• Non ci sono risultati.

Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide

N/A
N/A
Protected

Academic year: 2021

Condividi "Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Pharmacological

Research

jo u r n al hom e p ag e :w w w . e l s e v i e r . c o m / lo c a t e / y p h r s

Regulation

of

soluble

guanylyl

cyclase

redox

state

by

hydrogen

sulfide

Zongmin

Zhou

a,1

,

Emil

Martin

b,1

,

Iraida

Sharina

b

,

Iolanda

Esposito

c

,

Csaba

Szabo

d

,

Mariarosaria

Bucci

c

,

Giuseppe

Cirino

c

,

Andreas

Papapetropoulos

a,e,f,∗

a1stDepartmentofCriticalCareandPulmonaryServices,FacultyofMedicine,NationalandKapodistrianUniversityofAthens,EvangelismosHospital,

Greece

bDivisionofCardiology,DepartmentofInternalMedicine,UniversityofTexasMedicalSchoolatHouston,TX,USA cDepartmentofExperimentalPharmacology,FacultyofPharmacy,UniversityofNaples—FedericoII,Italy dDepartmentofAnesthesiology,UniversityofTexasMedicalBranch,Galveston,TX,USA

eLaboratoryofPharmacology,FacultyofPharmacy,NationalandKapodistrianUniversityofAthens,Greece

fCenterofClinical,ExperimentalSurgery&TranslationalResearch,BiomedicalResearchFoundationoftheAcademyofAthens,Greece

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received28April2016

Receivedinrevisedform7June2016 Accepted30June2016

Availableonline1July2016

Keywords: H2S Nitricoxide cGMP ROS sGCactivators

a

b

s

t

r

a

c

t

Solubleguanylatecyclase(sGC)isareceptorfornitricoxide(NO).BindingofNO toferrous(Fe2+) hemeincreasesitscatalyticactivity,leadingtotheproductionofcGMPfromGTP.Hydrogensulfide (H2S)isasignalingmoleculethatexertsbothdirectandindirectanti-oxidanteffects.Inthepresent, studyweaimedtodeterminewhetherH2ScouldregulatesGCredoxstateandaffectits responsive-nesstoNO-releasingagentsandsGCactivators.Usingcultured rataorticsmoothmusclecells,we observedthattreatmentwithH2SaugmentedtheresponsetotheNOdonorDEA/NO,while attenu-atingtheresponsetotheheme-independentactivatorBAY58-2667thattargetsoxidizedsGC.Similarly, overexpressionofH2S-synthesizingenzymecystathionine-␥lyasereducedtheabilityofBAY58-2667 topromotecGMPaccumulation.Inexperimentswithphenylephrine-constrictedmouseaorticrings, treatmentwithrotenone(acompoundthatincreasesROSproduction),causedarightwardshiftofthe DEA/NOconcentration-responsecurve,aneffectpartiallyrestoredbyH2S.Whenringswerepre-treated withH2S,theconcentration-responsecurvetoBAY58-2667shiftedtotheright.Usingpurified recom-binanthumansGC,weobservedthattreatmentwithH2SconvertedferrictoferroussGCenhancing NO-donor-stimulatedsGCactivityandreducingBAY58-2667-triggeredcGMPformation.Thepresent studyidentifiedanadditionalmechanismofcross-talkbetweentheNOandH2Spathwaysatthelevel ofredoxregulationofsGC.OurresultsprovideevidencethatH2SreducessGChemeFe,thus,facilitating NO-mediatedcellularsignalingevents.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Nitricoxide(NO)isa signalingmoleculethat affectsdiverse physiologicaland pathophysiologicalprocessesin practicallyall systems and organs [1,2]. In the cardiovascular system, NO regulatesvascular tone,inhibits platelet aggregation,promotes angiogenesis,modulatesinflammatoryresponsesandexerts car-dioprotectiveeffects[3].AlthoughNOiscapableofreactingwith aplethoraofmoleculartargets,theresponsetolowphysiological levelsofNOispredominantlymediatedbytheheterodimeric sol-ubleguanylylcyclase(sGC)[4].sGCisahemeproteinwithhigh

∗ Correspondingauthorat:LaboratoryofPharmacology,FacultyofPharmacy, Panepistimiopolis,Zografou,Athens15771,Greece.

E-mailaddress:apapapet@pharm.uoa.gr(A.Papapetropoulos).

1 ZongminZhouandEmilMartincontributedequally.

affinityandspecificitytowardsNO[5–7]thatconvertsGTPtothe secondmessengercGMP;sGCactivityisincreasedseveralhundred folduponbindingofNO[6].

MaintenanceofsGChememoietyintheferrousstateis essen-tialforthesGCNOsensingfunction[8].OxidationofsGChemeby specificagents[9]oroxidativestressinducedbyvarious patholog-icalconditions[10]renderssGCinsensitivetonormallevelsofNO andattenuatesNO/cGMPsignaling.Moreover,ithasbeen demon-stratedthatsGCwithoxidizedhemehasapropensitytolosethe hememoiety[11,12].Thepoolofferricorheme-freesGCismuch moresusceptibletodegradation[12,13].Aboutfifteenyearsago, NO-independentsGCactivatorsandstimulatorswerediscovered

[14,15];theseagentsenhancesGCactivityinaheme-dependent or−independentmanner.sGCactivatorsareuniquefortheir abil-itytoincreasethecatalyticactivityofheme-free/oxidizedsGC.sGC

http://dx.doi.org/10.1016/j.phrs.2016.06.029

(2)

stimulatorshavealreadybeengrantedapprovalforhumanusefor certaintypesofpulmonaryhypertension[16].

Formanydecades,H2Swasconsideredatoxicgasthat pene-tratescellsbysimplediffusion[17].Followingthediscoverythat mammalian cells are capable of producing H2S, this molecule underwentadramaticmetamorphosisfromadangerouspollutant toabiologicallyrelevantmolecule,reminiscentofthe transforma-tionofNO[18,19].H2Sisnowacceptedasasignalingmoleculewith importantrolesinphysiology anddisease[20–22].H2Striggers manyofthesameresponsesasNOinthecardiovascularsystem;it reducesbloodpressure,promotesangiogenesisandlimitsinfarct sizefollowingischemia/reperfusioninjury[21,23].Although dis-tincteffectorshavebeenidentifiedforH2SandNO,bothagentsare capableofenhancingcGMPlevels.MuchlikeNOdonors,exposure ofcellsortissuestoH2SdonorsleadstointracellularcGMP accumu-lation[24,25].However,unlikeNOwhichstimulatessGC,H2Sraises cGMPbypreventingitsbreakdown[26],byenhancingendothelial NOsynthase(eNOS)activity[25,27]aswellasbyliberatingNOfrom stablebiologicalstoresofNO[28].TheinterdependenceofNOand H2Ssignalingisanareaofintenseinvestigation,withseveralgroups aimingtounravelitsimportancefornormalcellfunction,aswell asvariouspathophysiologicalstates.

