope,besidesconfirming the isotopiccontentof154Gdintheenrichedsample.

Asmentioned above,thegadoliniumsample was further stud-ied through the transmissionmeasurement ata 10-m station of the GELINA facility. The transmission, T , which was experimen-tally obtained fromthe ratio of Li-glass spectra resulting froma sample-in anda sample-out measurement,is relatedto thetotal crosssection

σ

tot bytheequation:

T(En

)

=

enσtot(En)

,

(1)

where

n

= (

1

.

431

±

0

.

006

)

×

10−4 atoms/bdenotestheareal

den-sity ofthegadolinium sample. GELINAis particularlysuitable for high-resolution transmission measurement, because of its time characteristic and the small dimensions of the neutron produc-ing target.Forthisexperiment,the neutronbeamwascollimated to a diameterof 10 mm atthe sample position andfilters were placednearthesampletoabsorbslowneutronsfromtheprevious neutron-burst and to continuously monitor the background. The neutronbeampassing through thesample was detected bya 6.4 mmthickand76mmwideLi-glassscintillatorenrichedto95%in

6Li.Thedetectorwasplacedat10.86mfromtheneutron

(5)

4 A. Mazzone et al. / Physics Letters B 804 (2020) 135405

3. Dataanalysisandresults

The experimental capture yield Yc, i.e. the probability for an incident neutron to be captured in the sample, can be deduced from the measured count rate, corrected for the detection effi-ciency of captureevents. By applyingthe PHWT, the count rate, Cw, is weighted in order to make the detection efficiency inde-pendent of the cascade path and

γ

multiplicity. The weighting functionswerecalculatedsimulatingtheresponseofthefull appa-ratusbyaGEANT4[20] Monte-Carlosimulation.Thecaptureyield canbewrittenas:

Y

(

En

)

=

N

Cw

(E

n

)

Bw

(E

n

)

(E

n

)

(2)

where

N is

a normalisationfactor, Bw istheweighted count rate representingthebackgroundand



istheneutronfluximpinging on thesample. The neutron energy

E

n was determined fromthe measured timeofflight usingan effectiveflight pathdetermined fromwell-knownlowenergyresonancesinAu[21].

The normalisation factor groups together geometrical factors, such as the area of thesample andits beam-interceptionfactor, thesolid angle subtendedby the captureandflux monitors, and the detection efficiency. It was obtained with the saturated res-onance technique applied to the 4.9-eV resonance in197Au. This

normalisation,basedontheAucapturedata,waswithin1.3% con-sistent withthe normalisation derived froma fit to the capture datausingtheparametersfromthetransmissiondata.

The background,Bw, includesdifferentcontributions:

i)

ambi-ent background, which was determined from a measurement in absence of the neutron beam; ii) the sample-independent back-ground(alsoreferredtoasemptybackground),duetotheneutron beam, which was estimated from a measurement with neutron beamimpinging on an empty sample;iii) the sample-dependent background,eitherduetosample-scatteredneutrons(subsequently capturedin theenvironmental materialandgenerating

γ

-rays in the experimental area) ordue to

γ

-rays produced at the spalla-tiontargetandreachingtheexperimentalarea,wheretheycanbe scatteredby thesample intothe detectors.Thisthird component wasestimatedbya measurementwithaleadsample inthe neu-tron beam. Previous measurements and Monte-Carlo simulations showedthat thecontributionofthein-beam

γ

-raybackgroundis relevantonlyinalimitedenergywindowof1-100keV [16]. There-fore, it was possible to disentangle the two sample-dependent backgroundcomponents inthe time-of-flightspectrum measured withthe lead andwiththe gadoliniumsamples, properlyscaled. The neutron background was scaled forthe elastic cross section and the areal density of the gadolinium andlead sample, while the

γ

backgroundwas scaled forthe effectiveatomicnumber of gadolinium and lead samples. The same procedure for the esti-mation of thetotal background was adopted inthe study ofthe

197Au(n,

γ

)crosssection.Inparticular,intheenergyregionfrom5

keVto500keV,wherethiscrosssection isverywell-known (and above200keV,consideredasastandard)thecapturecrosssection fromthisstudyresultedtobeingoodagreementwithevaluations. In Fig. 2the weighted number ofcounts, registered withthe