OurpreviousstudiesdemonstratedthatH2Sdoesnotdirectly affecttheactivityofferroussGC[25].Inthecurrentstudy,we inves-tigatedwhetherH2SaffectsthefunctionofsGCcarryingoxidized ferricheme.WereportthatH2SreducesferricsGChemeintoa ferrousstate,whichisaccompaniedbytherestorationofNO activa-tionofpurifiedandcellularsGC,andtherecoveryofNO-dependent vasodilation.Conversely,H2S-dependentreductionofsGCheme diminishestheresponsetoferric-sGCbyBAY58-2667;thislater observationhassignificantimplicationsforthepharmacologyof sGCactivators,especiallyinlightofthetranslationaleffortsofthis classofagents.

2. Materialsandmethods

2.1. Reagents

Cellculturemediaand serumwereobtainedfromLife Tech-nologiesGIBCO-BRL(Paisley,UK).Allcellcultureplasticwarewas purchasedfromCorning-CostarInc.(Corning,NY).DCProteinassay kit;penicillinandstreptomycinwerepurchasedfromApplichem (Darmstadt,Germany).BAY58-2667wasobtainedfromAdipogen AG(Switzerland).HiTrapdesaltingcolumnswerepurchasedfrom GEHealthcareBio-Sciences(Pittsburgh,PA).ThecGMPEIAkitwas obtainedfromEnzoLifeSciences(Farmingdale,NY). Guanosine-5-[(␣,␤)-methyleno]triphosphate (GpCpp) was purchased from JenaBioscience(Jena,Germany).Sodiumhydrosulfide(NaHS)and sodiumsulfide(Na2S),DEA/NO,sodiumnitroprusside(SNP),ODQ, rotenone,phenylephrine,protease/phosphataseinhibitorsandall otherchemicalsusedinsolutionsandbufferswerepurchasedfrom Sigma-AldrichCo.LLC(StLouis,MO).

2.2. Exvivostudies

AllanimalprocedureswereincompliancewiththeEuropean Communityguidelinesfor theuseof experimentalanimalsand approvedbytheCommitteeCentroServiziVeterinariofthe Univer-sityofNaples“FedericoII”;institutionalregulationsdonotrequire theuseofanimalprotocolnumbersforapprovedprotocols. Ani-mals(C57Blmice)weresacrificedwithCO2 and thoracicaortas wererapidlyharvested,dissected,andcleanedofadherent con-nectiveandfattissue.Ringsofabout1mmlengthweredenuded oftheendothelium,cutandplacedinorganbaths(2.5ml)filled withoxygenated(95%O2-5%CO2)Krebssolutionmaintainedat

37◦C.Theringswereconnectedtoanisometrictransducer(type 7006, Ugo Basile, Comerio, Italy) and changes in tension were recorded continuouslywith a computerized system(Data Cap-sule 17400,UgoBasile, Comerio, Italy). Thecomposition of the Krebssolutionwasasfollow(mM):NaCl118,KCl4.7,MgCl21.2, KH2PO41.2,CaCl2 2.5, NaHCO3 25, andglucose 10.1.The rings werestretcheduntila restingtensionof1.5gwasreachedand allowedtoequilibrateforatleast45min,duringwhichtime ten-sionwasadjusted,asnecessary,to1.5gandbathingsolutionwas periodicallychanged.In each experiment,ringswerefirst chal-lenged with PE (1␮M) until the responses were reproducible. TheringswerethenwashedandcontractedwithPE(1␮M)and, onceaplateauwasreached,acumulativeconcentration-response curveoftheDEA/NOorBAY58-2667wereperformed.Somerings werepretreatedwithrotenone(10␮M)for15minwithorwithout Na2S(50␮M).Afterthe15minpre-incubationtime,cumulative concentration-responsecurveswereperformed.

2.3. Cellculture

Rataorticsmoothmusclecells(RASMC)wereisolatedfrom 12-to14-wk-oldmaleWistarrats,fiveratsperisolation,aspreviously described.Animalswereanesthetizedwithpentobarbitalsodium (40mg/kgip).Oncefullyanesthetizedasjudgedbythelackof reac-tiontoanoxiousstimulus,animalswereexsanguinated;thoracic aortaswerethenremoved.Morethan95%ofcellsisolatedstained positiveforsmoothmuscle␣-actin.Cellsbetweenpassages2and 5wereusedforallexperiments.RASMCwereroutinelyculturedin DMEMcontaining4.5g/lglucoseandsupplementedwith10%fetal bovineserumandantibiotics.

2.4. cGMPenzymeimmunoassay

Cellsweregrowntoconfluenceandwerewashedtwicewith phosphatebufferedsalineandthenincubatedinHBSSinthe pres-enceofisobutylmethylxanthine(IBMX;1mM)for5min.Cellswere thentreatedwithvehicle,rotenone(10␮M),Na2S(50␮M)ora Na2S/rotenonecombinationfor30min.Fifteenminutesafterthe exposuretoDEA/NO(1␮M)orBAY58-2667(1␮M),mediawere aspiratedand 200␮l of0.1N HClwereaddedintoeach wellto extractcGMP.After30min,HClextractswerecollectedand cen-trifugedat600gfor10mintoremovedebris.Thesupernatantswere directlyanalyzedforcGMPbyenzymeimmunoassay.

2.5. sGCexpressionandpurification

HumanferroussGCwaspurifiedfromSf9cellsinfectedwith baculovirusesexpressing␣1and␤1sGCsubunitsfollowing the procedures described previously [29].Purified ferrous sGC was storedat−80◦Cin50mMTEApH7.4and1mMDTT,1mMEDTA and1mMEGTAuntilfurtheruse.ToprepareferricsGC,the sam-pleofferroussGCwaspassedthroughaHiTrapdesaltingcolumnto removeDTT.sGCinthiol-freebufferwasthentitratedwith increas-ingconcentrationsofODQ(0.1–1␮M)untilsGChememoietywas fullyoxidized,asdemonstratedbytheconversionoftheSoretband from432nmto393nm.Thepreparationwasthenpassedthrough thedesaltingcolumnagaintoremoveODQ.Thispreparationof ferricsGCwasusedforspectroscopicstudiesandactivity measure-ments.

2.6. ReductionofferricsGCbyhydrogensulfide

The reduction of ferric sGC by H2S was monitored using theUV–visspectrophotometer.FortitrationofNaHS3␮Mferric sGCwassupplemented withincreasingconcentrationsof NaHS

(3)

(0.01–1000␮M)andthespecrumwasrecorded30safterthe addi-tionofNaHS.TomonitorthedynamicofsGCreductionbyNaHS, ∼1.5␮MpreparationofferricsGCwassupplementedwith200␮M NaHSandthespectralchangeswererecordedinakineticmode oftheinstrumentevery60s.Theapparentrateofreductionwas calculatedbasedonthedatafittingusingthefirstorderreaction algorithm(UV–visChemStationsoftware,AgilentTechnologies). 2.7. AssayofsGCactivityinvitro

Enzymaticactivitywasassayedbytheformationof[32P]cGMP from␣[32P]GTPat37Casdescribedpreviously[30].Inbrief,the reactionwasinitiatedadding1mMGTP/␣[32P]GTPto0.1␮gsGC (ferricorferrous)in25mMTEA,pH7.5,1mg/mlBSA,1mMcGMP, 3mMMgCl2,0.05mg/mlcreatinephosphokinaseand5mM crea-tinephosphate.TomeasuretheresponseofferricorferroussGC tosodiumnitroprusside(SNP)orBAY58-2667,theactivatorswere addedtogetherwithGTP.After30minthereactionwasstoppedby zincacetatefollowedbyprecipitationofunreactedGTPbyZn car-bonate.cGMPwasseparatedfromtheremainingGTPbyalumina chromatographyandthelevelofsynthesizedcGMPwasquantified basedonCherenkovradiation.

2.8. Dataanalysis

Data are expressedas means±SEM. Statistical comparisons between groups were performed using ANOVA followed by a posthoctestorStudent’st-test,asappropriate.Differenceswere considered significant when P<0.05. GraphPad Prism software (version4.02,GraphPadSoftware,SanDiego,CA)wasusedforall thestatisticalanalysis.

3. Results

3.1. H2SreversestheeffectsofsGChemeoxidationincells

Reactiveoxygenandnitrogenspecieshaveapotentialtooxidize thehememoietyofsGCandnegativelyaffectNO/cGMPsignaling

[14].WeinvestigatedtheabilityofhydrogensulfidetorestoresGC alteredresponsescausedbyoxidativestress.Togeneratea persis-tent,low-to-intermediateleveloxidativestressinrataorticsmooth musclecells we usedrotenone (10␮M) toinhibit the electron flowofthemitochondrialrespiratorychain.Exposuretorotenone enhancedBAY58-2667-dependentcGMPaccumulationinRASMC (Fig.1A).Toinvestigateifhydrogensulfidecouldreversethe oxida-tionofsGChemecausedbyrotenone,cellswereco-treatedwithan H2S-yieldingsalt.AsshowninFig.1A,suchtreatmentsuppressed theenhancedabilityofBAY58-2667toincreasecGMPlevelsinthe presenceofrotenone.ToprobethereactivityofsGCtowardsNO, aconcentrationoftheNOdonorDEA/NOwaschosenthatdidnot increasecGMPlevels.ExposureofcellstoH2S,unmaskedthe cGMP-stimulatingcapacityofDEA/NO.Thisobservationisconsistentwith theabilityofH2Stodecreasethecontentofoxidizedcellularferric sGCandincreasetheamountofsGCthatcouldbeactivatedbyNO (ferroussGC).Inadifferentexperimentalsetting,oxidationofsGC hemewasachievedbyadministrationofODQ,aspecificsGCheme oxidant.EvenwiththisstrongsGCoxidizingagent,H2Sdiminished thefractionofferricsGC,asattestedbydiminishedcGMPsynthesis inresponsetoBAY58-2667(Fig.1B).

3.2. H2S-generatingcystathionine-lyasediminishesthecontent offerrichemesGC

Cystathionine␥-lyase(CSE)isanenzymesofthe transulfura-tionpathwaythatgenerateshydrogensulfide[19].Totestwhether elevatedendogenousH2SaffectssGCfunctionweusedRASMCand

infectedthemwithanadenovirusexpressingCSEorgreen fluo-rescentprotein(GFP)ascontrol.CSEoverexpressiondidnotalter sGC␣1or␤1levels(Fig.2A).WeobservedthatCSEover expres-sionresultedin reducedcGMP synthesisin RASMCin response to BAY58-2667 treated with ODQ (Fig. 2B). The findings with endogenouslygeneratedH2Sreplicatetheobservationsmadewith exogenouslyaddedH2Sandareconsistentwithdecreasedcellular contentofsGCwithferricheme.

3.3EffectsofH2SonNOandBAY58-2667-induced

vasorelax-ation.sGCplaysakeyroleinmediatingNO-dependentvasodilation

[6].Previousstudiesdemonstratedthatoxidativestressand var-iouspathological conditionsmayincreasethepoolofferricsGC or heme-deficient sGC in blood vessels and lead to impaired NOresponse invasculature.Therefore, wetestedwhetherH2 S-dependentreductionofsGChemetranslatesintoimprovedNO/sGC signalinginconditionsofoxidativestress.Wefirstevaluatedthe vasoreactivity of control and rotenone-treated mouse thoracic aorta.AsshowninFig.3A,rotenone-pretreatedaorticsegments exhibitedasignificantreductionin thesensitivitytoNOwitha rightwardshiftintheconcentration-responsecurvebeenobserved. TheapparentEC50forDEA/NOincreasedfrom149.9±1.30nMto 2.00±1.29␮M,forcontrolandrotenone-treatedvessels, respec-tively.However,whenH2Swasadministeredduringthelast10min ofrotenonetreatment,asubstantialrestorationofNO-dependent vasodilationwasobserved.Itshouldbenotedthatrotenone,H2Sor theirsimultaneousadditiondidnotaffecttheabilityofthetissue tocontractinresponsetophenylephrine.Additionalexperiments wereperformedtoconfirmthatH2SaffectsthefractionofferricsGC intheisolatedaorta.VesselswereexposedtoH2Sandthen relax-ationwastriggeredbyBAY58-2667.AsdemonstratedinFig.3B, vesselstreatedwithH2SwerelessresponsivetoBAY58-2667than controlvessels,suggestingthatinthepresenceofH2Slowerlevel ofsGCcarryingferrichemeexist.

3.3. H2SpromotesrestorationofferroussGC

TostudythemechanismofalteredresponsivenesstoNOand sGCactivatorsinthepresenceofH2S,weevaluatedifH2Sdirectly affectsthehemestatusand/oractivityofpurifiedferricsGC. There-fore,we testedifadditionofH2Scanchangetheredoxstateof sGChemebymonitoringtheUV–visabsorbanceofsGCheme.We observedthatH2Sinducedaconcentration-andtime-dependent conversionof 393nm Soretbandof ferricsGCintothe 432nm SoretbandofferroussGC(Fig.4),directlydemonstratingthatH2S reducessGChememoiety.Previousstudiesdemonstratedthatthe dynamicsofsGCresponsetoNOandCOgaseousligandsis differ-entinthepresenceofGTPsubstrate.Therefore,weevaluatedifGTP affectsthedynamicsofsGCreductionbyH2S.Wedeterminedthat theadditionofGpCpp(anon-hydrolyzableGTPanalog)doesnot altertheoverallprocessofsGChemereduction(Fig.4C).However, aslightdecreaseintheapparentreductionratefrom0.16±0.03to 0.11±0.04␮M/secwasobserved(Fig.4D).

Asexpected,ferricheme sGCwasnon-responsivetotheNO donorsodiumnitroprusside,butwasstronglyactivatedby100nM BAY58-2667(Fig.5).Onthecontrary,ferroussGCwasstrongly acti-vatedbysodiumnitroprussideandhad amoderateresponseto 100nMBAY58-2667.InthepresenceofH2S,ferricsGCexhibited adiminishedresponsetoBAY58-2667andarobustactivationtoa NOdonor,closelyresemblingthepropertiesofferroussGC.