154Gdsample, are shown together with the sample-independent

(empty)backgroundandthe sample-dependentbackground com-ponents.Theempty-samplebackgroundcomponentdominatesthe total backgroundover the energyregion of interest,whereas the sample-dependentbackgroundcontributesby lessthan 4% tothe totalbackground.The absolutemagnitudeofthe backgroundwas additionallyverifiedwithdedicatedrunsusingblackresonance fil-ters [17] andafairagreementwasfound.Intheregionbetween5 and300keV,thesignal-to-totalbackgroundratiois2.5.Although the total background level is significant, its uncertainty is small

Fig. 2. Weighted spectrummeasuredwiththe154Gdsamplecomparedtothe

back-groundmeasured with an empty-sampleholderand the one estimatedfrom a measurementwithaleadsample.Thelastspectrumwasobtainedbyscalingthe in-beam

γ

-raybackgroundandthecomponentduetotheneutronsscatteredby thesample,seetextfordetails.

Fig. 3. Measured captureyieldandtransmissionofforn+154Gd.Experimentaldata

areshownbyredsymbols,then_TOFR-matrixfitinblueandtheyieldcalculated fromENDF/B-VIII.0parametersingreen,bothincontinuouslines.

since thebackground isdominatedby theempty-sample compo-nent,whichisknownwithin1%.

Theneutronfluxwasevaluatedwithadedicatedmeasurement campaignusingdifferentdetectionsystemsandwithneutroncross section standards [22]. The estimated systematic uncertainty on the flux determination was within 1% below 3 keV [22] and of 3.5% upto300keV.

Intheenergyregionupto2.7keV- hereafterreferredtoas Re-solved Resonance Region(RRR) -,the experimental capture yield was analysed with the Bayesian R-matrix analysis code SAMMY [23].The code can manage experimental effects such asDoppler andresolutionbroadening,self-shieldingandmultipleinteractions of neutrons in the sample. Sizable discrepancies were found for some neutronresonances compared to the yields obtained using theENDF/B-VIII.0evaluationdataset[24].Thesedifferenceswere furtherconfirmedbythetransmissiondata.Anexampleisshown in Fig. 3, where the present results of resonance shape analysis arecomparedtotheexpectedvaluesobtainedusingresonance pa-rametersfromtheevaluateddataset.Upto2.75keV,weanalysed 156 resonances and 3 new resonances were found at 183.17(2), 197.65(1) and 376.26(1) eV, respectively. The statistical analysis of resonance parameters (similar to ref. [15]) yielded a neutron strength function S0

=

2

.

78

(

33

)

×

10−4, an average levelspacing

(6)

Fig. 4.154Gd(n,γ) crosssectionfromthepresentstudycomparedtoprevious

mea-surements(colouredsymbols)andevaluation(continuousline).TheHFcalculation hasbeennormalisedbyafactor0.737(seetext).

Abovethisenergyregion, theexperimental resolution became toolowtoresolveindividualresonancesandanaveragedcross sec-tionwas determinedintheneutronenergyrangefrom2.7keVto 300keV. The captureyield was correctedfor multiple scattering and self-shielding through Monte-Carlo simulations as described inref. [25].Theresultingcorrectionforthetwoeffectswas lower than2%.

Thecontributionofthecontaminantspresentinthemeasured sampleswastakenintoaccountintheexperimentaldataanalysis. In particular, for the main contaminant 155Gd, the cross section

was assumed from the previous n_TOF measurement on 155Gd. In Fig. 4, the capture cross section extracted from this study is comparedtothedataofShorinetal. [11],BeerandMacklin [12], Wisshaketal. [13] andtheENDF/B-VIIIevaluation.IntheURR,the presentdatafairly agreewiththe databy BeerandMacklin[12] andthey are substantially lower than thedata reported by Wis-shak etal.[13] and Shorin etal.[11].This comparisonseems to indicatethat the resultsobtained fromthiswork andby Beeret al.withthesametechnique areinfairagreement,whilethey are inconsistentwiththeresultsbyWisshaketal.andShorinetal. Al-thoughtheselatterdatacomefromasimilarexperimental setup, whereneutronareproducedviathe7Li(n,p)reaction,theneutron flux is normalised to 197Au(n,

γ

) and the capture eventsare

de-tectedwith large-volumedetectors, their resultsare inconsistent. AsdiscussedaboveintheIntroduction,thediscrepanciesmightbe relatedtoa problemwiththeneutronsensitivityofthedetectors ortotheexperimentaldeterminationoftheneutronflux.