4. Discussion

ThemainfindingofthepresentstudyisthatH2Siscapableof reducingtheprosthetichemegroupofsGCfromFe+3toFe+2, there-foreincreasingtheNO-activatablepoolofsGCincells.Theshiftin

(4)

A

*

#

*

*

0

1

2

3

4

5

c

GMP

(pmole

/w

ell)

Basal DEA/NO BAY 58-2667

0

2

4

6

Vehicle H2S ODQ H2S + ODQ

c

GMP

(pmole

/w

ell)

B

*

Fig.1. H2SreversestheeffectsofrotenoneandODQoncGMPaccumulation.(A):Rataorticsmoothmusclecellswereincubatedwithvehicle,rotenone(10␮M),H2S(Na2S,

50␮M)oracombinationofH2Sandrotenonefor30min.CellswerethenincubatedwithDAE/NO(1␮M)orBAY58-2667(10␮M)for15mininthepresenceofIBMX(1mM).

CellularcGMPwasextractedwith0.1NHClandmeasuredbyEIA;n=4;*P<0.05vsrespectivevehiclegroup;#p<0.05vsrespectiverotenonegroup.(B):Rataorticsmooth musclecellswereincubatedwithvehicle,ODQ(0.1␮M),H2S(Na2S,50␮M)oracombinationofH2SandODQfor30min.CellswerethenincubatedwithBAY58-2667

(10␮M)for15mininthepresenceofIBMX(1mM).CellularcGMPwasextractedwith0.1NHClandmeasured*P<0.05vsODQ.

B

A

* Ad-GFP Ad-CSE ti GC 1 1 2 3 GFP CSE GFP+ODQ CSE+ODQ o le/ w ell) anti-sGC α1 anti-sGC β1 anti-CSE anti β actin α1 β1 1 cGM P (pm o anti-β-actin Basal BAY 58-2667 0

Fig.2.CSEoverexpressionattenuatessGCactivator(BAY58-2667)-inducedcGMPaccumulation.(A)Representativewesternblotfromsmoothmusclecellsinfectedwith CSEadenovirus.(B)CellswereinfectedwithaGFPoraCSEexpressingadenovirus(10m.o.i).FortyeighthourslatercellswashedandincubatedwithODQ(50nM)andthen exposedtoBAY58-2667(1␮M).CellularcGMPwasextractedwith0.1NHClandmeasuredbyEIA;n=4;*P<0.05*vsODQ.

Fig.3.H2Spartiallyrescuesrotenone-inducedreductionofDEA/NOvasorelaxation,whileitinhibitsBAY58-2667-triggeredvasorelaxation.Phenylephrine-constricted

aorticringswerepre-treatedwithrotenone(10␮M)orH2S+rotenonefor15min.ThesulfidesaltNa2S(50␮M)wasusedasasourceofH2S.Afterincubation,cumulative

concentration-responsecurvestoDEA/NO(A)P<0.05***rotenonevsvehicle;##H2S+rotenonevsvehicle;&H2S+rotenonevsrotenone)orBAY58-2667(B)**P<0.05H2S

vsvehicle)wereperformed.

sGCredoxstatecausedbyH2Shasimportantimplicationsnotonly foritsendogenousligand,butalsoimpactsonthepharmacological activityofsGCactivators.

Wehavepreviously shownthatincubationofcells with sul-fidesaltsincreasescGMPaccumulationinrataorticsmoothmuscle

cells;thiseffectis attributedtoinhibition ofphosphodiesterase

[24,26].ToruleoutthatanychangesobservedincGMPlevelsin thecurrentseriesofexperimentsmightresultfromPDEinhibition, allofmeasurementswereperformedinthepresenceofthe non-selectivePDEinhibitorIBMX,ataconcentrationwhichinhibitsPDE

(5)

A

B

0.25 0.3 0.35 Fe3+-sGC 1 μM 3 μM 10 μM 30 μM 0 08 0.1 0.12 0 sec 60 sec 120 sec 180 sec 200 μM H2S

A

0.1 0.15 0.2 OD, AU μ 100 μM 300 μM 1 mM 0.04 0.06 . OD, AU 300 sec 600 sec 900 sec 0 0.05 320 340 360 380 400 420 440 460 480 nm 0 0.02 320 340 360 380 400 420 440 460 480 nm 393 nm 432 nm 393 nm 432 nm 0.12 0.14 0 sec60 sec 120 sec 180sec 0.08 0.09 0.10 K= 0.16 μM/sec 200 μM H2S +50 μM GPcPP

D

C

0 04 0.06 0.08 0.1 OD, AU 180 300 sec 600 sec 900 sec 0 03 0.04 0.05 0.06 0.07 OD 432, AU 200 M N HS K= 0.11 μM/sec 0 0.02 0.04 320 340 360 380 400 420 440 460 480 nm 0 250 500 750 1000 1250 0.00 0.01 0.02 0.03 Time sec 200 μM NaHS 200 μM NaHS + GPcPP 393 nm 432 nm Time, sec

Fig.4.H2S-dependentconversionofFe3toFe2+sGCisconcentration-andtime-dependent,andmildlyaffectedbyGTPsubstrate.(A):UV–visspectraoftheSoretregionfor

ferricsGC(3␮M)in50mMTEAbuffer(pH7.4)wererecorded1minaftertheadditionoftheindicatedamountofH2Sintheformofasulfidesalt(NaHS).(AU,absorbance

unit).(B):3␮MferricsGCwasmixedwithanequalvolumeofH2S(NaHS,200␮M)in50mMTEAbuffer(pH7.4)andspectralchangeswererecordedfor20min.(C):Spectral

changesforferricsGCsupplementedwith50␮MGpCppaftertheadditionofH2S.(D):Time-dependentaccumulationof432nmbandinsamplesofferricsGCaloneorinthe

presenceof50␮MGPcPPinresponsetoH2S.

Fig.5.H2SreducesFe3+hemetoFe2+insGCleadingtochangesinenzyme

respon-sivenesstoNOandBAY58-2667.Purifiedsamplesofferric(Fe3+-sGC)orferrous (Fe2+-sGC)sGCwereincubatedwithorwithoutH2S(NaHS,25␮M)andstimulated

withsodiumnitroprusside(SNP;10␮M),orBAY58-2667(100nM).Theformationof [␣-32P]cGMPfrom[␣-32P]GTPwasquantified;n=6,*P<0.01vsferricsGCwithout

H2S.

inratsmoothmusclecells[31,32].Indeed,exposureofcellstoNa2S alonedidnotcauseachangeincGMPlevelsinthepresenceofIBMX. Exposureofcellsto1␮MDEA/NOfailedtoincreasecGMP; how-ever,whencellswereincubatedwithH2S,1␮MDEA/NOpromoted anincreaseinintracellularcGMP,presumablyduetoconversionof existingcellularferrictoferroussGC.Ontheotherhand,whencells wereexposedto1␮MBAY58-2667asharpincreaseincGMP lev-elsweobserved,confirmingpreviousobservations[33].Rotenone, anagentthatpromotesROSgenerationbyinhibitingcomplexIof therespiratorychain[34],increasedtheresponsetoBAY58-2667 thatselectivelytargetstheoxidized-heme/freepoolofsGC. Inter-estingly,thiseffectwasreversedbyincubatingcellswithasource ofH2S.Sulfidesalts(NaHSandNa2S)althoughwidelyusedinthe literaturetodeliverH2Stocellssufferamajordrawback[35];once dissolvedinaqueousbuffersinstantlydecomposeyieldingaburst

onH2S. TodeliverH2Sinaphysiologically-relevantmanner,we infectedcellswithanadenovirusthatoverexpressesCSE,amajor H2S-generatingenzymeinvasculartissue[17].CSE-overexpressing cellsdisplayedreducedresponsivenesstoBAY58-2667.Theabove datatakentogetherareinlinewiththenotionthatH2Sshiftsthe sGCredoxbalancetowardsferroussGC.

H2S is knownto have both direct and indirectanti-oxidant actions.H2SreactswithROSandreactivenitrogenspecies, includ-inghydrogenperoxide,andperoxynitrite,althoughwithrelatively modestrateconstants[36].Inaddition,H2Shasbeenshownto up regulate the expression/activity of antioxidant enzymes, to affecttheexpressionofROSgeneratingenzymesandtoincrease glutathionelevels[17,19,37].ThebeneficialeffectofH2SonNO signalinginourexperimentsthatemployedrotenonecouldresult fromneutralizationofROS,thuspreventingoxidationofsGCheme. Anotherpossiblemechanismofbeneficialeffectofsulfideson cel-lularsGCactivityunderconditionsofoxidativestressisthereaction of sulfide ion withoxidized cysteine residues. sGC hasa large numberofcysteineresiduesthataresusceptibletomodification by ROS.Proteomicanalysis of sGCfromcells thatwere chron-ically exposedtooxidative stressviaanaldosterone-dependent mechanismdemonstratedthattheCys122residueofthe␤1 sub-unitundergoesseveraloxidativemodifications[38].Thisspecific residuehasbeenimplicatedinmodulatingthepotencyofNO acti-vationofsGC[39].UnderphysiologicpH,cellularsulfidesaremore likelytoreactwithoxidizedproteinthiols,suchasproteinsulfenic acid,thanintracellularglutathione[40].Therefore,H2S-dependent restoration ofNO-inducible cGMP synthesis in cells exposedto rotenonecouldintheorybe,atleast,inpartexplainedbythe reduc-tionofsGCthiols.However,thisismostlikelynotthecase,asin thepurifiedenzymepreparationH2Srestoredresponsivenessof sGCexposedtotheselectivehemeoxidantODQthathasnoeffect

(6)

onsGCthiols.ToevaluateifH2Scandirectlytargettheprosthetic hemegroupofsGCincells,weusedODQanagentthatselectively oxidizesthehememoietyofsGC[9].Inlinewithitsabilityto con-vertferroustoferricsGC,ODQ-treatedcellsexhibitedandincreased cGMPresponsetoBAY58-2667.ThiseffectofODQwasattenuated byH2S,suggestingthatH2ShasdirecteffectonsGCheme.

Tobetter characterize theeffect ofH2SonsGC redoxstate, weusedhumanrecombinantsGC.AfterpurificationsGCwas con-vertedtoitsferricstatebyareactionwithODQ;thesinglepeakat 393nmconfirmedthesuccessfulpreparationoffullyoxidizedsGC. Inagreementwiththecurrentliterature[15,41],theactivityofsGC withferrichemewasunaffectedbyNOreflecting thelow affin-ityofFe+3sGCforNO.Atthesametime,Fe+3sGCrespondedwell toBAY58-2667,ansGCactivatorthathasahigheraffinitytosGC withoxidizedheme.TheoppositewastrueofferroussGC,which demonstratedonlyasmallchangeinactivityinresponsetoBAY 58-2667,butwasreadilyactivatedbyNO.IncubationofFe+3sGC withH2S,causedaconcentration-dependentshiftintheabsorption maximumofhemefrom393nm,characteristicforferricsGCheme to432nm,whichisindicativeofferroushemesGC.Full conver-sionfromferrictoferroushemetook900s.TheactivityofFe+3sGC towardsNOwasrestoredwhenincubatedwithH2S.Overall,the observationsmadewiththerecombinantsGCarewellinagreement withthosemadewiththeculturedsmoothmusclecells,reinforcing thenotionthatH2SkeepssGCinareduced,NO-responsivestate.

Ourobservationthathydrogensulfidereducesferricstateof sGChemeis inlinewithmanyobservations reportedforother heme-containingproteins[42].Sulfideevenatlowconcentrations canactaselectrondonortotheferricderivativeofcytochromeC oxidase[43].Similarheme-reducingactivityofhydrogensulfide wasreportedfortheferriccatalase[44]andseveralperoxidases

[45,46].HemoglobinandmyoglobininferricFe3+statebindH

2S

ashemeligandandarerapidlyreducedtothedeoxyFe2+and/or Fe2+-O2derivative[47].ItshouldbenotedthatthereactionofH2S withoxygen-carryinghemoglobinand myoglobinresultsinthe formationofsulfheme,achlorine-typehemewithasulfuratom incorporatedintooneofthepyrrolerings.Generationofsulfheme wasalsodescribedfor catalaseandlactorperoxidase[48]. How-ever,inourspectralobservationsoftheinteractionbetweenferric orferroussGCwithH2,Sweobservednotracesofthe620nm opti-calbandcharacteristicforsulfheme(datanotshown).Therefore, weconcludethattheonlyeffectofH2SonsGCisthereductionof hemeironfromferrictoferrous.

SuperoxideaniongenerationleadstoNOscavengingandlimits NObiologicalactivity[2].Incubationofvesselswiththerotenone, causedashiftoftherelaxationcurvetoDEA/NOtotheright,due toproductionofROS.TheincreaseinEC50forNOdonorscanbe reversedbysuperoxidedismutaseandotherantioxidants. Incuba-tionofvesselswithH2SpartiallyrestoredtheDEA/NOresponse.As inthisvesselpreparationPDEwasnotinhibited,wecannotsafely concludethattheshiftoftheDEA/NOconcentrationcurveis exclu-sivelyduetoreductionofsGC.However,thisobservationiswellin accordancewithourcellcultureandpurifiedenzymeexperiments. Ina differentseriesofexperiments,vesselswerepre-incubated withH2SandthenexposedtoBAY58-2667.sGCactivatorresponses wereshiftedtotheright,asagreateramountofsGCisexpectedto beinitsreduced,BAY58-2667-unresponsiveform.Thesefindings confirmandextendourobservationsinvitroandprovidefunctional relevanceforthisH2S/NOinteractionatthesGClevel.