MACSasa function ofthe thermalenergykT were calculated from the present capture data in the RRR and in the URR. The crosssectionintheenergyregionabovethisrange(i.e.above300 keV)was takenintoaccount by calculationsperformedusingthe HauserFeshbach(HF)statisticalmodeltheory,asimplementedin theTALYScode [26]. Theaverage resonanceparameters,obtained inthepresentanalysisoftheRRR,were constrainedtobe repro-ducedby the calculationsby adjusting the level densityand the

γ

-raystrengthfunction.Anoverallnormalisationbyafactor0.737 oftheresultingcapturecrosssectionwas stillnecessaryto repro-ducethepresentexperimentalMACSat

kT

=

30 keV.

Theuncertainty onthe MACS takesinto account the uncorre-lateduncertaintyattributabletocountingstatisticsandsystematic uncertainties.Theuncertaintycomponentsoriginatefromthe nor-malisationofthecapturedataandthePHWT(1.3%),theshapeof theneutronflux(1% below3keVand3.5% above)andthe subtrac-tionofthe background(on average2%, depending on theenergy region.). Anotherminor uncertainty is associated withthe align-mentofthesampleanditsgeometricalshape.Asaresult,overthe thermalenergyrangeofkT

=

5

100 keV,theuncertaintyonthe MACSrangesbetween5and7%.InTable1,thepresentMACSare

Table 1

MaxwellianAveragedCaptureCross(inmb)calculatedfor then_TOFdataintheenergyrangekT=5−100 keV.The valuesarecomparedwiththosereportedintheliterature byKADoNiS0.3andKADoNiS1.0.

Energy n_TOF KADoNiS KADoNiS

(keV) 0.3 1.0 5 2160(90) 2801 2947(190) 8 1820(80) – 2195(87) 10 1590(80) 1863 1924(61) 15 1270(80) 1477 1537(33) 20 1080(60) 1258 1326(24) 25 970(50) 1124 1188(19) 30 880(50) 1028(12) 1088(16) 40 770(40) 898 950(14) 50 690(40) 810 856(12) 60 640(40) 745 786(12) 80 560(30) 653 690(15) 100 510(30) 591 626(19)

reportedforthethermalenergygridproposedbyKADoNiS[10,27]. In the whole energy range,the MACS valuesfrom our measure-mentaresignificantlylowerthanKADoNiS.Itisinterestingtonote thatthedisagreementworsenedwiththenewversionofthe eval-uation,thedeviationbeingbetween10% and20%.

4. Astrophysicalimplications

As discussed above, a new determination of the 154Gd neu-troncapturecrosssectionwasmotivatedbyadiscrepancybetween stellar models and observations, as highlighted by [8] and con-firmed by [4], where a lower theoretical 154Gd/150Sm ratio with respect to that measured in the Sun (and derived forthe early-solarsystem)wasfound.Infact,theoreticalvalues,whichinclude yields fromtheAsymptotic GiantBranch(AGB) phaseoflow and intermediate massstars (takenfromthe FRUITYdatabaseofAGB starnucleosynthesis[28,29]),show an under-productionof154Gd withrespectto150Sm:154Gd/150Sm=0.70.Asaconsequence,one

canarguethatareasonforthedisagreementshouldbeattributed toproblemsinthecrosssectionof154Gditself.