SeverallevelsofH2S-NOcross-talkand interactions,ranging fromdirectchemicalinteractionstoconvergenceontodownstream signalingpathwayshavebeenidentified[49–52].Thedirect reac-tionbetweenH2SandNOyieldsnitroxylthattriggersvasodilation

[51]thatcanactivatesGC[53].Ontheotherhand,the nitrosoper-sulfide(SSNO−)formedfollowingreactionofS-nitrosothiolswith sulfide,liberatesNOtoactivatecGMP[50].H2Spromotes

phos-phorylationofeNOSonSer1177,leadingtoincreasedNOoutput

[25,27].eNOSdimerizationisessentialforenzymaticactivity;H2S preservesdimericeNOSbypersulfidationandinhibitionofCys443 nitrosation[54].H2Shasalsobeenshowntoinhibit phosphodi-esterase(PDE)activity,witha 30-foldselectivityfor PDE5[55]. IncreasedNObioavailabilityissupportedbyH2Sactivationof xan-thineoxidasetoreducenitriteinischemictissues[28].Allofthese events culminatein activation of the cGMP/PKGcascade regu-latingcardiovascularfunction.Asa consequence,vasorelaxation concentration-responsecurvestoH2Sareshiftedtotherightin eNOSKOmice,whilenostimulationofangiogenesisand cardiopro-tectiononresponsetoH2Sdonorscanbeobservedinmicelacking eNOS[25,27,56].TheabilityofH2StoaffectsGCresponsivenessto NOdemonstratedinthecurrentreportprovidesanadditionallevel ofcross-talkbetweenNOandH2S.

Inconclusion, wehavedemonstratedthatsGCregulatessGC redoxstate,favoring theexistenceof ferroussGC.Maintenance ofphysiological H2Slevelswould notonlypreventNO destruc-tionbyenhancinganti-oxidantpathways,butwouldalsopreserve NO-responsivenessofsGCthroughtheactionofH2Sontheheme moiety. Enhanced expressionof H2Sproducing enzymesmight counteract the oxidation of sGC encountered in disease states, whileadeclineincellularH2ScouldmakesGCrefractoryto nor-mallevelsofNO.AlthoughdiscretepoolsofsGCareknowntoexist (reducedandoxidized),thecellularconstituentsresponsible regu-latingthebalancebetweenthesetwoformsofsGCremainelusive

[57,58].H2Sbeingafreelydiffusiblesmallmoleculewouldbewell suitedtoserveasanendogenoussGCreducing agent.Our find-ingshaveimportantpharmacologicalimplicationsasH2Sdonors whicharecurrentlyinclinicaldevelopmentmightrepresentaway torestoresGCresponsivenesstoNO.Furtherstudiesvalidatingsuch interactionsinvivoarerequired.

Authordisclosurestatement

Theauthorsreportnoconflictsofinterest.

Acknowledgements

Thisworkhasbeenco-financedbytheEuropeanUnion (Euro-pean Social Fund − ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program Aristeia 2011 (1436) to AP, by EU FP7 REG-POTCT-2011-285950-“SEE-DRUG”, bytheCOSTAction BM1005 (ENOG:Europeannetworkongasotransmitters),byaGrant-in-Aid 15GRNT25700101fromtheAmericanHeartAssociationtoEMand bytheNationalInstitutesofHealth(R01GM107846)toCS.

References

[1]K.Davis,E.Martin,I.Turko,F.Murad,Noveleffectsofnitricoxide,Annu.Rev. Pharmacol.Toxicol.41(2001)203–236.

[2]S.Moncada,E.A.Higgs,Endogenousnitricoxide:physiology,pathologyand clinicalrelevance,Eur.J.Clin.Invest.21(1991)361–374.

[3]U.Förstermann,W.C.Sessa,Nitricoxidesynthases:regulationandfunction, Eur.HeartJ.33(2012)829–837.

[4]J.Garthwaite,Newinsightintothefunctioningofnitricoxide-receptive guanylylcyclase:physiologicalandpharmacologicalimplications,Mol.Cell. Biochem.334(2010)221–232.

[5]E.M.Boon,M.A.Marletta,Liganddiscriminationinsolubleguanylatecyclase andtheH-NOXfamilyofhemesensorproteins,Curr.Opin.Chem.Biol.9 (2005)441–446.

[6]D.Koesling,M.Russwurm,E.Mergia,F.Mullershausen,A.Friebe,Nitric oxide-sensitiveguanylylcyclase:structureandregulation,Neurochem.Int. 45(2004)813–819.

[7]E.Martin,V.Berka,E.Bogatenkova,F.Murad,A.-L.Tsai,Ligandselectivityof solubleguanylylcyclase:effectofthehydrogen-bondingtyrosineinthedistal hemepocketonbindingofoxygen,nitricodieandcarbonmonoxide,J.Biol. Chem.281(2006)27836–27845.

(7)

[8]E.R.Derbyshire,M.A.Marletta,Structureandregulationofsolubleguanylate cyclase,Annu.Rev.Biochem.81(2012)533–559.

[9]J.Garthwaite,E.Southam,C.L.Boulton,E.B.Nielsen,K.Schmidt,B.Mayer, Potentandselectiveinhibitionofnitricoxide-sensitiveguanylylcyclaseby 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one,Mol.Pharmacol.48(1995) 184–188.

[10]J.P.Stasch,P.M.Schmidt,P.I.Nedvetsky,T.Y.Nedvetskaya,H.S.ArunKumar,S. Meurer,M.Deile,A.Taye,A.Knorr,H.Lapp,H.Müller,Y.Turgay,C.Rothkegel, A.Tersteegen,B.Kemp-Harper,W.Müller-Esterl,H.H.Schmidt,Targetingthe heme-oxidizednitricoxidereceptorforselectivevasodilatationofdiseased bloodvessels,J.Clin.Invest.116(2006)2552–2561.

[11]B.G.Fritz,X.Hu,J.L.Brailey,R.E.Berry,F.A.Walker,W.R.Montfort,Oxidation andlossofhemeinsolubleguanylylcyclasefrommanducasexta, Biochemistry50(2011)5813–5815.

[12]S.Meurer,S.Pioch,T.Pabst,N.Opitz,P.M.Schmidt,T.Beckhaus,K.Wagner,S. Matt,K.Gegenbauer,S.Geschka,M.Karas,J.-P.Stasch,H.H.H.W.Schmidt,W. Müller-Esterl,Nitricoxide—independentvasodilatorrescuesheme-oxidized solubleguanylatecyclasefromproteasomaldegradation,Circ.Res.105(2009) 33–41.

[13]L.S.Hoffmann,P.M.Schmidt,Y.Keim,S.Schaefer,H.Schmidt,J.P.Stasch, Distinctmolecularrequirementsforactivationorstabilizationofsoluble guanylylcyclaseuponhaemoxidation-induceddegradation,Br.J.Pharmacol. 157(2009)781–795.

[14]O.V.Evgenov,P.Pacher,P.M.Schmidt,G.Hasko,H.H.H.W.Schmidt,J.-P.Stasch, NO-independentstimulatorsandactivatorsofsolubleguanylatecyclase: discoveryandtherapeuticpotential,Nat.Rev.DrugDiscov.5(2006)755–768.

[15]A.Papapetropoulos,A.J.Hobbs,S.Topouzis,Extendingthetranslational potentialoftargetingNO/cGMP-regulatedpathwaysintheCVS,Br.J. Pharmacol.172(2015)1397–1414.

[16]H.-A.Ghofrani,N.Galiè,F.Grimminger,E.Grünig,M.Humbert,Z.-C.Jing,A.M. Keogh,D.Langleben,M.O.Kilama,A.Fritsch,D.Neuser,L.J.Rubin,Riociguat forthetreatmentofpulmonaryarterialhypertension,N.Engl.J.Med.369 (2013)330–340.

[17]R.Wang,Physiologicalimplicationsofhydrogensulfide:awhiffexploration thatblossomed,Physiol.Rev.92(2012)791–896.

[18]L.Li,P.Rose,P.K.Moore,Hydrogensulfideandcellsignaling,Annu.Rev. Pharmacol.Toxicol.51(2011)169–187.

[19]C.Szabo,Hydrogensulphideanditstherapeuticpotential,Nat.Rev.Drug Discov.6(2007)917–935.

[20]B.D.Paul,S.H.Snyder,H(2)Ssignallingthroughproteinsulfhydrationand beyond,Nat.Rev.Mol.CellBiol.13(2012)499–507.

[21]D.J.Polhemus,D.J.Lefer,Emergenceofhydrogensulfideasanendogenous gaseoussignalingmoleculeincardiovasculardisease,Circ.Res.114(2014) 730–737.

[22]M.Whiteman,S.LeTrionnaire,M.Chopra,B.Fox,J.Whatmore,Emergingrole ofhydrogensulfideinhealthanddisease:criticalappraisalofbiomarkersand pharmacologicaltools,Clin.Sci.(Lond.)121(2011)459–488.

[23]R.Wang,C.Szabo,F.Ichinose,A.Ahmed,M.Whiteman,A.Papapetropoulos, TheroleofH2Sbioavailabilityinendothelialdysfunction,TrendsPharmacol. Sci.36(2015)568–578.

[24]M.Bucci,A.Papapetropoulos,V.Vellecco,Z.Zhou,A.Zaid,P.Giannogonas,A. Cantalupo,S.Dhayade,K.P.Karalis,R.Wang,R.Feil,G.Cirino,

cGMP-dependentproteinkinasecontributestohydrogensulfide-stimulated vasorelaxation,PLoSOne7(2012)e53319.

[25]C.Coletta,A.Papapetropoulos,K.Erdelyi,G.Olah,K.Módis,P.Panopoulos,A. Asimakopoulou,D.Gerö,I.Sharina,E.Martin,C.Szabo,Hydrogensulfideand nitricoxidearemutuallydependentintheregulationofangiogenesisand endothelium-dependentvasorelaxation,Proc.Natl.Acad.Sci.U.S.A.109 (2012)9161–9166.

[26]M.Bucci,A.Papapetropoulos,V.Vellecco,Z.Zhou,A.Pyriochou,C.Roussos,F. Roviezzo,V.Brancaleone,G.Cirino,Hydrogensulfideisanendogenous inhibitorofphosphodiesteraseactivity,Arterioscler.Thromb.Vasc.Biol.30 (2010)1998–2004.

[27]A.L.King,D.J.Polhemus,S.Bhushan,H.Otsuka,K.Kondo,C.K.Nicholson,J.M. Bradley,K.N.Islam,J.W.Calvert,Y.X.Tao,T.R.Dugas,E.E.Kelley,J.W.Elrod, P.L.Huang,R.Wang,D.J.Lefer,Hydrogensulfidecytoprotectivesignalingis endothelialnitricoxidesynthase-nitricoxidedependent,Proc.Natl.Acad.Sci. U.S.A.111(2014)3182–3187.

[28]S.C.Bir,G.K.Kolluru,P.McCarthy,X.Shen,S.Pardue,C.B.Pattillo,C.G.Kevil, Hydrogensulfidestimulatesischemicvascularremodelingthroughnitric oxidesynthaseandnitritereductionactivityregulatinghypoxia-inducible factor-1␣andvascularendothelialgrowthfactor—dependentangiogenesis,J. Am.HeartAssoc.1(2012)e004093.

[29]E.Martin,V.Berka,I.Sharina,A.-L.Tsai,MechanismofbindingofNOto solubleguanylylcyclase:implicationforthesecondNObindingtotheheme proximalsite,Biochemistry51(2012)2737–2746.

[30]G.Schultz,Generalprinciplesofassaysforadenylatecyclaseandguanylate cyclaseactivity,MethodsEnzymol.38(1974)115–125.

[31]X.Pan,E.Arauz,J.J.Krzanowski,D.F.Fitzpatrick,J.B.Polson,Synergistic interactionsbetweenselectivepharmacologicalinhibitorsof phosphodiesteraseisozymefamiliesPDEIIIandPDEIVtoattenuate proliferationofratvascularsmoothmusclecells,Biochem.Pharmacol.48 (1994)827–835.

[32]A.Papapetropoulos,N.Marczin,M.D.Snead,C.Cheng,A.Milici,J.D.Catravas, Smoothmusclecellresponsivenesstonitrovasodilatorsinhypertensiveand normotensiverats,Hypertension23(1994)476–484.

[33]M.v.W.Rekowski,V.Kumar,Z.Zhou,J.Moschner,A.Marazioti,M.Bantzi,G.A. Spyroulias,F.vandenAkker,A.Giannis,A.Papapetropoulos,Insightsinto solubleguanylylcyclaseactivationderivedfromimprovedheme-mimetics,J. Med.Chem.56(2013)8948–8952.

[34]N.Li,K.Ragheb,G.Lawler,J.Sturgis,B.Rajwa,J.A.Melendez,J.P.Robinson, MitochondrialcomplexIinhibitorrotenoneinducesapoptosisthrough enhancingmitochondrialreactiveoxygenspeciesproduction,J.Biol.Chem. 278(2003)8516–8525.

[35]A.Papapetropoulos,M.Whiteman,G.Cirino,Pharmacologicaltoolsfor hydrogensulphideresearch:abriefintroductoryguideforbeginners,Br.J. Pharmacol.172(2015)1633–1637.

[36]S.Carballal,M.Trujillo,E.Cuevasanta,S.Bartesaghi,M.N.Möller,L.K.Folkes, M.A.García-Bereguiaín,C.Gutiérrez-Merino,P.Wardman,A.Denicola,R. Radi,B.Alvarez,Reactivityofhydrogensulfidewithperoxynitriteandother oxidantsofbiologicalinterest,FreeRadic.Biol.Med.50(2011)196–205.

[37]Y.Ju,W.Zhang,Y.Pei,G.Yang,H2Ssignalinginredoxregulationofcellular functions,Can.J.Physiol.Pharmacol.91(2013)8–14.

[38]B.A.Maron,Y.Y.Zhang,D.E.Handy,A.Beuve,S.S.Tang,J.Loscalzo,J.A. Leopold,Aldosteroneincreasesoxidantstresstoimpairguanylylcyclase activitybycysteinylthioloxidationinvascularsmoothmusclecells,J.Biol. Chem.284(2009)7665–7672.

[39]N.Sayed,P.Baskaran,X.Ma,F.vandenAkker,A.Beuve,Desensitizationof solubleguanylylcyclasetheNOreceptor,byS-nitrosylation,Proc.Natl.Acad. Sci.U.S.A.104(2007)12312–12317.