Theuseofthepresentcrosssectionleadstoanincreaseofthe theoreticalsolar154Gdabundanceby10%onaverage.2 The differ-ence in the 154Gd surface abundances is lower than the change

of the neutroncapture crosssections (on average 15% compared toKaDoNiS0.3).Thisisbecausethe154Gdproduction/destruction

strongly depends on the branching at 154Eu, which is an unsta-ble isotope (its decay lifetime in the terrestrial condition is 8.6 y).Thisbranchingisby-passedwhenthemajorneutronsourcein AGB stars(the 13C(

α

,n)16Oreaction) isactivated,duetoits short lifetime forthe timescale characterizing neutroncaptures in this regime.Thesituationmaybedifferentduringthermalpulseswhen thehighertemperaturecanefficientlyactivatethe22Ne(

α

,n)25Mg

neutronsource(which producesa definitelyhigherneutronflux). In such a case, the neutron capturechannel is competitive com-pared to the

β

decay channel and, as a consequence, the main s-processpath may by-pass 154Gd. The delicate balance between neutron captures on 154Gdand

β

decays from 154Eu determines

thefinalabundanceof154Gd.

In summary,the presentexperimental value leads toa better agreementbetweenmodelcalculationsandobservations,although itisnotabletocompletelyremovethemismatch.In2009,Lodders andcollaborators [30] estimatedtheuncertaintyinthe determina-tion of the solar gadolinium3 abundance to be

±

15% (and

±

5%

2

NotethatonlyalimitednumberofAGBmodelshavebeeninvestigatedwith thepresentcrosssection.TheevaluationoftheeffectinafullGCEmodelwillbe publishedseparately.

(7)

6 A. Mazzone et al. / Physics Letters B 804 (2020) 135405

forsamarium).Theadoptionofthepresent154Gdneutroncapture

crosssection,eventuallyleadstoanew154Gd/150Sm ratioof0.77 inFRUITYmodels.Whentakingintoconsiderationthelowerlimit of the present neutron capture cross section, we obtain 154Gd/ 150Sm



0.81. As a consequence, the ratios obtained in FRUITY

modelsarenowcompatiblewiththeobservedabundances,within observationaluncertainties(

±

20%).

Whenthepresentcrosssectionisusedinthemodelsby Trip-pellaetal. [9,31],itisinterestingtonoticethatwhilethe discrep-ancywithrespectto142Nd,148Smand152Gdiscompletelyerased

(duetothelargerproductionof154Gd),atthesametime, the

ra-tio154Gd/150Smattainsavalue(1.15)consistentwithobservations, within uncertainties. In general, it appears that the approach in ref. [31] produces a flatter distribution of s process isotopes, al-though this was obtained in post-process computations and not infullstellarmodels.Therefore,aclearsuggestionemergingfrom thepresent154Gd(n,

γ

)crosssectionmeasurementisthatsomeof

theremainingmodelambiguitiesmightbesolvedbyamergingof themixingapproachespresentedinFRUITYandref. [9],something thatisinanadvancedstageofimplementation[32].

Anotherimportant outcome fromthiscombined experimental and theoretical study is related to the 154Gd abundance, which largelydependsonthebranchingat154Eu.Forthisisotope,no

ex-perimental dataare available for both the neutron capturecross section and the temperature-dependent

β

decay rate. Therefore, sprocess calculationsarebased onpurely theoreticalestimations (seeref. [33] andref. [34],respectively). Alower 154Eu(n,

γ

) cross

section or a faster 154Eu(

β

−)154Gddecay would lead to a larger

154Gdsurface abundance withrespect to 150Sm (andvice-versa).

Therefore,thepresentresultsuggeststhatadditionaleffortsshould be spent inthisdirectionfrom theexperimental side, to provide experimentalvaluesasdetailedaspossibletostellarmodellers.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

The isotopeused in thisresearch was supplied by theUnited StatesDepartmentofEnergyOfficeofSciencebytheIsotope Pro-gramintheOfficeofNuclearPhysics.

This research was supported by the EUFRAT open access pro-grammeoftheJointResearchCentreatGeel.

References

[1]E.M.Burbidge,G.R.Burbidge,W.A.Fowler,F.Hoyle,Rev.Mod.Phys.29(1957) 547–650.

[2]A.G.W.Cameron,Publ.Astron.Soc.Pac.69(1957)201.

[3]F.-K.Thielemann,etal.,Prog.Part.Nucl.Phys.66 (2)(2011)346.

[4]N.Prantzos,etal.,Mon.Not.R.Astron.Soc.491 (2)(2019)1832.

[5]C.Travaglio,etal.,Astrophys.J.854 (1)(2018)18.