[40]P.Nagy,C.C.Winterbourn,Redoxchemistryofbiologicalthiols,Adv.Mol. Toxicol.4(2010)182–222.

[41]J.P.Stasch,A.J.Hobbs,NO-independent,haem-dependentsolubleguanylate cyclasestimulators,Handb.Exp.Pharmacol.(2009)277–308.

[42]P.Nagy,Mechanisticchemicalperspectiveofhydrogensulfidesignaling, MethodsEnzymol.554(2015)3–29.

[43]J.P.Collman,S.Ghosh,A.Dey,R.A.Decreau,Usingafunctionalenzymemodel tounderstandthechemistrybehindhydrogensulfideinducedhibernation, Proc.Natl.Acad.Sci.U.S.A.106(2009)22090–22095.

[44]P.Nicholls,Theactionofanionsoncatalaseperoxidecompounds,Biochem.J. 81(1961)365–374.

[45]S.Nakamura,M.Nakamura,I.Yamazaki,M.Morrison,Reactionsofferryl lactoperoxidase(compoundII)withsulfideandsulfhydrylcompounds,J.Biol. Chem.259(1984)7080–7085.

[46]Z.Palinkas,P.G.Furtmuller,A.Nagy,C.Jakopitsch,K.F.Pirker,M.Magierowski, K.Jasnos,J.L.Wallace,C.Obinger,P.Nagy,Interactionsofhydrogensulfide withmyeloperoxidase,Br.J.Pharmacol.172(2014)1516–1532.

[47]R.Pietri,E.Roman-Morales,J.Lopez-Garriga,Hydrogensulfideand hemeproteins:knowledgeandmysteries,Antioxid.RedoxSignal.15(2011) 393–404.

[48]B.B.Rios-Gonzalez,E.M.Roman-Morales,R.Pietri,J.Lopez-Garriga,Hydrogen sulfideactivationinhemeproteins:thesulfhemescenario,J.Inorg.Biochem. 133(2014)78–86.

[49]S.-I.Bibli,G.Yang,Z.Zhou,R.Wang,S.Topouzis,A.Papapetropoulos,Roleof cGMPinhydrogensulfidesignaling,NitricOxide46(2015)7–13.

[50]M.M.Cortese-Krott,G.G.C.Kuhnle,A.Dyson,B.O.Fernandez,M.Grman,J.F. DuMond,M.P.Barrow,G.McLeod,H.Nakagawa,K.Ondrias,P.Nagy,S.B.King, J.E.Saavedra,L.K.Keefer,M.Singer,M.Kelm,A.R.Butler,M.Feelisch,Key bioactivereactionproductsoftheNO/H(2)SinteractionareS/N-hybrid species,polysulfides,andnitroxyl,Proc.Natl.Acad.Sci.U.S.A.112(2015) E4651–E4660.

[51]M.Eberhardt,M.Dux,B.Namer,J.Miljkovic,N.Cordasic,C.Will,T.I.Kichko,J. delaRoche,M.Fischer,S.A.Suárez,D.Bikiel,K.Dorsch,A.Leffler,A.Babes,A. Lampert,J.K.Lennerz,J.Jacobi,M.A.Martí,F.Doctorovich,E.D.Högestätt,P.M. Zygmunt,I.Ivanovic-Burmazovic,K.Messlinger,P.Reeh,M.R.Filipovic,H(2)S andNOcooperativelyregulatevasculartonebyactivatinganeuroendocrine HNO–TRPA1–CGRPsignallingpathway,Nat.Commun.5(2014)4381.

[52]G.K.Kolluru,X.Shen,C.G.Kevil,Ataleoftwogases:NOandH(2)Sfoesor friendsforlife?RedoxBiol.1(2013)313–318.

[53]T.W.Miller,M.M.Cherney,A.J.Lee,N.E.Francoleon,P.J.Farmer,S.B.King,A.J. Hobbs,K.M.Miranda,J.N.Burstyn,J.M.Fukuto,Theeffectsofnitroxyl(HNO) onsolubleguanylatecyclaseactivity:interactionattheferoushemeand cysteinethiols,J.Biol.Chem.284(2009)21788–21796.

[54]Z.Altaany,Y.Ju,G.Yang,R.Wang,ThecoordinationofS-sulfhydration, S-nitrosylation,andphosphorylationofendothelialnitricoxidesynthaseby hydrogensulfide,Sci.Signal.7(2014)ra87.

[55]P.Panopoulos,G.Yang,A.Asimakopoulou,S.Topouzis,R.Wang,C.Szabo,A. Papapetropoulos,Selectivityofhydrogensulfidetowardscyclicnucleotide phosphodiesterases,NitricOxide47(2015)S39.

[56]S.-I.Bibli,I.Andreadou,A.Chatzianastasiou,C.Tzimas,D.Sanoudou,E. Kranias,P.Brouckaert,C.Coletta,C.Szabo,D.T.Kremastinos,E.K.Iliodromitis, A.Papapetropoulos,CardioprotectionbyH2SengagesacGMP-dependent proteinkinaseG/phospholambanpathway,Cardiovasc.Res.106(2015) 432–442.

[57]M.Follmann,N.Griebenow,M.G.Hahn,I.Hartung,F.-J.Mais,J.Mittendorf,M. Schäfer,H.Schirok,J.-P.Stasch,F.Stoll,A.Straub,Thechemistryandbiology ofsolubleguanylatecyclasestimulatorsandactivators,Angew.Chem.Int.Ed. Engl.52(2013)9442–9462.

[58]J.-P.Stasch,P.Pacher,O.V.Evgenov,Solubleguanylatecyclaseasanemerging therapeutictargetincardiopulmonarydisease,Circulation123(2011) 2263–2273.

Riferimenti

Documenti correlati

Seconda parte: L’Open Access dal punto di vista della biblioteca (Paola Galimberti, Il movimento dell’accesso aperto ai prodotti della ricerca: il caso delle tesi di dot- torato,

The results of TGA, i.e., the weight reduction calculated as the percentage reduction with respect to the initial weight of the sample, and its derivative with respect to

described their feelings “at the moment” on a Visual Analog Scale from 0 (Not at all) to 100 (Completely). Positive and Negative affective states were operationalized by averaging

Since  centuries,  brass  (Cu‐Zn  alloys)  are  used  as  material  for  wind  instruments  due  to 

To rule out the possibility of GMEC inflation we consider a subclass of constraints called singular GMECs with an acyclic backward-conflict-free uncontrollable subnet.. By

(…) Fotografi del calibro di un Cartier-Bresson o di un Brassäi definiscono la loro arte come un apparente paradosso: quello di ritagliare un frammento della

Ritenendo sostanzialmente conforme la disciplina nazionale rispetto alla direttiva lungo soggiornanti, salvo dubitare della proporzionalità del sistema sanzionatorio

Interestingly, (A) in mice groups developing severe colitis (Nod2−/− cohoused and Nod2+/+ reared separately), progressive reduction of alpha diversity, unbalanced B/F ratio