[6]R.Gallino,C.Arlandini,M.Busso,M.Lugaro,C.Travaglio,O.Straniero,A.Chieffi, M.Limongi,Astrophys.J.497 (1)(1998)388–403.

[7]S.Bisterzo,etal.,Astrophys.J.787 (1)(2014)10.

[8]S.Cristallo,C.Abia,O.Straniero,L.Piersanti,Astrophys.J.801 (1)(2015)53.

[9]O.Trippella,etal.,Astrophys.J.787 (1)(2014)41.

[10] I.Dillmann,M.Heil,F.Käppeler,R.Plag,T.Rauscher,F.-K.Thielemann,AIPConf. Proc.,vol. 819,2006,p. 123,onlineathttp://www.kadonis.org.

[11]V.Shorin,V.Kononov,E.Poletaev,Sov.J.Nucl.Phys.USSR19 (1)(1974)2.

[12]H.Beer,R.Macklin,Astrophys.J.331(1988)1047.

[13]K.Wisshak,etal.,Phys.Rev.C52 (5)(1995)2762.

[14] P. Mastinu,et al.,Tech.Rep.,Cern(n_TOF-PUB-2013-00226/06/2013). [15]M.Mastromarco,etal.,Eur.Phys.J.A55 (1)(2019)9.

[16]C.Guerrero,etal.,Eur.Phys.J.A49 (2)(2013)27.

[17]P.Schillebeeckx,etal.,Nucl.DataSheets113 (12)(2012)3054.

[18]A.Borella,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A577 (3)(2007)626.

[19]R.Macklin,J.Gibbons,Phys.Rev.159 (4)(1967)1007.

[20]S.Agostinelli,etal.,Nucl.Instrum.MethodsPhys.Res.,Sect.A506 (3)(2003) 250.

[21]C.Massimi,etal.,J.KoreanPhys.Soc.59(2011)1689.

[22]M.Barbagallo,etal.,Eur.Phys.J.A49 (12)(2013)156.

[23]N.M.Larson,Tech.Rep.,OakRidgeNationalLab.,TN(US),1998.

[24]D.A.Brown,etal.,Nucl.DataSheets148(2018)1.

[25]F.Mingrone,etal.,Phys.Rev.C95(2017)034604.

[26]A.J.Koning,D.Rochman,Nucl.DataSheets113 (12)(2012)2841.

[27]I.Dillmann,R.Plag,F.Käppeler,T.Rauscher,in:Proc.EFNUDAT2009Workshop, 2010,p. 55.

[28]S.Cristallo,etal.,Astrophys.J.Suppl.Ser.197 (2)(2011)17.

[29]S. Cristallo, O. Straniero, L. Piersanti,D. Gobrecht, Astrophys.J. Suppl. Ser. 219 (2)(2015)40.

[30]K.Lodders,H.Palme,H.Gail,JETrümper4(2009)44.

[31]O.Trippella,etal.,Astrophys.J.818 (2)(2016)125.

[32] D. Vescovi,et al.,Tech.Rep.,inpreparation.

[33]T.Rauscher,F.-K.Thielemann,At.DataNucl.DataTables75 (1–2)(2000)1.

Riferimenti

Documenti correlati

This paper addresses three forms of involvement: in local politics (mainstream organizations focused on mainstream issues), immigrant and homeland politics

(a) Voltage output from one of the 16 tactile units; (b) result of the algorithm application using a 40 ms window for the ON/OFF signal computation; (c) result of the

The recycling with screening of fine powders and the recharge seems the best way to reuse the abrasive but it isn’t surely the only one: since the particles of the recycled

Infine si fanno delle considerazione conclusive sulla necessità di valorizzare la leadership scolastica per la promozione delle risorse umane e materiali per la qualità della scuola

Nondimeno, non si possono dimenticare l’ascesa al francese Mont Ventoux di petrarchiana me- moria, racconto che è cronaca di un’ascensione e nel contempo di un’espe- rienza

As there exists essentially no information on the cross section of exclusive π 0 production in the kinematic domain of COMPASS, the two reference samples described above are used

Dispositional resilience optimal regulation (OR) and openness to life experiences (OL) dimensions, perceived physical health (PHYS), personal satisfaction about relationships